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Abstract

Background: The dynamics of biochemical reaction systems are constrained by the fundamental laws of
thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these
systems. Constructing biochemical reaction systems from experimental observations often leads to parameter
values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not
physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function.

Results: We introduce a thermodynamically consistent model calibration (TCMC) method that can be effectively
used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The
proposed method formulates the model calibration problem as a constrained optimization problem that takes
thermodynamic constraints (and, if desired, additional non-thermodynamic constraints) into account. By calculating
thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling
cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on
these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software,
using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.
html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in
the BioModels database.

Conclusions: TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic
parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically
consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular
function as well as to estimate thermodynamically feasible values for the parameters of new models. Furthermore,
TCMC can provide dimensionality reduction, better estimation performance, and lower computational complexity,
and can help to alleviate the problem of data overfitting.

Background
Physical systems are constrained to operate according to
the fundamental laws of thermodynamics. The conserva-
tion of mass and energy and the production of entropy
(or heat dissipation) dictate that certain events are phy-
sically impossible. A broken glass, for example, will not
spontaneously reassemble, and a bar of gold will not for-
tuitously appear from thin air. Not all physical con-
straints imposed by thermodynamics are intuitively
obvious. As a matter of fact, thermodynamic constraints
imposed on biochemical reaction systems are routinely
overlooked in the literature, either due to ignorance of

their existence or difficulties in understanding the impli-
cations of modern non-equilibrium thermodynamics.
There is an increasing consensus, however, that care
must be taken to ensure that the kinetic parameters of a
biochemical reaction system meet these thermodynamic
constraints [1-6].
There are many publications discussing the problem

of estimating the kinetic parameters of a biochemical
reaction system from experimental data of molecular
concentrations, when the underlying stoichiometry is
known [7-9]. Essentially, all approaches to this problem,
which is often referred to as model calibration, are
based on deriving a cost function and choosing an opti-
mization algorithm to minimize that function [10]. The
cost function provides a measure of ‘goodness of fit’ of
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the estimated biochemical reaction system dynamics to
available observations, and may be designed by a variety
of statistical inference techniques, such as maximum like-
lihood, Bayesian inference, etc., or by simply employing
an appropriate distance metric, such as least-squares. The
optimization procedure used must be characterized by
superior performance for finding global minima, due to
the highly non-convex and multi-modal nature of the
cost function [10]. The vast majority of published model
calibration methods, however, produce biochemical reac-
tion systems that may not be physically realizable, since
they do not take into account the fact that the underlying
kinetic parameters may be constrained by the fundamen-
tal laws of thermodynamics.
Recently, there have been several attempts to address

the issue of thermodynamic constraints in chemical
kinetics [2-5]. Among proposed methods, the thermody-
namic-kinetic modeling (TKM) approach [5] enjoys
some benefits over other techniques. However, we have
previously noted in [11] that this approach is unnecessa-
rily complicated and can be cumbersome, especially
when dealing with molecular perturbations (commonly
used in systems biology) or when merging estimated
TKM models [5].
To address these problems, we have recently proposed

two techniques for estimating the kinetic parameters of
closed biochemical reaction systems from available
observations of molecular concentrations in a thermody-
namically consistent fashion [11,12]. In [12], we model
biochemical reaction systems by mass-action kinetics,
use maximum-likelihood estimation, and employ a pro-
jection step that allows us to appropriately choose
kinetic parameter values so that the final system is ther-
modynamically feasible. In [11], we employ a Bayesian
inference approach, eliminate the projection step,
and derive a biophysically based cost function over
parameters that can be chosen independently without
violating the underlying thermodynamic constraints.
Unfortunately, both methods are limited, being applied
to closed biochemical reaction systems using standard
mass action kinetics.
In this paper, we propose a method for calibrating the

kinetic parameters of biochemical reaction models of
cellular function so that the resulting systems are ther-
modynamically feasible. The method, which we refer to
as Thermodynamically Consistent Model Calibration
(TCMC), works with any iterative parameter estimation
algorithm of choice and can be applied to open bio-
chemical reaction systems, which, in problems of sys-
tems biology, are more realistic than the closed systems
we considered previously. Furthermore, TCMC is cap-
able of handling any kinetic rate laws in ideal mixtures,
such as non-mass action rate laws commonly used to
describe complex enzymatic reaction schemes.

We exemplify practical aspects of the proposed tech-
nique by recalculating the kinetic parameters of a well-
known model of the EGF/ERK signaling cascade [13],
which is thermodynamically infeasible. This allows us to
propose a thermodynamically feasible model for this
important signaling pathway that is physically realizable
and better matches available densitometric data. Com-
puter simulations reveal a number of qualitative and
quantitative differences of possible biological significance
between the thermodynamically feasible and the ther-
modynamically infeasible published model, which need
to be validated experimentally. Moreover, we discuss a
number of important advantages gained by TCMC over
estimating the kinetic parameters using a collective fit-
ting approach that does not consider the underlying
thermodynamic constraints. Besides producing physi-
cally realizable and thermodynamically consistent mod-
els, TCMC may result in dimensionality reduction,
better estimation performance, and lower computational
complexity. MATLAB software, using the Systems Biol-
ogy Toolbox 2.1 http://www.sbtoolbox2.org, can be
accessed from http://www.cis.jhu.edu/~goutsias/CSSlab/
software.html. An SBML file containing the thermody-
namically feasible EGF/ERK signaling cascade model can
be found in the BioModels database http://www.ebi.ac.
uk/biomodels-main.
We believe that TCMC can be effectively used to

recalculate the parameter values of any existing thermo-
dynamically infeasible biochemical reaction model of
cellular function, as well as to estimate the parameters
of new biochemical reaction models from available
experimental data, thus producing physically plausible
versions of these models compatible with the fundamen-
tal laws of thermodynamics. Finally, as more chemical
species or reactions are discovered, TCMC can be used
to easily extend existing models of cellular activity in a
thermodynamically consistent and computationally effi-
cient fashion.

