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Abstract

proteins).

important determinants of fecundity in fish.

Background: Endocrine disrupting chemicals (e.g., estrogens, androgens and their mimics) are known to affect
reproduction in fish. 17a-ethynylestradiol is a synthetic estrogen used in birth control pills. 17B-trenbolone is a
relatively stable metabolite of trenbolone acetate, a synthetic androgen used as a growth promoter in livestock.
Both 17a-ethynylestradiol and 17B-trenbolone have been found in the aquatic environment and affect fish
reproduction. In this study, we developed a physiologically-based computational model for female fathead
minnows (FHM, Pimephales promelas), a small fish species used in ecotoxicology, to simulate how estrogens (i.e,
17a-ethynylestradiol) or androgens (i.e, 17B-trenbolone) affect reproductive endpoints such as plasma
concentrations of steroid hormones (e.g., 17B-estradiol and testosterone) and vitellogenin (a precursor to egg yolk

Results: Using Markov Chain Monte Carlo simulations, the model was calibrated with data from unexposed, 17a.-
ethynylestradiol-exposed, and 17B-trenbolone-exposed FHMs. Four Markov chains were simulated, and the chains
for each calibrated model parameter (26 in total) converged within 20,000 iterations. With the converged
parameter values, we evaluated the model’s predictive ability by simulating a variety of independent experimental
data. The model predictions agreed with the experimental data well.

Conclusions: The physiologically-based computational model represents the hypothalamic-pituitary-gonadal axis in
adult female FHM robustly. The model is useful to estimate how estrogens (e.g., 17a-ethynylestradiol) or androgens
(e.g., 17B-trenbolone) affect plasma concentrations of 17B-estradiol, testosterone and vitellogenin, which are

Background

In vertebrates, such as fish, the hypothalamic-pituitary-
gonadal (HPG) axis controls reproductive processes
through a variety of hormones which act on target tis-
sues directly or indirectly [1,2]. The HPG axis can be
altered by endocrine disrupting chemicals (EDCs) in
the aquatic environment which mimic endogenous
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hormones, alter their concentrations, or block their
actions [3].

In recent years, many scientific studies have been con-
ducted to study reproductive effects of EDCs in fathead
minnow (FHM, Pimephales promelas), a model small
fish species used in ecotoxicology [4-6]. Two EDCs,
170-ethynylestradiol and 17B-trenbolone, have been
widely studied as model estrogens and androgens,
respectively [7-11]. Both compounds also are environ-
mentally relevant contaminants.
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170.-ethynylestradiol (EE,), a synthetic estrogen used
in birth control pills, enters the environment mainly
through effluents from wastewater treatment facilities.
The reported median EE, concentration in the aquatic
environment varies from <0.5 to 15 ng/L [12]. Due in
part to its high binding affinity for estrogen receptor
(ER) [13-15], EE, affects the HPG axis in FHM at envir-
onmentally relevant concentrations. Exposure to EE, has
been shown to result in altered hormone profiles, and
increased vitellogenin (VTG, a precursor of egg yolk
proteins) levels in both male and female FHMs [16]. In
addition, a seven-year, whole-lake experiment conducted
in Canada [17] showed that chronic exposure of FHMs
to 5 - 6 ng EE,/L led to near-extinction of this species
from the lake.

17B-trenbolone (TB) is a relatively stable metabolic
product of trenbolone acetate, a synthetic androgen
used as a growth promoter in livestock (e.g., cattle). TB
enters the environment mainly as runoff from livestock
feedlots. Schiffer et al. [18] reported that the TB concen-
tration in effluents of solid cattle dung was around 19
ng/L. Durhan et al. [19] studied a cattle feedlot located
in southwest central Ohio, and reported that the TB
concentration in feedlot discharge was between 10 and
20 ng/L. TB has a high binding affinity for the androgen
receptor (AR). Water exposure to TB at concentrations
similar to those found in the environment decreases egg
production in FHM in conjunction with changes in
plasma concentrations of 17B-estradiol (E,), testosterone
(T), and VTG in females [7]. Interestingly, relationships
between TB water exposure concentrations and plasma
E,, T and VTG concentrations were not monotonic, but
were “U-shaped” [7].

To better understand the dynamics of the HPG axis in
female FHMs and to facilitate the evaluation of adverse
outcomes on reproduction from both estrogenic and
androgenic EDC exposure, we developed a physiologi-
cally based computational model to simulate key repro-
ductive endpoints, such as plasma concentrations of E,,
T, and VTG, in adult female FHMs. The model simu-
lates absorption, distribution, and elimination of TB and
EE, by incorporating salient physiological characteristics
of FHMs and modelling biochemical pathways and reac-
tions mathematically. This model is a first step toward
predicting adverse outcomes on reproduction, which is
an important component of ecological risk assessment.
It robustly links TB and EE, exposure to plasma steroid
hormone and VTG concentrations, which can then be
used to predict effects on fecundity. Though this model
does not simulate oocyte growth dynamics to predict
fecundity, it can be integrated with an oocyte growth
dynamics model to do so. To our knowledge, it is the
first physiologically based model capable of simulating
exposure to a mixture of an estrogen and an androgen.
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Methods

Model Formulation

We developed the HPG axis model for female FHM by
modifying a computational model for male FHM
described by Watanabe et al. [20]. The model simulates
time continuously, but it does not have a seasonal com-
ponent. In the following, we mainly focus on the unique
formulations and/or assumptions in this model for
female FHMs.

The model for female FHMs contains six tissue com-
partments which represent organs or tissues important
for absorption, distribution, metabolism, and elimination
of exogenous and endogenous chemicals of interest
(Figure 1). The six compartments are gill, brain, gonad,
liver, venous blood and “other”. In the arterial blood,
the concentrations of both free and bound chemicals
are equal to those in the venous blood compartment,
unless a chemical(s) enters the body through a water
exposure. As a result, we did not count arterial blood as
an independent compartment. Based upon a mass bal-
ance for each chemical of interest, a set of coupled
ordinary differential equations were formulated in each
compartment following the principles of physiologically
based pharmacokinetic modeling. A detailed description
of the differential equations can be found in Additional
File 1: Differential equations used in the HPG axis
model.

In the brain, gonad, and liver compartments, we simu-
lated both ER and AR dynamics. The AR component
was not included in the model for male FHM published
by Watanabe et al. [20]. ER binds estrogens (e.g., E, and
EE,), and bound ER affects the production of VTG. AR
binds androgens (e.g., T and TB), and subsequently reg-
ulates biochemical processes such as the production of
gonadotropins [21]. A general mathematical formulation
of ligand-receptor binding is shown in Equation 1.

d(czjvj) = k1 irCijCr;Vj — Ka irjk1 ijCirjV; (1)
where, Ci, ; (nmol/L) is the concentration of com-
pound i (e.g. T, TB, E, and EE,) bound to its receptor
in compartment j (e.g. brain, liver, gonad, and venous
blood) ; V; (L) is the volume of compartment j; k;_ig, ;
(L/nmol/hr) is the association rate constant of com-
pound i with its receptor in compartment j; C; ; (nmol/
L) is the concentration of free compound i in compart-
ment j; Cr ; (nmol/L) is the concentration of unbound
receptor of compound i in compartment j; Kq i, ;
(nmol/L) is the equilibrium dissociation constant of
compound i with its receptor in compartment ;.
Gill
In the gill compartment, we did not simulate any pro-
duction of proteins (e.g., VITG), hormones (e.g.,
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Figure 1 Conceptual model of the HPG axis in adult female FHMs. Tissues in adult female FHMs are categorized into six compartments: gill,
brain, gonad, liver, venous blood, and other. Each compartment is defined by volume, blood flow, and partition coefficient, and performs
multiple physiological functions.

| EE2& ER complex | SBP&T complex —eg Elimination




Li et al. BMC Systems Biology 2011, 5:63
http://www.biomedcentral.com/1752-0509/5/63

luteinizing hormone, LH), or hormone receptors (e.g, ER
and AR). ER mRNA is present in FHM gills, however,
we did not simulate ER in the gill compartment because
the gill expression of ER is very low compared to other
tissues [22]. We simulated the exposure of female FHMs
to TB and/or EE, in water, and the gill compartment is
where the exogenous chemicals are absorbed. The con-
centration of each chemical in exposure water was
represented as a function of time. Then, equilibrium
partitioning was assumed, and the FHM arterial blood
concentration was calculated from the water concentra-
tion using an equilibrium partition coefficient assigned
for each chemical (Equation 2). In addition, we assumed
that the gill compartment did not accumulate any che-
mical(s).

FWgii x Cinao + Fear x CVen;
FWgii
8 + Fear
Aibld

CArt; = @)

where, CArt; (nmol/L) is the concentration of exogen-
ous chemical i in arterial blood; FWg; (L/hr) is the volu-
metric flow rate of water through the gills; C; w20
(nmol/L) is the concentration of exogenous chemical i
(e.g. TB and EE,) in exposure water as a function of
time; Fe,, (L/hr) is cardiac output; and CVen; (nmol/L)
is the concentration of exogenous chemical i in venous
blood; A; p1q is the partition coefficient for exogenous
chemical i between blood and water. Partition coeffi-
cients are often determined experimentally, but when a
measured or model-estimated value is unavailable, we
calibrate it to fit the experimental data.

Brain

In the brain compartment, three key assumptions were
made: (i) the down-regulation of LH (gonadotropin II)
synthesis by bound AR [23,24]; (ii) the up-regulation of
LH synthesis by bound ER [25]; and (iii) the down-regu-
lation of AR synthesis by free androgens [26,27].

In the brain, androgens have a negative feedback on
the synthesis and release of gonadotropin releasing hor-
mone (GnRH) [23], which in turn controls the synthesis
of gonadotropins. To investigate how androgens may
regulate GnRH, we searched for an androgen response
element (ARE) in the promoter regions of gnrh
genes. Due to a lack of information on gene promoter
sequences in FHM, we conducted the search in zebra-
fish (Danio rerio), a cyprinid fish closely related to
FHM. We found that gnrh promoters contain several
ARE half sites (tgttct) [24]. Thus, we postulated that
androgens have a negative control on GnRH synthesis
mainly through bound AR. However, we did not have
any measurements of GnRH in FHM and GnRH was
not included in the model, so we formulated a down-
regulation of LH synthesis by bound AR in the model.
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Second, we assumed an up-regulation of LH synthesis
by bound ER in the brain compartment. This assump-
tion was based upon observations of estrogen response
elements (EREs) in the promoter region of the //1 gene
and reports of estrogen-stimulated LH production in
fish [25]. Equation 3 describes the LH production rate
in the brain compartment as a function of bound AR
and ER. In the equation, Pry, py, (nmol/hr) is the pro-
duction rate of LH in brain; P}, 1y, by (nmol/hr) is the
background production rate of LH in brain, which was
formulated as a diurnal cycle; Cer pq, prn (nmol/L) is the
total concentration of bound ER in brain, which equals
the sum of E,- and EE,- bound ER concentrations;
Pu_LH, brn (nmol/L) is an induction factor for LH pro-
duction by bound ER; Cag bd, brn (nmol/L) is the total
concentration of bound AR in brain, which equals the
sum of T- and TB- bound AR concentrations ; pgq 1y,
bem (nmol/L) is a factor for inhibition of LH production
by bound AR.

CER bd,brn
1+

Pu LH,brn (3)

Pry,bm = Pp 1H,bm X C
AR bd,br

1+
£d LH,brn

The brain compartment is also very important for the
regulation of AR production [26,27]. In mammals (e.g.
rats, mice, and human), AR mRNA in brain is down-
regulated by androgens, such as T and dihydrotesto-
sterone [26,27], though little is known about the
corresponding mechanisms. We searched for AREs in
the promoter region of the ar gene in zebrafish, but did
not find any match. Hence, we postulated that the
down-regulation of AR mRNA by androgens is asso-
ciated with a non-genomic pathway [28], or associated
with cell factors other than the soluble AR simulated in
our model [29]. Thus, we assumed a down-regulation of
AR production by free androgens in the brain compart-
ment. When ARs are produced, some bind androgens,
some remain unbound, and others degrade. Based upon
a mass balance for free AR, Equation 4 describes the
processes of AR production, association and dissociation
with T or TB, and degradation.

A(CaR freebm) _ Pbgar bm
dt ", (Crbm + Crobm)

Karbm (4-)

— Katarbm X k1 1arbm X Crarbm) — (k1 18ARbm X CrBbm X CAR free,bm

= (k1 tarbm X Crbm X CAR freebm

— KatsArbm X k1 18ARbm X Crsarbm) — ke aRbm X CAR freebm

where, CaR free, brn (Nmol/L) is the free AR concentra-
tion in brain; Pbgag prn (nmol/L/hr) is the background
production rate of AR in brain; Cr, p,, (nmol/L) is the
free T concentration in brain; Crtg, py (nmol/L) is the
free TB concentration in brain; Kag, prm (nmol/L) is an
inhibition rate constant for AR production by free
T and TB; k1 tag, b (L/nmol/hr) is the association rate
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constant for T and AR; Kgq TaR, brn (nmol/L) is the
dissociation rate constant for T bound to AR; Ctag, b
(nmol/L) is the concentration of the T-AR complex in
brain; k1 rpar, b (L/nmol/hr) is the association rate of
TB to AR; Kq 1paRr, brm (nmol/L) is the dissociation rate
constant for TB bound to AR; Ctpag, b (nmol/L) is the
concentration of the TB-AR complex in brain; and
Ke_aAR, ben (1/hr) is the elimination rate for free AR. We
included the inhibition of LH by bound AR and the
inhibition of AR by free androgens to account for the
U-shaped dose-response curves for plasma E,, T and
VTG concentrations observed in female FHMs exposed
to TB [7]. These assumptions and mathematical formu-
lations provided a robust fit to the available data [7]. An
alternate formulation based upon brain AR and gonad
AR with different binding affinities was tried first. How-
ever, because of a lack of parameter information and
evidence for the biological mechanism, we abandoned
this approach for the present version. The present
model formulation makes more sense biologically, and is
simpler.

Gonad

In the gonad compartment, modifications to the model
formulations for male FHMs include (i) absorption of
VTG into oocytes; and (ii) up-regulation of E, produc-
tion by bound LH. The absorption of VTG into oocytes
was formulated as a first order kinetic process. VTG is
synthesized in the liver [30], and circulates to the
gonads where it is taken up via receptor-mediated endo-
cytosis into oocytes, and then processed into yolk pro-
teins [31]. Although the molecular mechanism of VTG
uptake is known, we did not have data to describe this
process quantitatively. As a result, a first order kinetic
equation with an assumed first order rate constant was
formulated to represent the process (Equation 5).