Results
Biochemical Reaction Systems
Most biological processes of interest to systems biology
are modeled by means of open biochemical reaction sys-
tems; i.e., systems that exchange mass with their sur-
roundings [14]. Living cells, for example, are open
systems maintaining themselves by exchanging materials
with their environment. Mass exchange is modeled
either explicitly or implicitly. Examples of explicit mod-
eling include: clamped species, reactions with null spe-
cies as reactants or products, and irreversible reactions
[15]. Clamped species are chemicals whose concentra-
tions are held fixed. They are often used to model mole-
cular species whose concentrations are affected by
unknown reactions. It is apparent that these chemicals
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must be supplied or removed from the system at appro-
priate rates to ensure that their concentrations do not
deviate from their fixed values. On the other hand, reac-
tions with null reactants or products model mass trans-
fer in and out of the system, respectively. Finally, the
use of an irreversible reaction is based on the assump-
tion that the concentration of at least one of its pro-
ducts is clamped to zero (otherwise, the reaction can be
reversed at sufficiently high product concentrations),
which implies mass transfer as well. An example of
implicitly modeling mass exchange is a reaction with
reactants or products not modeled by the system. A
common case would be the phosphorylation of a protein
without explicitly modeling conversion of ATP to ADP
[5].
An open biochemical reaction system is comprised of

N molecular species X1, X2,..., XN that interact through
M coupled reactions, given by∑

n∈N
vnmXn �

∑
n∈N

ν ′
nmXn, m ∈ M,

where N := {1, 2, . . . , N}, ℳ: = {1, 2,..., M}, and νnm,
ν ′
nm ≥ 0 are the stoichiometries of the reactants and pro-
ducts. We can characterize an open biochemical reac-
tion system at time t ≥ 0 by the concentrations
{xn(t), n ∈ N } of all molecular species at t. Clamped
molecular species Nc ⊂ N have concentrations that do
not vary with time, whereas, the concentrations of the
remaining ‘dynamic’ species Nd = N \Nc evolve as a
function of time. We will assume that the system char-
acterizes reactions in an ideal and well-stirred (homoge-
neous) mixture at constant temperature and volume and
that the concentrations {xn(t), n ∈ Nd} vary continu-
ously in time. In this case, we can describe the dynamic
evolution of the molecular concentrations in the system
by the following chemical kinetic equations:

dxn(t)
dt

=

{ ∑
m∈M

snmφm(t, k), t ∈ T , n ∈ Nd

0, t ∈ T , n ∈ Nc,
(1)

initialized by setting xn(0) = qn, n ∈ N , for some initial
concentrations qn, n ∈ N , where jm(t, k) is the net flux
of the mth reaction, snm := ν ′

nm − vnm is the net stoichio-
metry coefficient of the nth molecular species associated
with the mth reaction, T := [0, tmax] is an observation
time window of interest, and k is a vector of kinetic
parameters {kj, j ∈ J }, where J = {1, 2, . . . , J}. The
parameters k characterize the biochemical reaction sys-
tem at hand and are independent of the molecular con-
centrations {xn(t), n ∈ N }. Moreover, we assume that
these parameters do not vary with time.
By appropriately pruning and modifying an open bio-

chemical reaction system, we can derive a closed

subsystem (i.e., a system that does not exchange mass
with its surroundings) that lends itself to thermody-
namic analysis since external or unknown thermody-
namic forces no longer exist. To do so, we first remove
all null and irreversible reactions, as well as partially
modeled reactions (i.e., reactions with incomplete stoi-
chiometries). Next, we remove clamping of molecular
species involved in reversible reactions. Subsequently,
we keep only reactions that are thermodynamically inde-
pendent. Thermodynamic independence among reac-
tions means that a reaction is only driven by its own
thermodynamic force, which implies that the affinity of
the reaction will be zero if and only if there is no
change in its degree of advancement. This condition is
usually fulfilled if we keep only elementary reactions (i.
e., reactions that take place in one single step). As a
consequence, we obtain a closed reaction set ℳ0 ⊆ ℳ.
Finally, we remove all species that are no longer
involved with any of the reactions in ℳ0, leaving only
the molecular species N0 ⊆ N associated with the
closed subsystem.
The main rationale behind the second step is that the

kinetic parameters k considered in this paper are
assumed to be independent of the molecular concentra-
tions. As a consequence, the values of these parameters
will not change if the concentrations of the clamped
species are allowed to vary. Therefore, we can construct
a (possibly artificial) situation in which the concentra-
tions of the clamped species vary as if they were
dynamic species. Because our goal in creating the closed
subsystem is to discover and enforce thermodynamic
constraints on the kinetic parameters, we must include
the clamped species in our model. This is contrary to
simply removing all clamped species and the associated
reactions, since this approach will not allow us to deter-
mine thermodynamically feasible values for the kinetic
parameters of the removed reactions.
The third step is due to a simplification imposed on

us by the current state of non-equilibrium thermody-
namics. Thermodynamically dependent reactions influ-
ence each other, since the thermodynamic force of one
reaction may drive the other reaction and vice versa.
Unfortunately, it is not clear at this point how to deal
with thermodynamically coupled reactions. Future
research may be necessary to address this issue.
The resulting closed biochemical reaction subsystem is

comprised of N0 molecular species {Xn, n ∈ N0} that
interact through M0 coupled reversible reactions. The
dynamic evolution of the molecular concentrations in
this system is governed by:

dxn(t)
dt

=
∑

m∈M0

snmφm(t,k), t ∈ T , n ∈ N0, (2)
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initialized by xn(0) = qn, for n ∈ N0. We will character-
ize all reactions in ℳ0 by the generalized mass-action
rate law [16]. In this case, the net fluxes are given by

φm(t, k) = fm[x(t), π]