RVTC,gon = kVTC,gon X CVTC,gon X Vgon (5)

where, Ryrg, gon (nmol/hr) is the absorption rate of
VTG into oocytes in the gonad compartment; kyrg, gon
(1/hr) is the absorption rate constant for VTG into
oocytes in the gonad compartment; Cyrg, gon (nmol/L)
is the concentration of VTG in the gonad compartment;
and Vo, (1/L) is the volume of the gonad compartment.
Secondly, we simulated an up-regulation of E, produc-
tion by bound LH in the gonad compartment. It was
observed that LH stimulates the activity and gene
expression of aromatase in the gonads of teleosts [32].
In our model, we formulated the regulation of E, pro-
duction as being proportional to the concentration of
bound LH in the gonad compartment (Equation 6).
PE2 LHLR,gon X CLHLR,gon X Vmaxaro,gon X CT,gon

P = 6
F2-gon Kmaro,gon + Cr,gon ( )
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where, Pg;, 5on (nmol/hr) is the rate of E; production;
PE2_LHLR, gon (L/nmol) is an induction factor of E,
production by bound LH; Cyyig, gon (nmol/L) is the
concentration of bound LH; Vmax,y,, gon (nmol/hr) is
the maximum rate of E, production by gonad aroma-
tase; Kmyo, gon (Nmol/L) is the Michaelis-Menten con-
stant for gonad aromatase; Cy, 4o, (nmol/L) is the
concentration of T.
Liver
In the liver compartment, formulations including ER
auto-regulation and bound-ER-stimulated VTG produc-
tion are the same as those described by Watanabe et al.
[20], except that we added ligand-receptor binding of T
and TB to the AR.
Venous blood
Besides E, and T, we simulated the association and dis-
sociation processes of EE, to steroid-binding proteins
(SBPs) in the venous blood compartment. There is con-
tradictory information about the binding affinities of
EE, to SBPs in fish. Compared to E,, some fish species
such as channel catfish (Ictalurus punctatus) and zebra-
fish (Danio rerio) have high binding affinity of EE, to
SBPs [33,34], while other fish species such as Arctic
charr (Salvelinus alpinus) have a low binding affinity
[35]. To date, binding affinity measurements of EE, to
SBPs in FHM have not been made. Watanabe et al. [20]
did not include the binding process of EE, to SBPs in
blood. In their modelling work for male FHMs, the total
concentration of SBPs was assumed to be 20 nmol/L
based upon a measurement in human males [36]. Such
a low value has little effect on free plasma EE, concen-
tration or model performance. However, in our model
for female FHMs, we assumed the total concentration of
SBPs to be 400 nmol/L [36,37] based upon SBP mea-
surements in female spotted seatrout (Cynoscion nebulo-
sus) [37] and in human females [36]. Consequently, a
large amount of EE, could be bound by SBPs in blood,
which would affect the total concentration of EE, in the
plasma. Therefore, we included the binding process of
EE, to SBPs in this model, and formulated it using
Equation 1.
Other
In our model, the ‘Other’ compartment is where elimi-
nation of exogenous and endogenous chemicals and
proteins occur. Besides E,, EE,, T, VTG, and LH
(included in Watanabe et al. [20]), we added a first
order kinetic equation to describe the elimination of TB,
and the first order elimination rate constant was
assumed to be the same as that of EE, (Equation 7).

R1B,oth = ke TB,oth X CrBoth X Voth (7)

where Rrp, oin (nmol/hr) is the elimination rate of TB
in the Other compartment; k._tg, otn (1/hr) is the
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elimination rate constant for TB in the Other compart-
ment; Ctg, o (nmol/L) is the concentration of TB in
the Other compartment; and Vg, (1/L) is the volume of
the Other compartment.

Experimental Data

To calibrate model parameters and to evaluate model
predictions, we used data from unexposed, TB-exposed,
and EE,-exposed adult female FHMs from 18 different
studies. All studies were conducted with sexually mature
(five to seven month old) female FHMs. Chemical expo-
sures were conducted in the laboratory under optimal
conditions for FHM reproduction. For example, the
temperature was 25°C, photoperiod was 16/8 hr (light to
dark), and food was not limited. Under such conditions,
FHMs can remain in reproductive condition and spawn
year around. For each fish, physiological parameters,
including body weight (BW), gonadosomatic index
(GSI), and hepatosomatic index (HSI), were input into
the model. For all experimental data used in model cali-
bration or validation, when any measurements of BW,
GSI, or HSI were missing, we used the medians of mea-
sured BW, GSI, or HSI, respectively [38]. Ideally, if all
experimental data had been available when we started to
develop the model in 2006, we would have randomly
selected a subset of data from each experiment for
model calibration and used the remainder for model
evaluation. However, several of the experimental studies
were conducted while the model was being developed.
Thus, we used data as they became available. The fol-
lowing summarizes the experimental data and how the
data were used.

The reproductive endpoint data in unexposed (con-
trol) adult female FHMs were obtained from an earlier
paper by Watanabe et al. [38]. In a total of 170 female
FHMs, the data include measurements of plasma E,, T,
and VTG concentrations; all measurements were made
in some fish, and in others only a subset of endpoints
(e.g., plasma E, and VTG concentrations) were mea-
sured. We randomly split the data; the first 75 records
were used to calibrate our model; the remaining 95
records were used in model validation.

Experimental data from TB-exposed adult female
FHMs were obtained from three studies: (i) a flow-
through water exposure to nominal concentrations of
0.005, 0.05, 0.5, 5.0, and 50 pg TB/L for 21 days by
Ankley et al. [7]; (ii) a static exposure to nominal con-
centrations of 0.05, 0.5, 5 ug TB/L for 48 hours by Gar-
cia-Reyero et al. [39]; and (iii) a flow-through water
exposure to nominal concentrations of 0.05 and 0.5 pg
TB/L in adult female FHMs for eight days, followed by
an eight-day depuration described by Ekman et al. [40].
In Ankley et al. [7], 12 female FHMs were exposed in
each treatment group. On the 21°° day of exposure, all
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FHMs were sacrificed; plasma concentrations of E,, T,
and VTG were measured in each fish. In Garcia-Reyero
et al. [39] eight FHMs were exposed in each treatment
group. After a 48-hour exposure, the fish were sacri-
ficed. For each treatment group, plasma E, concentra-
tions were measured in each of four fish, and plasma
VTG concentrations were measured in each of the four
remaining fish. The concentrations of VTG and E, were
not measured in the same fish because Dr. Orlando’s
laboratory measured E, and Dr. Denslow’s laboratory
measured VTG. In Ekman et al. [40], 64 FHMs were
exposed to TB in each treatment group. On the 1°, 2,
4™ and 8™ day of exposure and the 1, 2", 4™, and 8™
day of depuration (test days 9, 10, 12, and 16), for each
treatment group, eight FHMs were sacrificed to measure
plasma E; and VTG concentrations in each fish. Data
from Ankley et al. [7] were used to calibrate our model,
and data from Garcia-Reyero et al. [39] and Ekman et
al. [40] were used to evaluate our model predictions.

VTG plasma concentrations in adult female FHMs
exposed to EE, were obtained from three studies: (i) a
flow-through water exposure to nominal concentrations
of 10 or 100 ng EE,/L in adult female FHMs for eight
days, followed by an eight-day depuration [41]; (ii) a
flow-through water exposure to a nominal concentration
of 0.5, 1.5, and 4.5 ng EE,/L in adult female FHMs for
21 days by Lazorchak et al. [42]; and (iii) a flow-through
water exposure to a nominal concentration of 1.5 ng
EE,/L in adult female FHMs for 21 days by Brian et al.
[43]. In Ekman et al. [41], for each treatment group and
each sampling time, eight FHMs were sacrificed to mea-
sure plasma VTG concentration in each fish. Sampling
occurred on the 1%, 4™, and 8" day of exposure to EE,,
and the 8" day of EE, depuration (test day 16). In
Lazorchak et al. [42], 28 FHMs in each of the treatment
groups (0.5, 1.5, and 4.5 ng EE,/L) were sacrificed to
measure plasma VTG concentration in each fish on the
21% day. In Brian et al. [43], four FHMs were sacrificed
to measure plasma VTG concentration in each fish on
the 21°* day after exposure to 1.5 ng EE,/L. As opposed
to the three TB and two EE, studies which did not use
carrier solvents, Brian et al. [39] used N, N-dimethylfor-
mamide, DMF, as a chemical carrier for EE,. Data from
Ekman et al. [41] were used to calibrate our model, and
data from Lazorchak et al. [42], and Brian et al. [43]
were used to evaluate our model predictions.

Model Calibration

In total, our model contains 123 input parameters, such
as volume and blood flow rates of each compartment,
chemical equilibrium partition coefficients, ligand-recep-
tor association and dissociation rate constants, and
kinetic rate constants for each biochemical reaction.
The parameters were fixed with known values, or
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calibrated using experimental data collected in adult
female FHMs. In total, 97 model parameters were fixed
with values obtained from published literature or mea-
sured for this study (Table 1). The remaining 26 model
parameters were calibrated using Markov Chain Monte
Carlo simulation [44-47], which requires the definition
of prior distributions for each parameter being
calibrated.

Of the 26 calibrated model parameters, 17 were sensi-
tive model parameters with little or no information
available in the open literature (Table 2). Vague prior
distributions were used for these 17 model parameters.
For example, we could not find a published value for
the dissociation constant of E, binding to ER in FHM
brain specifically (K4 g2gr, brn). Denny et al. [15]
reported that the dissociation constant of E, binding in
female FHM liver cytosol is 8.6 nmol/L. As a result, we
assigned a lognormal distribution with a geometric
mean of 8.6 and a geometric standard deviation of
three, which corresponds to a coefficient of variation
equal to 1.5. When no data were available in the open
literature, we assigned a uniform or log-uniform prior
distribution with a large range bounded by biological
plausibility. For example, we know that the EE, partition
coefficient for blood to water is around 300 [20], and
thus fixed the parameter value at 300. However, there
were no published data for the blood to water TB parti-
tion coefficient (Arp, p1a). Therefore, we assigned a vague
prior distribution for Arg, piq, which is a log-uniform
distribution with a lower bound of one and an upper
bound of 1000.

The remaining nine parameters were error variances
for plasma E,, T, and VTG concentrations in unex-
posed, TB-exposed, and EE,-exposed FHMs. We
assumed that the errors followed a lognormal distribu-
tion with geometric means equal to the model-predicted
concentrations of plasma E,, T, and VTG, respectively.
The variance was estimated by dividing the experimental
data into three different groups: unexposed, TB-exposed,
and EE,-exposed FHM, respectively; and the error var-
iances of the three reproductive endpoints for each
group were estimated [45,47]. For each of the nine error
variances, we assigned an Inverse Gamma prior distribu-
tion based upon a natural logarithm transformation of
the measured plasma E,, T and VTG concentrations
[20]. An Inverse Gamma prior distribution is the conju-
gate of a normal distribution [46], which simplifies the
model computations.

To perform the Markov Chain Monte Carlo simula-
tions, we used MCSim [48], a software package freely
available online http://directory.fsf.org/math/mcsim.
html. Four independent Markov chains with random
seeds were run for 20,000 iterations. For each of the
four chains, we saved the last 10,000 iterations, and
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extracted one set of model parameters out of every 10.
For each calibrated model parameter, convergence was
evaluated using the 1,000 iterations from each chain and
a potential scale reduction criterion (Rhat) [46]. Accep-
table values of Rhat ranged from 1.0 to 1.2; this is essen-
tially a ratio of the calibrated model parameter variance
between the four Markov chains to the variance within
a chain.

Model Evaluation

We evaluated the predictive ability of our model by
simulating reproductive endpoints (i.e., plasma concen-
trations of E,, T, or VIG) from independent studies.
The 1,000 iterations obtained from each Markov chain
were pooled, and the 4,000 sets of parameter values
were treated as a pool of adult female FHMs. We ran-
domly sampled # (number of fish in a study) parameter
sets to represent the # fish used in the study, and simu-
lated the reproductive endpoints measured for each fish.
The detailed simulation procedures followed the meth-
ods described by Watanabe et al. [20].

After completing 7 simulations for a study, we predicted
each reproductive endpoint based upon our lognormal
error model. As described in the Model Calibration sec-
tion, error variances were estimated during model calibra-
tion. Using the model prediction and the estimated
variance as two parameters, we randomly sampled from
the lognormal distribution for each endpoint in each fish.
The sampled values were compared with experimental
measurements.

Prediction of Unmeasured Reproductive Endpoints

To observe EDC effects on unmeasured components of
the HPG axis (e.g., ER, AR, and LH), and to observe the
effects on reproductive endpoints by a mixture of TB
and EE,, we did three extra simulations. We simulated
liver ER concentration, brain AR concentration, and
plasma E,, T, VTG, and LH concentrations as a func-
tion of time in adult female FHMs exposed to 15 ng
TB/L, 10 ng EE,/L, or a mixture of 15 ng TB/L and
10 ng EE,/L for 48 hours, respectively. The concentra-
tions of TB and EE, were chosen because they are
environmentally relevant [12,18,19]. In all three simula-
tions, we used the reported [38] median body weight,
GSI, and HSI values in adult female FHMs as input
parameters.

Results and Discussion

Model Calibration

A good fit of the experimental data was obtained by
running four Markov chains using the Markov Chain
Monte Carlo simulations. For the 26 calibrated model
parameters, the four Markov chains converged within
20,000 iterations. The model calibration speed is around


http://directory.fsf.org/math/mcsim.html
http://directory.fsf.org/math/mcsim.html

Table 1 Model parameters treated as constants (n = 97)

Parameter description Symbols Value Reference
Body weight® BodyWt 0.0016 (kg) Watanabe et al. [38]
Volumetric water flowing through gills FWgi 10.6x BodyWt 075 (L/hn) Nichols et al. [57]
Cardiac output Fear 2.06% BodyWt ®7° (L/hr) Nichols et al. [57]
Percentage of brain to body weight (BSI) Pom 1.18 Measured by D. Villeneuve
Percentage of gonads to body weight (GSI)° Pgon 11 Watanabe et al. [38]
Percentage of liver to body weight (HSI) Piv 3.0 Watanabe et al. [38]
Percentage of gills to body weight Py 167 Nichols et al. [58]
Percentage of venous blood to body weight Puen 2.59 Robinson et al. [59]
Nichols et al. [58]
Percentage of "other” to body weight Poth =100~ Py Pgon Piv- Pgi= Puen Watanabe et al. [20]
Fraction of blood flow in brain to cardiac output Fom 0-036 > Porn Nichols et al. [58]
Fear 0.036 X Ppry + 0.036 X Pgoy +0.024 X Ppiy + 0.007 X Poyy,
Fraction of blood flow in gonad to cardiac output Feon 0036 x Paon Nichols et al. [58]
Fear 0.036 X Ppry +0.036 x Pgop +0.024 x Py + 0.007 X Poyyy
Fraction of blood flow in liver to cardiac output Fiiv 0.024 x Pi Nichols et al. [58]
Fear 0.036 X Ppry + 0.036 X Pgoy + 0.024 X Pjjy + 0.007 X Poyy,
Fraction of blood flow in “other” to cardiac output Forn 0.007 ¢ P Nichols et al. [58]
Fear 0.036 X Ppry + 0.036 X Pgoy + 0.024 X Pjjy + 0.007 X Poyy,
Fraction of plasma in venous blood Folasma, ven 045 Measured by K. Kroll

Total concentration of estrogen receptors in brain Cer brn 14.3 (nmol/L tissue) Plowchalk and Teaguarden
[60]
Total concentration of estrogen receptors in gonad Cer, gon 29 (nmol/L tissue) Plowchalk and Teaguarden
[60]
Total concentration of LH receptors in gonad Cir, gon 2.0 (nmol/L tissue) Miwa et al. [61]
Total concentration of SBP in blood Csgp, ven 400 (nmol/L blood) Laidley and Thomas(37]
Teeguarden and Barton [36]
Total concentration of AR in gonad Car, gon 1.05 (nmol/L tissue) Sperry and Thomas [62]
Total concentration of AR in liver Car, Iiv = Car, gon assumed
Association rate of E, to estrogen receptor in brain K1 E26R, brn 0.743 Murphy et al. [63]
Dissociation constant of E, to estrogen receptor in gonad K4_g26R, gon = K4 _E2eR, brn assumed
Association rate of E, to estrogen receptor in gonad K1_E2€R, gon = K7 _£26R, brn assumed
Dissociation constant of E, to estrogen receptor in liver K4_g2er, 1iv = K4 _£26R, brn assumed
Association rate of E, to estrogen receptor in liver K1 _26R v = K7 £26R, brn assumed
Dissociation constant of EE, to estrogen receptor in brain Kd_ee2er, brm = Ky e2er, brn/RBAEES £2 Denny et al. [15]
Association rate of EE, to estrogen receptor in brain K1 EE2ER, brn = Ki_g2eR, b assumed
Dissociation constant of EE, to estrogen receptor in gonad K4_ee26R, gon = Kg_ee2eR bm assumed
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Table 1 Model parameters treated as constants (n = 97) (Continued)