×
⎛
⎝r2m−1

∏
i∈N0

[xi(t)]
νim − r2m

∏
i∈N0

[xi(t)]
ν′
im

⎞
⎠ ,

(3)

for m Î ℳ0, where r2m-1, r2m are the (generalized)
rate constants of the mth forward and reverse reactions,
respectively. The quantity fm[x(t), π] can be any positive
and finite function of the concentrations x(t) and may
depend on a set of kinetic parameters π. For usual mass
action kinetics, fm[x(t), π] = 1. However, for more com-
plex schemes, this function usually takes a rational or
polynomial form. It is known that all reversible reaction
rate laws in ideal mixtures (including reversible Michae-
lis-Menten kinetics) can be described by (3) [5]. Note
that k includes the kinetic parameters π as well as the
rate constants {r2m-1, r2m, m Î ℳ0}. It also includes the
kinetic parameters of all reactions in ℳÎℳ0.
It is a direct consequence of thermodynamic analysis

that a closed biochemical reaction system will asympto-
tically reach a unique non-zero state {xn > 0, n ∈ N0}
of chemical equilibrium at which all concentrations
become stationary (assuming, of course, we have non-
zero initial conditions), satisfying the following detailed
balance equations:

r2m−1

∏
n∈N0

xνnm
n = r2m

∏
n∈N0

x
ν′
nm
n , for all m ∈ M0. (4)

As a consequence,

zm := ln
r2m−1

r2m
=

∑
n∈N0

snm ln xn, for all m ∈ M0. (5)

These constraints must be satisfied by the rate con-
stants in order for the closed biochemical reaction sys-
tem to be thermodynamically feasible.
The constraints implied by (5) correspond to the reac-

tion ‘cycles’ in the system. A reaction cycle is comprised
of those reactions corresponding to the nonzero elements
of a vector in the null space null (S0) of the stoichiometry
matrix S0 = [snm, n ∈ N0, m ∈ M0] of the closed sys-
tem. Clearly, (2) will be at a fixed point whenever the net
fluxes of the underlying reactions are set equal to the
corresponding elements of a vector in null (S0). If we
denote by s the N0 × 1 vector whose nth element is the
log steady-state concentration ln x̄n and by z the M0 × 1
vector whose mth element is the log equilibrium constant
zm = ln(r2m-1/r2m), then we can write (5) in a matrix-
vector form as ST

0s = z. Now, if b is a vector in the null

space of S0, then S0b = 0 and bTz = bTST
0s = (S0b)Ts = 0,

or

∏
m∈M0

(
r2m−1

r2m

)bm

= 1, for all b ∈ null(S0), (6)

which are the well-known Wegscheider conditions [6].
These conditions express necessary and sufficient con-
straints on the reaction rate constants of a closed bio-
chemical reaction system to be thermodynamically
feasible. Thus, if we denote the set of all thermodynami-
cally feasible parameters k by W, then any k ∈ W satis-
fies (6) and, likewise, any k that satisfies (6) is a member
of W.
We want to emphasize that, in open biochemical reac-

tion systems, the rate constants of the reversible reac-
tions must also be constrained by the Wegscheider
conditions, even if the system is far from equilibrium.
To identify these constraints, we need to prune an open
biochemical reaction system into a closed subsystem, by
employing the technique discussed previously, and use
the resulting stoichiometry matrix S0 to calculate the
constraints given by (6).
An equally important observation is that the rate con-

stants of the reactions pruned from an open system are
not constrained by the Wegscheider conditions, since
(4) must only be satisfied by the reactions in the closed
subsystem. Furthermore, if a reaction m in a closed sys-
tem is not part of a cycle, then bm = 0, for every b Î
null (S0), and its forward and reverse rate constants will
not be thermodynamically constrained, since these con-
stants trivially satisfy (6).
It can be shown (see Additional file 1) that the entropy

production rate of an open biochemical reaction system
at chemical equilibrium in which the net fluxes of the
reactions in ℳ0 equal to the elements of a vector in the
null space of the stoichiometry matrix S0, is given by

σ (b) = AVkB ln
∏

m∈M0

(
r2m−1

r2m

)bm

, for all b ∈ null(S0), (7)

where A = 6.02214084(18) × 1023mol-1 is the Avoga-
dro number, V is the system volume, and kB =
1.3806504 × 10-23JK-1 is the Boltzmann constant.
According to the second law of thermodynamics, the
entropy production rate must always be greater than or
equal to zero, with equality if and only if the system is
at thermodynamic equilibrium. It is therefore clear from
(7) that the Wegscheider conditions imply that the
entropy production rate must be zero in this case (i.e.,
the system must be at thermodynamic equilibrium). As
a consequence, the chemical motive force (which is the
amount of energy added to the system per unit time
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due to mass exchange through its boundary) and the heat
dissipation rate must also be zero. This makes intuitive
sense, since a reaction cycle leaves all molecular concen-
trations unchanged and, therefore, there is no change in
internal energy or mass flow through the system bound-
ary. Clearly, we can think of the Wegscheider conditions
as being a direct consequence of the thermodynamic
requirement that s (b) = 0, for every b Î null (S0).

Linear constraints
Unfortunately, (6) imposes a possibly infinite number
of non-linear constraints on the rate constants of a
closed biochemical reaction system. However, it is suf-
ficient to satisfy (6) for M2 = M0 - M1 basis vectors
{b(i), i = 1, 2,..., M2} of the null space of S0, where M0

is the number of reactions and M1 = rank (S0) (see
Additional file 1). By using this observation and by
taking logarithms on both sides of (6), we obtain
the following linear constraints on the log-rate con-
stants {�2m−1 := ln r2m−1,�2m := ln r2m,m ∈ M0}:∑

m∈M0

b(i)m (�2m − �2m−1) = 0, for i = 1, 2, . . . , M2, (8)

where b(i)m is the mth component of the ith basis vector
b(i). In Additional file 1 we derive an analytical formula
for the basis vectors of the null space of S0 [see Equa-
tion (S.1)]. As a consequence, the possibly infinite non-
linear Wegscheider conditions given by (6) are equiva-
lent to much more manageable finite linear constraints
on the log-values of the parameters of the closed subsys-
tem, given by