Association rate of EE, to estrogen receptor in gonad Ki_EE2ER, gon = K Ee2eR b assumed
Dissociation constant of EE, to estrogen receptor in liver Kq_ee2eR, tiv = K4 _ee2eR bm assumed
Association rate of EE, to estrogen receptor in liver K1 EE2eR, Iiv = K Ee2eR b assumed
Dissociation constant of T to androgen receptor in brain K4 TAR brm 3 (nmol/L) Sperry and Thomas [62]
Association rate of T to androgen receptor in brain K1 TAR, brn 0.08 (L/nmol/hr) Sperry and Thomas [62]
Dissociation constant of T to androgen receptor in gonad Kd_TAR, gon = K4 _7AR, brn assumed
Association rate of T to androgen receptor in gonad Ki_TAR, gon = K; TAR brm assumed
Dissociation constant of T to androgen receptor in liver Kd_TaR, liv = K4 7AR, b assumed
Association rate of T to androgen receptor in liver K1 AR, Iiv = K; TAR brm assumed
Dissociation constant of TB to androgen receptor in brain K4 TBAR, brn = Ky 1R bri/RBATS 7 Wilson et al. [64]
Association rate of TB to androgen receptor in brain K1 18AR, brn = K; TAR b assumed
Dissociation constant of TB to androgen receptor in gonad K4_TAR, gon = K4_TBAR, brn assumed
Association rate of TB to androgen receptor in gonad K1_T8AR, gon = K7 T8AR, brn assumed
Dissociation constant of TB to androgen receptor in liver K4 TBAR, Iiv = Ky T8AR, brn assumed
Association rate of TB to androgen receptor in liver K1 T8AR, Iiv = K;_T8AR, brn assumed
Dissociation constant of E, to SBP in blood K4_E258P, ven 3.13 (nmol/L) Murphy et al. [63]
Association rate of E; to SBP in blood K1 E258P, ven 5.6687 (L/nmol/hr) Murphy et al. [63]
Dissociation constant of T to SBP in blood Kq_TsBP, ven 4.89 (nmol/L) Murphy et al. [63]
Association rate of T to SBP in blood K1 Ts8P, ven 5.6687 (L/nmol/hr) Murphy et al. [63]

Dissociation constant of EE, to SBP in blood

KdiEEzSBP, ven

0.58 (nmol/L)

Miguel-Queralt and
Hammond [34]

Association rate of EE, to SBP in blood

kLEEzSBP, ven

5.6687 (L/nmol/hr)

Murphy et al. [63]

Dissociation constant of LH to LH receptor in gonad K4_LHLR, gon 2.9 (nmol/L) Crim et al. [65]
Association rate of LH to LH receptor in gonad Ki_LHLR, gon 0.2 (L/nmol/hr) Watanabe et al. [20]
Scaling coefficient of Vmax of T production in gonad (= Vmax/bodyweight 079 SC_Vmaxsec, 1.1e+05 (nmol/hr/kg body weight) Kashiwagi et al. [66];
gon Shikita and Hall [67]
Ko of T production in gonad Kosscc, gon 190 (nmol/L) Shikita and Hall [67]
Inhibition constant of T production by bound ER Kr 0.016 Watanabe et al. [20]
Km of E, production in gonad KMaro, gon 9.6 (nmol/L) Zhao et al. [68]
Concentration of microsomal protein in gonads Drmp, gon 3100 (mg/L) Measured by D. Villeneuve
Ratio between the concentrations of microsoaml protein in gonads and brain Rhomp 0.174 Measured by D. Villeneuve
Scaling coefficient of Vmax of E, production in brain (= Vmax/mass of microsomal protein  sc_Vmaxayo, = 46X SC_VYMaXaro, gon Zhao et al. [68]
in brain) bm
Km of E, production in brain KMaro, brn 9.6 (nmol/L) Zhao et al. [68]
Concentration of microsomal protein in brain Dmp, brn = Drmp, gon/RhOmp, Measured by D. Villeneuve

Ratio between concentrations of STAR and bound LR in gonads

Rhostag, gon

1

assumed
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Table 1 Model parameters treated as constants (n = 97) (Continued)

Rate constant for Vtg uptake into oocytes Kutg, gon 0.05 assumed
Ko of Vtg production in liver production Kosvig, Iiv 1.0 (hmol/L) Watanabe et al. [20]
Elimination rate constant for ER Ke_gr, 1iv 0.01 (1/hr) Murphy et al. [63]
in the liver compartment
Elimination rate constant for AR Ke__aR, brn 0.01 (1/hr) Assumed
in the brain compartment
Elimination rate constant for LH Ke_1, oth 0.1 (1/hr) Teeguarden and Barton [36]
in the “other” compartment
Elimination rate constant for E, Ke_£2, oth 0.1 (1/hr) Teeguarden and Barton [36]
in the “other” compartment
Elimination rate constant for T Ke_T oth 0.1 (1/hr) Teeguarden and Barton [36]
in the “other” compartment
Elimination rate constant for EE, Ke_ee2, oth 0.1 (1/hr) Teeguarden and Barton [36]
in the “other” compartment
Elimination rate constant for TB Ke_T8, oth 0.1 (1/hr) Teeguarden and Barton [36]
in the “other” compartment
Elimination rate constant for Vtg Ke_\ig, oth 0.001 (1/hr) Teeguarden and Barton [36]
in the “other” compartment
Partition coefficient of LH ALK, brn 1 Teeguarden and Barton [36]
(brain to blood)
Partition coefficient of LH Mt gon 1 Teeguarden and Barton [36]
(gonad to blood)
Partition coefficient of LH ALK, tiv 1 Teeguarden and Barton [36]
(liver to blood)
Partition coefficient of LH ALK, oth 1 Teeguarden and Barton [36]
("other” to blood)
Partition coefficient of VTG VTG, brn 1 Teeguarden and Barton [36]
(brain to blood)
Partition coefficient of VTG VTG, gon 1 Teeguarden and Barton [36]
(gonad to blood)
Partition coefficient of VTG v, iiv 1 Teeguarden and Barton [36]
(liver to blood)
Partition coefficient of VTG VTG, oth 1 Teeguarden and Barton [36]
("other” to blood)
Partition coefficient of EE, Aee2, bid 300 Watanabe et al. [20]
(blood to water)
Partition coefficient of EE, Age2, brn 1 Teeguarden and Barton [36]
(brain to blood)
Partition coefficient of EE, Aee2, gon 1 Teeguarden and Barton [36]
(gonad to blood)
Partition coefficient of EE, Aee2, v 3 Watanabe et al. [20]

(liver to blood)
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Table 1 Model parameters treated as constants (n = 97) (Continued)

Partition coefficient of EE, Age2, oth 1 Teeguarden and Barton [36]
("other” to blood)

Partition coefficient of E, Ae2, bld 300 Watanabe et al. [20]
(blood to water)

Partition coefficient of E, AE2, b 1 Teeguarden and Barton [36]
(brain to blood)

Partition coefficient of E, A&, gon 1 Plowchalk and Teeguarden
(gonad to blood) [60]

Partition coefficient of E, Aeo, iy 3 Watanabe et al. [20]
(liver to blood)

Partition coefficient of E, AE2, oth 1 Plowchalk and Teeguarden
("other” to blood) [60]

Partition coefficient of T AT brn 1 Barton and Andersen [69]
(brain to blood)

Partition coefficient of T AT, gon 1 Barton and Andersen [69]
(gonad to blood)

Partition coefficient of T AT v 1 Barton and Andersen [69]
(liver to blood)

Partition coefficient of T AT, oth 1 Barton and Andersen [69]
("other” to blood)

Partition coefficient of TB A8 bm 1 Barton and Andersen [69]

(brain to blood)

Partition coefficient of TB AT, gon 1 Barton and Andersen [69]
(gonad to blood)

Partition coefficient of TB Ats, Iiv 1 Barton and Andersen [69]
(liver to blood)

Partition coefficient of TB 18, oth 1 Barton and Andersen [69]
("other” to blood)

2 B and © were assigned with measured values in each fish; the default values were used only when measured data were missing.
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Table 2 Summary statistics for prior and posterior distributions of calibrated model parameters (n = 26)

Parameter description Symbols Prior Reference Mean (Posterior Median (Posterior 95% Confidence Interval
Distribution Distribution) Distribution) (Posterior Distribution)
(P1, P2)?
Partition coefficient of TB (blood to water) A18, bld Loguniform Assumed 747 747 (5.96, 8.93)
(1, 1.0E+3)
Dissociation constant of E, binding to ER in K4_E26R, brn Lognormal Denny et al. [15] 1.12 1.08 0.71, 1.87)
brain (nmol/L) 86, 3)
Relative binding affinity of EE, to E, for ER binding RBAEg 2 Lognormal Denny et al. [15] 324 1.64 (0.030, 16.79)
(1.66, 3) Gale et al. [14]
Relative binding affinity of TB to T for AR binding RBAg 1 Lognormal Wilson et al. [64] 525 4.84 (229, 10.76)
(6.03, 3)
Inhibition factor for LH production by bound Pd_LH, bn LogUniform Assumed 0.1 0.10 (0.042, 0.21)
AR (nmol/L) (0.01, 1.0E+3)
Induction factor for LH production by bound Pu_iH, b LogUniform Assumed 238 138 (4.23, 864)
ER (nmol/L) (0.01, 1.0E+3)
Hill coefficient for T production nr Lognormal Murphy et al. [63] 1.03 1.01 (093, 1.19)
(18, 3)
Proportionality constant relating cholesterol to StAR Pchol, gon Loguniform Artemenk et al. [70] 237 1.83 (1.04, 6.69)
(1, 5.0E+3)
Scaling coefficient of Vmax for E, production in SC_VMaXaro, gon Loguniform Zhao et al. [71] 1.56E-3 1.53E-3 (1.15E-3, 2.12E-3)
gonad (nmol/hr/mg micro-protein) (2.3E-5, 0.23)
Induction factor of E, production by bound PE2_LHLR, gon Loguniform assumed 79.84 82.79 (4261, 99.15)
LH (L/nmol) (0.1, 100)
Scaling coefficient of Vmax for Vtg production in sc_Vmaxyg, fiv Loguniform Watanabe et al. [20] 175 169 (121, 271)
liver (= Vmax/BodyWeight®”) (nmol/hr/kg®’) (1, 1.0E+4)
Hill coefficient of Vtg production in liver i Uniform Assumed 2.88 287 (197, 3.87)
(1, 10)
ER background production rate in liver (nmol/L/hr) PbYEr, iiv Loguniform assumed 012 012 (0.084, 0.17)
(5.0E-5, 0.5)
Induction rate constant for ER production in KeR, v Lognormal Watanabe et al. [20] 0.027 0.025 (5.73E-3, 0.065)
liver (1/hr) (0.08, 3)
AR background production rate in brain Pbgar bm Loguniform assumed 0.012 0.012 (9.1E-3, 0.015)
(nmol/L/hr) (5.0E-5, 0.5)
Inhibition factor of AR production by free KaR, brn Loguniform assumed 3.95 4,08 (2.15, 4.95)
androgens (nmol/L) (5E-4, 5)
Magnitude of LH production (nmol/hr) Mag Loguniform Schulz et al. [72] 8.86E-6 8.75E-6 (6.29E-6, 1.20E-5)
(2.7E-7, 2.7E-3)
Error variance of plasma E, concentration in natural Var_Ln_CE2tot_pla_ngml  Inverse Gamma Bois et al. [73] 052 0.51 (0.38, 0.73)
log space for unexposed female FHMs (2, 1.19
Error variance of plasma T concentration in natural ~ Var_Ln_CTtot_pla_ngml Inverse Gamma Bois et al. [73] 048 047 (0.34, 0.69)

log space for unexposed female FHMs

(2,053)
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Table 2 Summary statistics for prior and posterior distributions of calibrated model parameters (n = 26) (Continued)

£9:§ ‘L 10T Abojoig swaisAs DG *[p 12 11

Error variance of plasma VTG concentration in Var_Ln_CVTG_pla_mgml  Inverse Gamma Bois et al. [73] 0.49 048 (0.35, 0.68)
natural log space for unexposed female FHMs (2, 531)

Error variance of plasma E, concentration in natural Var_Ln_CE2tot_pla_ngml  Inverse Gamma Bois et al. [73] 0.70 0.69 (048, 1.03)
log space for TB-exposed female FHMs (2, 1.19)

Error variance of plasma T concentration in natural ~ Var_Ln_CTtot_pla_ngml Inverse Gamma Bois et al. [73] 040 039 (0.27, 0.60)
log space for TB-exposed female FHMs (2, 0.53)

Error variance of plasma VTG concentration in Var_Ln_CVTG_pla_mgml  Inverse Gamma Bois et al. [73] 5.86 572 (3.98, 8.60)
natural log space for TB-exposed female FHMs (2,531)

Error variance of plasma E, concentration in natural Var_Ln_CE2tot_pla_ngml  Inverse Gamma Bois et al. [73] 143 0.81 (0.22, 6.31)
log space for EE,-exposed female FHMs (2, 1.19

Error variance of plasma T concentration in natural ~ Var_Ln_CTtot_pla_ngml Inverse Gamma Bois et al. [73] 0.59 034 (0.10, 2.76)
log space for EE,-exposed female FHMs (2,0.53)

Error variance of plasma VTG concentration in Var_Ln_CVTG_pla_mgml  Inverse Gamma Bois et al. [73] 0.73 071 (0.51, 1.03)
natural log space for EE,-exposed female FHMs (2,531)
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@ Definition of P1 and P2 of prior distributions. Loguniform: P1 = minimum of the sampling range in natural space; P2 = maximum of the sampling range in natural space. Lognormal: P1 = geometric mean
(exponential of the mean in log-space); P2 = geometric standard deviation (exponential of the standard deviation in log-space, strictly superior to 1). Uniform: P1 = minimum of the sampling range in natural space;
P2 = maximum of the sampling range in natural space. Inverse gamma: P1 = shape; P2 = scale (both of the parameters are strictly positive).
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12 hours per 100 iterations. The Rhat values of the 26
parameters were all less than 1.2, indicating acceptable
convergence. Figure 2 plots the trajectories of the four
Markov chains for the relative binding affinity of TB to
T (RBAtg 1), which is one of the 26 calibrated model
parameters. The four chains for this parameter mixed
well and converged within 20,000 iterations.

Table 2 includes the summary statistics of posterior
distributions for the 26 calibrated parameters. The pos-
terior distribution summary statistics are based on the
4,000 iterations, 1,000 iterations from each of the four
chains. In brief, our model improved estimates of 23
model parameters. Of the 26 parameters, 21 had 95%
confidence intervals (CIs) narrower than those of their
prior distributions; three parameters (i.e., RBAggs o,
error variances of E, and T for EE,-exposed FHMs) had
95% Cls similar to their prior distribution ClIs; and two
parameters (i.e., error variances of VTG in unexposed
and EE,-exposed FHMs) had 95% CIs slightly different
from their prior distribution CIs. For the error variance
of VTG in unexposed FHMs, the upper 95% confidence
limit of the posterior distribution was 72% of the 2.5™
percentile of its prior distribution. For the error var-
iances of VTG in EE,-exposed FHMs, the 95% Cls of
the prior and posterior distributions overlapped with
each other. But the upper 95% confidence limit of the
posterior distribution was only 5% of the 97.5™ percen-
tile of its prior distribution. These large differences
occurred mainly because the assigned prior distributions
for the error variances were based upon experimental
data variances, which do not represent the errors
exactly, but were good starting points for the model
calibration.