Wκ = 0, (9)

where � := ln(k) and W is an M2 × J matrix that can
be easily constructed from knowledge of S0 using (8).
Hence, k ∈ W if and only if W ln(k) = 0.
We should note that there might be additional linear

constraints that we may wish to impose on the loga-
rithms of the kinetic parameters of a biochemical reac-
tion system. Here are some examples:

• By using an appropriate experimental procedure,
we may be able to accurately measure the equili-
brium constant Rm of the mth reversible reaction.
For a (generalized) mass-action reaction, we have
Rm := r2m-1/r2m and thus we obtain a linear constraint

�2m−1 − �2m = z(meas)
m on the log rate constants of the

mth reaction, where z(meas)
m is the log value of the

measured equilibrium constant.
• For a reversible Michaelis-Menten reaction, the
Haldane relationship implies a linear constraint
between the logarithms of the kinetic parameters of

a reversible Michaelis-Menten reaction and

z(meas)
m [17].
• By using experimental techniques, such as plasmon
resonance or atomic force microscopy, it may be pos-

sible to obtain a highly accurate measurement k(meas)
j

of an individual kinetic parameter kj. In this case, we

must impose the (trivial) constraint eTj κ = ln [k(meas)
j ],

where ej is the jth column of the J × J identity matrix.
• To reduce the dimensionality of parameter estima-
tion, we may employ a sensitivity analysis approach,
such as the one proposed in [18,19], to identify para-
meters that do not appreciably influence the cost of
estimation. Determining accurate values for these
parameters is inconsequential to the behavior of the
biochemical reaction system at hand. Therefore, we

can fix these parameters to some nominal values k(0)j

throughout model calibration, resulting again in lin-

ear constraints of the form eTj κ = ln [k(0)j ].

• We may want to expand an existing (validated)
thermodynamically feasible model to include addi-
tional reactions and molecular species. We can do
this by fixing the parameters of the existing model

using linear constraints eTj κ = ln [k(exist)j ], where k(exist)j

is the jth parameter value of the existing model. Then
estimation takes place only on the parameters asso-
ciated with the new reactions.

For a given biochemical reaction system, we can com-
bine all possible linear constraints on the logarithms �
of the kinetic parameters k into a single matrix equation
of the form:

Aκ = c, (10)

where A is an appropriately constructed L × J matrix
and c is an L × 1 vector of known values determined by
the constraints, with L being the number of constraints.
Note that if there are no constraints other than the
Wegscheider conditions, we would simply have A = W
and c = 0.

Model calibration
We will now assume that we have obtained noisy mea-

surements y = {y(p)n (tq), n ∈ Ns, p ∈ P , q ∈ Q} of the

concentration dynamics of selected molecular species
n ∈ Ns ⊆ N in an open biochemical reaction system of
known stoichiometry, obtained by a set of distinct
experiments p ∈ P = {1, 2, . . . , P} at discrete time
points{tq, q ∈ Q}, Q = {1, 2, . . . , Q}, within the obser-
vation time window T . The problem of model calibra-
tion we consider in this paper is to determine
thermodynamically consistent values for the kinetic
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parameters {kj, j ∈ J }, so that the concentration

dynamics x = {x(p)n (tq), n ∈ Ns, p ∈ P , q ∈ Q} produced
by the estimated system match y in some well-defined
sense. Note that, for a given p ∈ P, the dynamics

{x(p)n (t), n ∈ N } are computed via (1) using initial con-

ditions x(p)n (0) = q(p)n that correspond to the pth experi-
mental condition. Data y may be obtained by
appropriately designed in vivo or in vitro experiments,
or by simulating an established and experimentally
validated biochemical reaction model whose kinetic
parameters are thermodynamically infeasible. Instead of
focusing on the quality of the estimated values of the
kinetic parameters, it has been argued in [20] that
matching predicted and experimental observations of
molecular concentrations is the right thing to do due
to the ‘sloppiness’ of biochemical reaction systems (dif-
ferent combinations of parameter values may essen-
tially lead to the same concentration dynamics).
There are many estimation techniques we can use to

address the previous problem, such as maximum likeli-
hood or Bayesian inference. The final product of these
techniques is a cost function C(� |y) used to quantify
the overall error between the predicted concentration
measurements x, obtained by simulating the biochemical
reaction system with kinetic parameter values k = exp
{�}, and the noisy observations y. In an effort to reduce
the typically large dynamic range of kinetic parameter
values, it is customary to estimate the log values �
instead of k. As a consequence, the problem of interest
here is to compute an estimate κ̂ of the log kinetic para-
meters �, so that

κ̂ = argmin
κ∈A

C(κ |y), (11)

where A is the set of all �’s satisfying the linear con-
straints given by (10); i.e.,A := {κ : Aκ = c}. For simpli-
city, we consider in this paper the least-squares error
cost criterion, given by

C(κ |y) =
∑
n∈Ns

∑
p∈P

∑
q∈Q

[y(p)n (tq) − x(p)n (tq)]
2
. (12)

This error criterion is a consequence of a maximum
likelihood approach to parameter estimation under the
assumption of normally distributed observation errors.
Note that the cost C depends on the log kinetic para-

meters � through the molecular concentrations x(p)n (tq).
In this paper, we refer to the constrained optimization

problem given by (11) as Thermodynamically Consistent
Model Calibration (TCMC). The importance of TCMC
lies on the formulation of the model calibration problem
as one of constrained optimization via (11), with con-
straints that ensure at least the thermodynamic feasibility

of the resulting model. A useful observation is that TCMC
is agnostic to the choice of the cost function used and the
algorithm employed for optimization. Moreover, we can
easily transform the constrained optimization problem
given by (11) to a standard unconstrained problem.
Indeed, a well known result of linear algebra implies that
A := {κ : Aκ = c} = {κ : κ = κ0 + Bv, v ∈ �d}, where
d = J − rank (A), �0 is a J × 1 vector that satisfies
Aκ0 = c, B is a J × d matrix whose columns form a basis
for the null space of matrix A, and ℜd is the space of all d
× 1 real valued vectors. Thus, if we can find a particular
solution �0 to the constraints Aκ = c, we can reformulate
the constrained optimization problem given by (11) as the
following lower dimensional unconstrained problem:

κ̂ = κ0 + Bv̂

v̂ = argmin
v

C0 (v |y), (13)

where

C0(v |y) := C(κ0 + Bv |y). (14)

Note that we assume here that there is more than one
solution to Aκ = c. If only one solution exists, optimiza-
tion is not necessary, since this solution will be our
parameter estimate. On the other hand, if Aκ = c has no
solution, then we cannot find a � that will simulta-
neously satisfy all necessary constraints, indicating that
we must reformulate the problem.
The objective function C0 is non-convex with possibly

many local minima. As a consequence, a gradient-based
optimization algorithm for solving (13) may prematurely
terminate at a local minimum with much larger cost
than the globally minimum cost. To ameliorate this pro-
blem, we have decided in this paper to use a stochastic
optimization algorithm, namely simulated annealing
(SA) [21]. Stochastic optimization algorithms can move
away from premature local minima, thus resulting in
better solutions to optimization problems than when
using deterministic techniques. Although many choices
exist for optimization, such as the simultaneous pertur-
bation stochastic approximation (SPSA) method
employed in our previous work [11] and genetic algo-
rithms, SA is a stochastic search optimization algorithm
that enjoys several advantages over other algorithms. In
particular, the most important features of SA are ease of
implementation and the ability to avoid premature con-
vergence by jumping away from local minima en route
to finding a global minimum. In SA, a new value of v is
proposed nearby the current value. The proposed value
becomes the new value with a certain probability based
on cost improvement. If the proposed value is not
accepted, then the current value is used. The proposed
value is usually drawn from an appropriately chosen
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probability distribution around the current value (e.g., a
Gaussian distribution centered at the current value). See
Additional file 1 for a detailed description of the SA
algorithm used.
A natural question that arises here is whether different

choices for �0 and B affect the final result of optimiza-
tion. If we had an algorithm that could always find the
global solution to a non-convex optimization problem,
then the choice of �0 and B would have no effect on the
solution. Since however global minima are difficult to
find, we expect that different choices for �0 and B will
have some impact on the final solution. Note that it
would be advantageous to choose �0 as close as possible
to the globally optimal solution. We attempt to do so in
our subsequent example by taking �0 to be a solution to
Aκ0 = c that is closest (in the least-squares sense) to
published values. On the other hand, we expect that the
choice of B will have only a minor effect on optimiza-
tion, since different matrices B amount to scaling or
rotating the axes of the parameter space being searched.
Good optimization algorithms, such as SA, are expected
to be robust to such alterations.

Example
We now demonstrate the proposed TCMC method by
re-estimating the kinetic parameters of a classical model
of the EGF/ERK signaling cascade [13]. This model con-
sists of three compartments (extracellular space, cyto-
plasm, and endosomal volume), N = 100 biochemical
species, and M = 125 reactions. Moreover, it is charac-
terized by 90 different kinetic parameter values, a num-
ber that is smaller than the total number of individual
reactions, due to the fact that some reactions share the
same kinetic parameters, whereas, other reactions are
not associated with any parameters.
Although the Schoeberl model has provided valuable

insights into the biological mechanisms underlying EGF/
ERK signaling, the values of the kinetic parameters pub-
lished in the literature are thermodynamically infeasible.
As a consequence, the concentration dynamics produced
by the published model are physically impossible and
could not occur in nature. By using TCMC to recom-
pute thermodynamically feasible values for the kinetic
parameters, we can construct a physically realizable
model whose dynamics are expected to reflect the true
behavior of EGF/ERK signaling more accurately than
the dynamics produced by the published model.
We use the version of the Schoeberl model published

in the BioModels database [22]. Moreover, we employ
the same experimental time series data of ERK-PP activ-
ity used for creating the original model [13]. To simplify
implementation of TCMC, we assume here that the
Schoeberl model is characterized by J = 2M = 250
kinetic parameters (two parameters per reaction). For an

irreversible reaction, we constrain the rate constant of
the reverse reaction to be equal to zero. For those reac-
tions not associated with any kinetic parameters, we
assign two artificial parameters (one for the forward and
one for the reverse reaction) and constrain both their
values to be zero.
We implement the following TCMC procedure to re-

estimate the values of the kinetic parameters in a ther-
modynamically consistent manner. First, we find the
closed subsystem of the Schoeberl model (see Additional
file 1). This subsystem consists of N0 = 93 molecular
species and M0 = 83 reversible elementary (monomole-
cular and bimolecular) reactions. Then, we determine
the thermodynamic constraints by using the 93 × 83
stoichiometry matrix S0 of the closed subsystem. It
turns out that the rank of the stoichiometry matrix S0 is
65. As a consequence, the closed subsystem contains M2

= 83 - 65 = 18 independent reaction cycles, determined
by the columns of matrix B0, given by Equation (S.1) of
Additional file 1 (see the file for details on the reaction
cycles). Therefore, the rate constants of the closed sub-
system must satisfy 18 independent Wegscheider condi-
tions. It turns out that the published Schoeberl model
satisfies only 10 of these conditions. As a matter of fact,
the entropy reaction rates, given by (7), associated with
5 independent reaction cycles are negative, in direct vio-
lation of the second law of thermodynamics, whereas,
the entropy reaction rates of 3 reaction cycles are posi-
tive, with the remaining being equal to zero (see Table
S.2 in Additional file 1).
Next, we construct matrix A and vector c by combin-

ing the 18 thermodynamic constraints with 167 linear
equality constraints originally built into the model that
relate various parameters across reactions (see Addi-
tional file 1 for details on these constraints), thus produ-
cing the linear constraints Aκ = c. In this case, A is a 185
× 250 matrix, whereas, c is a 250 × 1 vector with ele-
ments 0 or -∞ (this corresponds to kinetic parameters
whose values are fixed to zero). It turns out that rank
(A) = 171, which implies that the dimension of the null
space of A is d = 79. Subsequently, we find a basis for
the null space of A and form the 250 × 79 matrix B.
Moreover, we find a particular solution �0 of Aκ = c
that is closest, in the least-squares sense, among all
other solutions to the published thermodynamically
infeasible parameter values. We accomplish this by
using a well-known approach for solving constrained
least-squares problems [23]. Finally, by using (12) on the
aforementioned experimental time series data and SA,
we calculate the 79 × 1 vector v̂ by minimizing the cost
function C0(v |y), given by (14), and set κ̂ = κ0 + Bv̂.
We take the thermodynamically feasible log kinetic

parameter values �0 to be close to the published kinetic
parameter values, since the published values already