Markov Chain 1
Markov Chain 2
Markov Chain 3
Markov Chain 4

Androgen Receptor RBA (TB to T)

1000 1500 18500 19000 19500 20000
Iteration

0 500

Figure 2 Four Markov chains. Androgen receptor relative binding
affinity (RBA) for TB relative to T (RBAg 7). This is one of the 26
calibrated model parameters illustrating well-mixed Markov chain
trajectories.

Page 14 of 22

It is important to note that the posterior distributions
listed in Table 2 are conditional upon fixed model para-
meters (Table 1), prior distributions of calibrated para-
meters (Table 2), and the data sets used in calibration.
Any change in these components may lead to different
posterior distributions of the calibrated parameters. In
this study, we carefully searched the literature to assign
our model parameters with meaningful and physiologi-
cally based values or prior distributions. As additional
data become available, our model could be re-calibrated
to better define parameter posterior distributions.

Model Evaluation

In this study, our model was used to simulate experi-
ments ranging in length from 48 hrs to 21 days. The
model is capable of simulating longer periods of time,
but it does not include a seasonal component. That is,
the FHMs simulated in our study were held under
laboratory conditions optimal for reproduction and
spawn year round. The model could be modified to
account for the effect of seasons upon reproduction in
order to simulate conditions experienced by wild fish.

Predictions for Plasma E,, T, and VTG Concentrations in
Unexposed FHMs

With the calibrated model parameters, we simulated
plasma concentrations of E,, T, and VTG in 95 unexposed
adult female FHMs [38]. Figure 3 shows a comparison of
model predictions and experimental data. For all three
endpoints, the mean and median model predictions were
within 80 to 150% of the measured means and medians,
respectively. Model-predicted 95% Cls encompassed the
mean and median measurements, and model-predicted
means and medians were within the 95% CIs of the mea-
sured data. Thus, in unexposed adult female FHMs, our
model successfully predicted all three endpoints (Figure
3). This is an improvement compared to the model for
male FHMs [20], which predicted the medians of the mea-
sured data, but under-predicted the variances for all three
endpoints. Including information from the lognormal
error model enabled better predictions of both medians
and variances of the measured data.

Predictions for plasma E2 and VTG concentrations in TB-
exposed FHMs

Figure 4 compares the measured and model-predicted
plasma VTG (Figure 4A) and E, (Figure 4B) concentra-
tions in female FHMs exposed to 0, 0.05, 0.5, and 5 ug
TB/L for 48 hours [39]. Our model predictions fol-
lowed the general trend of the measured data, and the
model prediction range overlapped with the measured
data range for both endpoints at each TB concentra-
tion. For plasma VTG concentrations, the median
model predictions were within 96% to 579% of the
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Figure 3 Comparison of model predictions with measured data
in unexposed female FHMs. n = 95. White boxes represent model
predictions, and grey boxes represent measured data [38]. The solid
line within the box marks the median; the boundary of the box
farthest from zero indicates the 75" percentile; the boundary of the
box closest to zero indicates the 25" percentile; the whisker (error
bar) farthest from zero marks the 90" percentile; whisker (error bar)
closest to zero marks the 10" percentile; the circle farthest from
zero marks the 95 percentile; and the circle closest to zero marks

the 5 percentile.
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median measurements. The 579% difference seems
high, and as a result, we looked into details particularly
for this model prediction. We found that this predic-
tion happened when TB concentration equal to 0.5 pg/
L. At this TB concentration, we collected plasma VI G
concentrations in each of 4 adult female FHMs, which
were 4.61, 26.21, 1.99, and 0.06 mg/ml. The last mea-
surement (0.06 mg VTG/ml) is more than 30-fold
lower than the second lowest measurement (1.99 mg
VTG/ml). As a result, this data point is an outlier, and
our model did not capture it. If we exclude this data
point, our model predictions (17.63, 20.54, and 5.07
mg/ml) would match the experimental data well. For
plasma E, concentrations, the median model predic-
tions were within 44 to 113% of the median measure-
ments. Kolmogorov-Smirnov tests (a0 = 0.05) showed
that the model predictions were not significantly differ-
ent from the measured data for both plasma VTG and
E, concentrations.

To further evaluate the model’s predictive ability for
TB-exposed FHMs, we simulated plasma E, and VTG
concentrations in FHMs exposed to 0, 0.05, and 0.5 pg
TB/L for 8 days followed by an 8-day depuration [40].
For plasma E, concentrations (Figure 5A, B, and 5C), the
95% Cls of model predictions encompassed the medians
of the measured data for 16 out of 24 experimental con-
ditions (eight sampling times and three different TB con-
centrations). Generally, our model predicted the plasma
E, concentrations better during the TB exposure phase
than during the depuration phase. This is not surprising
since we only calibrated the model with experimental
data from a TB exposure [7]. In addition, it is interesting
to see that the measured plasma E, concentrations
declined from the t = P48 to P192 hours for both control
FHMs and FHMs exposed to different concentrations of
TB. However, the model predictions showed a different
trend; that is, for control FHMs, the predicted plasma E,
concentrations remained relatively stable throughout the
experimental period (Figure 5A); for TB-exposed FHMs,
after the exposure, the plasma E, concentrations
increased and recovered to concentrations seen in unex-
posed FHMs. Since the measured plasma E, concentra-
tions decreased in both control FHMs and FHMs
exposed to TB, we suspect that there might be some
experimental factors that we have not accounted for in
the model during the depuration phase.

Figure 5D, E, and 5F compare model-predicted plasma
VTG concentrations with the measured data. The median
model predictions were within 0.2 to 3.6 fold of the mea-
sured median, and the 95% CIs of model predictions
encompassed all the measured medians at each sampling
time. These results show that the model worked well for
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predicting the plasma E, and VTG concentrations in
female FHMs exposed to 0, 0.05, and 0.5 ug TB/L for
eight days.

After being calibrated with the experimental data from
Ankley et al. [7], our model accurately predicted the
plasma E,, T, and VTG concentrations in adult female
FHMs exposed to TB. This was achieved by simulating
AR-related ligand-receptor binding processes, and by
assuming two gene regulation mechanisms: i) down regu-
lation of AR production by free androgens; and ii) down
regulation of LH production by bound AR. It is note-
worthy that the model was able to accurately fit not only
the calibration data (see Additional file 2), but also the
VTG and E, data from independent studies by Garcia-
Reyero et al. [39] and Ekman et al. [40]. These results
indicate that our AR-based modelling framework is plau-
sible, and could be used in studies focused on regulatory
aspects of the AR on HPG function. In a recent study,
Shoemaker et al. [49] developed a computational model
to simulate more detailed biochemical reactions in the
FHM steroidogenic pathway. However, their model did
not incorporate any AR-related signalling pathways. As
AR plays an essential role for androgen responses and
subsequent regulation of steroidogenesis, our model
advances the work of Shoemaker et al. [49] by simulating
AR-related signalling pathways.

The calibration and evaluation results showed that the
model was able to predict the three reproductive end-
points from different studies with different experimental
conditions. Although the data sets used to calibrate and

validate the model were from studies with different
experimental designs and analytic methods, the model
accounted for the differences and predicted the end-
points well. For example, the calibration data were mea-
sured in FHMs exposed to TB for 21 days with a flow-
through water exposure design, and the plasma VTG
concentrations were measured by a polyclonal FHM-
based ELISA [7]. In contrast, one validation data set was
from FHMs exposed to TB for 48 hours with a static
water exposure design, and plasma VTG concentrations
measured using a monoclonal carp-based ELISA [39],
while the other validation data set was from FHMs
exposed to TB for 8 days followed by an 8 day depuration
in a flow-through system, with plasma VTG concentra-
tions measured using the polyclonal FHM-based ELISA.
With the parameter set calibrated with the data from one
study, our model predicted plasma E, and VTG concen-
trations comparable to the measurements from the other
two studies. This indicates that the model not only fit the
data empirically, but also captured major features of the
HPG axis in female FHMs exposed to TB. In addition,
the two model evaluations also supported the point by
Watanabe et al. [20] that the VTG measurements by a
polyclonal FHM-based ELISA and by a monoclonal carp-
based ELISA are consistent.