Jenkinson and Goutsias BMC Systems Biology 2011, 5:64
http://www.biomedcentral.com/1752-0509/5/64

Page 7 of 13



produce a good match between the experimentally avail-
able and predicted molecular dynamics. In this case,
TCMC provides a thermodynamically consistent correc-
tion of �0, by means of Bv̂, that reduces the cost of esti-
mation, thus further improving the match between the
experimentally obtained and predicted dynamics.
In Figure 1, we depict the concentration dynamics of

ERK-PP obtained by the published model (dotted curves),
for two different input EGF concentrations, namely 50
ng/mL and 5 ng/mL, whereas, in Figure S1 of Additional
file 1 we depict the concentration dynamics of ERK-PP
obtained by the published model for three additional con-
centrations of input EGF, namely 0.5 ng/mL, 0.125 ng/
mL, and 0.0625 ng/mL. Clearly, the resulting dynamics
match the available densitometric data (indicated by the
circles) rather poorly.
We should note here that the ERK-PP dynamics ori-

ginally published in [13] seem to match the available
data pretty well - see Figure 2F in [13]. However, the
model detailed in the original publication cannot be
used to reproduce the results. On the other hand, the
model available in the BioModels database does not
reproduce the results published in the Schoeberl paper
but produces dynamics that are very similar to the ones
reported in that paper.
The solid curves in Figure 1 and Figure S1 of Addi-

tional file 1 depict the ERK-PP concentration dynamics
estimated by TCMC. TCMC results in a thermodynami-
cally consistent model of the EGF/ERK signalling cas-
cade that produces ERK-PP concentration dynamics
which match the available experimental data noticeably
better than the dynamics produced by the published

model. As a matter of fact, model fit between predicted
and experimentally measured ERK-PP concentration
dynamics, quantified by the least-squares error given by
(12), is reduced by 69%. TCMC simultaneously adjusts
the values of the kinetic parameters in order to mini-
mize the cost of fitting the ERK-PP response to the
available densitometric data. This ‘collective fitting’
strategy has been recognized in the literature [20] as
being more desirable than constructing a biochemical
reaction system model from individual parameter esti-
mates in a piecewise fashion, which is the case with the
published Schoeberl model.
To separate the effect of collective fitting versus impos-

ing the underlying thermodynamic constraints on the
kinetic parameters, we use the same simulated annealing
algorithm employed by TCMC to estimate the kinetic
parameters without including the thermodynamic con-
straints. The resulting (thermodynamically infeasible) esti-
mated dynamics are depicted by the dashed curves in
Figure 1 and Figure S1 of Additional file 1. As expected,
these dynamics fit the densitometric data better than the
dynamics obtained by the published model. As a matter
of fact, model fit between predicted and experimentally
measured ERK-PP concentration dynamics is reduced by
70% in this case, which is slightly better than the one
obtained by TCMC. It will shortly become clear however
that the solution obtained without imposing the thermo-
dynamic constraints leads to unrealistic system behavior.
In the following, we discuss a number of advantages
gained by TCMC over estimating the kinetic parameters
using a collective fitting approach that does not consider
the underlying thermodynamic constraints.
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Figure 1 ERK-PP concentration dynamics, measured in mol/m3, under two different input EGF concentrations. The Additional file 1
reports additional dynamics.
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Discussion
Qualitative/quantitative value of thermodynamic
consistency
Due to lack of thermodynamic consistency in the para-
meter values of the published Schoeberl model, the mole-
cular dynamics produced by this model cannot possibly
occur in nature. Because the values estimated by the pro-
posed TCMC method satisfy all necessary thermody-
namic constraints, it is expected that the resulting TCMC
model will provide a more accurate representation of
EGF/ERK signaling than the published Schoeberl model.
To provide an example of a potentially important dif-

ference between the published model and the TCMC
model calculated in this paper, we consider the inte-
grated response of ERK-PP activity (i.e., the cumulative
ERK-PP concentration). It has been argued in the litera-
ture that the integrated response provides an appropri-
ate metric for quantifying dependence of DNA synthesis
on ERK activation in certain cells [24]. As a conse-
quence, this feature of the ERK-PP concentration
dynamics can influence a number of diverse biologically
outcomes, such as cell cycle progression, cell prolifera-
tion, and cell differentiation.
In view of the fact that differences in the integrated

response of ERK-PP activity may cause distinct biologi-
cal outcomes, it is reasonable to believe that a key
objective of EGF/ERK signaling is to maintain robust
integrated response to changes in input EGF concentra-
tion while producing a quick and sharp ‘switch-like’
transition between states of differing biological out-
comes. In Figure 2, we provide a log-log plot of the inte-
grated response of ERK-PP activity predicted by the
published (dotted curve) and TCMC (solid curve) mod-
els, for a wide range of input EGF concentrations.
Although the integrated response predicted by both
models is indeed robust for input EGF concentrations
larger than 10-2 ng/mL, when the EGF concentration
decreases below 10-2 ng/mL, the integrated response of
ERK-PP activity predicted by the TCMC model exhibits
a sharper transition from large to small values than the
one predicted by the published model. As a matter of
fact, the TCMC model predicts seven orders of magni-
tude decrease in the integrated response, when the
input EGF concentration decreases from 10-2 ng/mL to
10-3 ng/mL, whereas, the published model predicts only
four orders of magnitude decrease. By considering the
discussion in [24], we believe that this behavior by the
TCMC model may turn out to be a biologically impor-
tant property of the EGF/ERK signaling pathway that
cannot be effectively captured by the published model.
We will now show that the TCMC model may result