Predictions for plasma VTG concentrations in EE,-exposed
FHMs

Figure 6 compares model-predicted and measured
plasma VTG concentrations in female FHMs exposed to
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three different concentrations of EE, for 21 days [42].
For the 0.5, 1.5 and 4.5 ng/L exposures, respectively, the
90%, 80%, and 50% CIs of model-predicted VTG con-
centrations encompassed the medians of the measured
data. This trend suggests that the model predicts the
endpoint better when the EE, exposure concentration is

high and closer to the exposure concentrations used to
calibrate the model (i.e., 10 and 100 ng EE,/L). For
FHMs exposed to 4.5 ng EE,/L, the median of our
model predictions was around 2 times higher than the
measured data, and all measured data were within the
95% Cls of the model predictions. Considering that
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Figure 6 Comparison of model predictions with measured data
in female FHMs exposed to EE,. n = 28 at each sampling time.
White boxes represent model predictions, and grey boxes represent
measured data [42]. The x-axis represents EE, concentrations in ng/
L. The solid line within the box marks the median; the boundary of
the box farthest from zero indicates the 75" percentile; the
boundary of the box closest to zero indicates the 25" percentile;
the whisker (error bar) farthest from zero marks the 90" percentile;
whisker (error bar) closest to zero marks the 10 percentile; the
circle farthest from zero marks the 95" percentile; and the circle
closest to zero marks the 5™ percentile.

exposure concentrations less than 10 ng EE,/L and
exposure durations longer than 8 days are an extrapola-
tion of the model, model predictions of plasma VI G
concentrations for the 21-day 4.5 ng EE,/L exposure
were a surprisingly good fit. The low exposure concen-
tration, longer time frame exposure is more environ-
mentally relevant because EE, concentrations range
from 0.5 to 15 ng EE,/L in the aquatic environment
[50-53], and aquatic animals may be exposed to the che-
mical throughout their lifetime.

Additionally, we simulated plasma VTG concentrations
in FHMs exposed to 1.5 ng EE,/L for 21 days as reported
by Brian et al. [43]. In total, four control FHMs and four
FHMs exposed to EE, were simulated. Brian et al. mea-
sured the VTG concentrations with a polyclonal carp
VTG ELISA, which uses polyclonal antibodies prepared
from carp VTG. In contrast, VTG data used to calibrate
the model were measured with a homologous FHM VTG
ELISA, which uses polyclonal antibodies prepared from
FHM VTG. Direct comparison of the two methods have
shown that measurements of FHM plasma VTG concen-
trations can differ by several orders of magnitude [54]. As
a result, instead of comparing the model predictions with
the measured data directly, we compared the relative
changes of plasma VTG concentrations. The results
showed that the range of model-predicted relative change
was 0.44 to 4.93, while the range of the measured data
relative change was 0.78 to 0.82, all within the range of
model predictions.
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Predictions for reproductive endpoints in a mixture of TB
and EE,

In the next phase of our analysis, we predicted liver ER
concentration, brain AR concentration, and plasma E,,
T, VTG, and luteinizing hormone (LH) concentrations
in female FHMs exposed to 15 ng TB/L, 10 ng EE,/L,
and a mixture of 15 ng TB/L and 10 ng EE,/L for 48
hours, respectively. For all endpoints, there was a
change after the chemical exposure began followed by
a recovery to baseline values after the exposure ended.
In panels A, B, and C, after exposure to TB, the
plasma E,, T, and VTG concentrations followed a
trend consistent with the data used in the model cali-
bration and evaluation. After exposure to EE,, plasma
E, and T concentrations decreased more dramatically
than that produced by TB exposure. We did not find
any reports of plasma E, or T concentrations in female
FHMs exposed to EE,. However, in female zebrafish, it
was observed that both plasma E, and T concentra-
tions decreased after exposure to 15 ng EE,/L for 48
hours [55], which agrees with our model predictions.
In addition, plasma VTG concentrations increased
after exposure to EE,, consistent with the data used to
calibrate and evaluate our model. Interestingly, after
exposure to a mixture of TB and EE,, our model pre-
dicted that the plasma E, and T concentrations
decreased in an additive manner. In contrast, the
plasma VTG concentration increased and followed the
trend of an EE, exposure.

In panels D, E, and F of Figure 7, we plotted liver
ER, brain AR, and plasma LH concentrations, respec-
tively, as a function of time under the three different
exposure conditions. Liver ER concentrations were
predicted to decrease slightly after exposure to TB,
and increase dramatically after exposure to EE, and in
response to the mixture. Predicted liver ER concentra-
tions after EE, exposure are consistent with the gene
expression data in female FHMs exposed to 10 ng
EE,/L [56]. Brain AR concentrations were predicted to
increase after exposure to TB and the mixture, and
decrease slightly after exposure to EE,. Plasma LH
concentrations were predicted to decrease after expo-
sure to TB and the mixture, and increase slightly after
exposure to EE, (consistent with observations in tele-
osts exposed to EE, [25]). To date, we do not have
published data to evaluate model-predicted effects for
a mixture of TB and EE,. In addition, three of the pre-
dicted endpoints (liver ER, brain AR, and plasma LH
concentrations) have not been measured in FHM at a
protein level because of experimental limitations.
However, the predictions can be used to generate
hypotheses and help explore possible mechanisms and
pathways, which might be tested in the future.
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Conclusions

The model represents the HPG axis in adult female
FHM robustly, and predicts plasma E,, T and VTG con-
centrations in female FHMs exposed to TB, EE,, or a
mixture of TB and EE,. This model links environmental
estrogen and androgen exposure to changes in apical
reproductive endpoints, and serves as a foundation that
can be extended to simulate oocyte growth dynamics
and other aspects of reproduction. In this study, the
model predicted reproductive endpoints from indepen-
dent studies well. For more than 85% of the simulation
results, the 95% Cls of model predictions encompassed
the median of the experimental data. To further evaluate
the model’s predictive ability, more experimental data
are needed, especially for the endpoints in FHMs
exposed to a mixture of TB and EE,.

Important new features of this model include: (i) the
simulation of AR in multiple tissue compartments (i.e.,
brain, liver, and gonad); (ii) AR binding and its effects
upon the HPG axis; and (iii) free androgen effects on
brain AR concentration. As a result, this model provides
a computational framework for endocrine responses of
EDCs functioning through both ER and AR.

The model can be used to generate hypotheses to
facilitate studies of endocrine responses in female
FHMs exposed to other estrogenic EDCs in addition to
EE,, or other androgenic EDCs in addition to TB. The
application can be achieved by defining chemical-speci-
fic parameters, such as partition coefficients (e.g.,
blood to water, or tissue to blood), and binding affi-
nities to ER and AR. Furthermore, the endpoints simu-
lated in this study (i.e. plasma E,, T and VTG
concentrations) are important determinants affecting
egg production in FHMs. In the future, this model
could be linked to an oocyte growth dynamics model
developed by Li et al. (accepted). Linking these two
models would build a connection between EDC effects
at a molecular level with effects upon an organism,
and thus a population, which is an urgent need in eco-
logical risk assessment.

Additional material

Additional file 1: Differential equations used in the HPG axis model.
The file was created in Microsoft Office Word 2003. The file contains a list
of the differential equations used in the HPG axis model for female
fathead minnows.
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Additional file 2: U-shaped dose-response curves between TB water
exposure concentrations and plasma E,, T, and VTG concentrations
in adult female FHMs. The file was created in Microsoft Office Word
2003. The file contains three plots for the non-monotonic relationship
between TB water exposure concentrations and plasma E,, T, and VTG
concentrations in adult female FHMs [7].
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