in a biologically plausible prediction of ERK-PP activity
that can also be different than the one produced by the

estimated thermodynamically infeasible model using col-
lective fitting. In Figure 3, we show the long-term beha-
vior of the estimated thermodynamically infeasible
model. Under certain normal biological conditions (e.g.,
typical EGF receptor concentration, such as the one
considered in our paper), ERK-PP activity is expected to
decay to zero at steady-state [25]. However, one can see
from Figure 3 that, even after 4 hours, the concentration
of ERK-PP predicted by the estimated thermodynami-
cally infeasible model is steadily increasing - possibly
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Figure 2 Integrated response of ERK-PP activity, measured in
mol · min/m3, as a function of input EGF concentrations.
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Figure 3 Long-term ERK-PP concentration dynamics, measured
in mol/m3, predicted by the estimated thermodynamically
infeasible model (dashed curves) and the TCMC model (solid
curves) under 0.125 ng/mL (blue curves) and 0.0625 ng/mL
(red curves) input EGF concentrations. The inset shows the short-
term behavior predicted by the two models as well as the
corresponding densitometric data (blue and red circles).
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being driven by the chemical perpetuum mobiles that
occur when the Wegscheider conditions are violated.
This unrealistic behavior appears despite the fact that
the transient dynamics, depicted in the inset of Figure 3
by the dashed curves, fit the data better than the TCMC
dynamics, denoted by the solid curves. Such a sustained
and long lasting response may lead to different biologi-
cal outcomes than the ones resulting from ERK-PP
activity that decays to zero at steady-state [25]. Thus,
the estimated thermodynamically infeasible model can
lead to erroneous biological predictions, despite its rea-
sonable fit to the available densitometric data.
Our previous examples show that thermodynamic

consistency may result in model behavior that is differ-
ent than the one predicted by thermodynamically infea-
sible models of cellular function. However, more
research is needed to experimentally validate observed
differences and demonstrate that lack of thermodynamic
consistency may indeed result in inaccurate (or even
false) biological predictions.

Flux analysis
Flux-based analysis of biochemical reaction systems is a
widely used method for understanding the principles
underlying the production and regulation of mass flow
in cellular systems, such as signaling or metabolic path-
ways. It turns-out that the Wegscheider conditions,
given by (6), constrain the reaction fluxes. If flux analy-
sis does not take into account these constraints, then it
may lead to inaccurate or misleading conclusions about
the behavior and properties of mass flow in biochemical
reaction systems.
If {b(i), i = 1, 2,..., M2} is a set of basis vectors of the

null space of the stoichiometry matrix S0 of the closed
subsystem, and φ+

m(t, k), φ−
m(t, k) are respectively the

forward and reverse fluxes of the mth reaction at time t,
then (see Additional file 1 and [6])

∑
m∈M0

b(i)m ln
φ+
m(t,k)

φ−
m(t,k)

= 0,

for i = 1, 2, . . . , M2, t ∈ T ,

(15)

where b(i)m is the mth element of the basis vector b(i).
Note that this equation must be satisfied at each time
point t ∈ T , even far away from equilibrium. Moreover,
it is satisfied for any vector b in the null space of S0.
Since TCMC always leads to a thermodynamically fea-

sible biochemical reaction system with parameters satis-
fying the Wegscheider conditions, the flux constraints
imposed by (15) are satisfied as well. Thus, thermodyna-
mically consistent flux analysis can be performed on the
resulting system without any additional considerations,
and the behavior of the system is always physically
realizable.

Bias-variance tradeoff and overfitting
In addition to the previous advantages, there is an
important statistical benefit for thermodynamically con-
straining the parameters of a biochemical reaction sys-
tem. By searching for kinetic parameter values within a
thermodynamically consistent subset of the parameter
space, we may reduce the variance of estimation and
thus lower the estimation error through the well-known
bias-variance tradeoff.
The mean-square error (MSE) E[[C(κ̂ |y) − C(κ true|y)]2]

in cost, where κ̂ is an estimator of the ‘true’ parameters
�true, satisfies:

E[[C(κ̂ |y) − C(κ true|y)]2]︸ ︷︷ ︸
MSE

= [C(κ true|y) − E[C(κ̂ |y)]︸ ︷︷ ︸
Bias

]2

+ E[[C(κ̂ |y)n − E[C(κ̂ |y)]]2]︸ ︷︷ ︸
Variance

.

Generally speaking, imposing constraints on the para-
meters may increase the bias term but decrease the var-
iance. However, since the true parameter values must
satisfy the thermodynamic constraints, we expect a
decrease in variance without an increase in bias. As a
consequence, searching for parameter values within the
thermodynamically consistent subspace of the parameter
space may lead to a lower mean square error in cost
due to smaller variance. Since the volume of a search
space grows exponentially in the dimension of the
space, gains in variance (and hence improvements in the
mean square error) are expected to be large.
A related statistical notion in estimation problems is

data overfitting. Overfitting refers to situations where
model complexity (i.e., number of parameters) is high
and the amount and quality of available data is com-
paratively low. In this case, it is often possible that we
match the data so well that, in addition to matching the
underlying physical phenomena of interest, the model
fits the measurement noise as well. This situation
reduces the predictive power of the estimated model.
The relationship of overfitting to the bias-variance tra-
deoff is clear: complex models are characterized by low
bias and are able to describe a wide range of phenom-
ena but suffer from high variance in parameter estima-
tion (i.e., different data sets may lead to wildly different
parameter estimates via overfitting).
Most often, the behavior of biochemical reaction

systems is only influenced by a small number of para-
meters (due to robustness of such systems to the under-
lying kinetic parameters). This reduces the actual
number of parameters that must be estimated with pre-
cision. Moreover, the thermodynamic constraints further
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reduce the number of parameters to be estimated, alle-
viating some overfitting concerns. Imposing additional
parameter constraints, such as the ones employed by
the Schoeberl model, may further be used to combat
this issue. Unfortunately, model complexity is much
higher than the amount and quality of available data in
most problems of systems biology and overfitting
remains a major concern even when using TCMC. In
the example considered in this paper, time series data is
only available for one crucial chemical species. As a
consequence, it is natural to expect that the dynamics
produced by the TCMC model overfit the available data
to a certain extent. Thus, when more experimental data
become available, TCMC must be rerun in order to pro-
duce a better calibration of the model, with a new cost
function that includes the additional data.
In light of these concerns, some may argue that col-

lective fitting of model parameters is not the correct
approach, and that a reductionist approach is more
appropriate (i.e., attempting to measure parameters indi-
vidually and then combine the results to determine an
appropriate model calibration). Unfortunately, the
reductionist approach is time consuming, extremely
expensive, and, in most cases, impossible with current
experimental techniques. Moreover, incorrect imple-
mentation of a reductionist approach may lead to a
thermodynamically infeasible model calibration. This is
clearly the case with the Schoeberl model (and most
probably with other models published in the literature).
TCMC is a collective fitting procedure, but offers a prag-

matic compromise to the reductionist approach. In light of
the fact that some parameters may be measured individu-
ally with extreme precision, TCMC allows for these para-
meters to be fixed to their measured values using matrix
A. In addition, a more advanced Bayesian cost function
can be used (e.g., see [11]) to factor in prior experimental
knowledge when parameters have been previously esti-
mated with less precise experimental techniques.

Computational advantages
According to the ‘curse of dimensionality,’ which refers
to an exponential increase in the volume of the para-
meter space as its dimension grows, estimation becomes
substantially harder in high dimensional spaces. A
‘naïve’ search of that space, in an effort to find the ‘true’
parameter values of a biochemical reaction system
[assuming that these values minimize the cost function
given by (12)], is hopeless. As a matter of fact, the prob-
ability of obtaining parameter values that satisfy the
Wegscheider conditions and other underlying log-linear
constraints by uniformly sampling the entire parameter
space (which is an ‘easier’ problem than finding the
‘true’ parameter values) is zero. As a consequence, the
constraints must be explicitly considered by the

optimization problem at hand to have any hope of suc-
cessfully solving the problem of model calibration.
As a matter of fact, since the feasible manifold is of

lower dimension than the entire parameter space, meth-
ods that do not consider the underlying thermodynamic
and non-thermodynamic constraints will spend most
time searching the immense infeasible portions of the
parameter space. The imposition of constraints among
the kinetic parameters of a biochemical reaction system
reduces the dimensionality of the parameter space to a
smaller feasible region and make parameter estimation
computationally easier. TCMC makes this explicit, by
performing optimization over a lower dimensional
space, spanned by the lower dimensional vectors v,
instead of the entire parameter space, spanned by the
higher dimensional vectors �.

Conclusions
For a biochemical reaction system to be physically realiz-
able, it is required that the underlying kinetic parameters
satisfy certain thermodynamic constraints, known as
Wegscheider conditions. This issue has been largely
ignored in the literature, as evidenced by the fact that
many published models violate these constraints. The
model calibration method we have proposed in this
paper can be effectively used to determine thermodyna-
mically consistent values for the kinetic parameters of
any set of reactions in an ideal homogeneous mixture at
constant temperature and volume. Our method is simple
to understand and implement. Moreover, it can be easily
incorporated into any existing or newly proposed calibra-
tion technique in order to make sure that the resulting
model satisfies the fundamental laws of thermodynamics
as well as other desirable conditions and constraints.
There are two major issues associated with calibrating

biochemical reaction systems:

1. The quality and quantity of available data are
inadequate to allow sufficient estimation of all
underlying parameter values.
2. Biochemical reaction models contain many para-
meters whose numbers dramatically increase with
model size and detail. As a consequence, the curse
of dimensionality seriously hampers estimation
algorithms.

The first issue is primarily associated with current lim-
itations of experimental methods and approaches. To
address this issue, we need substantial improvements in
experimental equipment and methodologies. However,
TCMC scales well with future improvements in data
quality and quantity. Matrix A can handle arbitrary para-
meter measurements (equilibrium constants, Haldane
relations, direct kinetic parameter measurements, etc.).
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Moreover, TCMC can employ any cost function of
choice, so additional concentration data can be incorpo-
rated seamlessly therein.
The second issue is the largest obstacle facing model

calibration techniques. To reduce dimensionality, we
must attempt to exploit mathematical structure particu-
lar to the biological problem at hand. TCMC attempts
to address this problem in two ways:

• First, TCMC uses the fact that there are funda-
mental physical principles underlying biochemical
reaction systems that may constrain the set of possi-
ble kinetic parameter values. As a consequence of
the fundamental laws of thermodynamics, most
complex biochemical networks contain reaction
cycles that constrain the kinetic parameters accord-
ing to (9). These constraints allow TCMC to reduce
dimensionality by restricting the estimation problem
on a smaller thermodynamically feasible subset of
the parameter space.
• Second, experimental data and mathematical analy-
sis can often provide other forms of constraints on
the underlying parameters (e.g., through directly
measuring rate or equilibrium constants, by deter-
mining Haldane relationships between enzymatic
parameters, etc.). In particular, sensitivity analysis
may reveal non-influential kinetic parameters that
can be set to some nominal values without appreci-
ably affecting system behavior. All these additional
constraints can be accounted for by the A matrix in
(10), further reducing the dimensionality of the
ensuing parameter estimation problem.

As we mentioned before, dimensionality reduction is
made explicit by TCMC, since optimization takes place
over a smaller dimensional vector v, instead of the
higher dimensional vector � specified by the model. As
a consequence, TCMC does not entirely rely on finding
the globally optimal parameter values that best fit avail-
able dynamic data of molecular concentration. Imposing
thermodynamic (and other log-linear) constraints allows
TCMC to restrict its search for appropriate parameter
values over a smaller subspace of the entire parameter
space in order to reach a compromise between optimal
data fit and biophysical feasibility. It has been recently
pointed out in the literature that this approach to para-
meter estimation should be considered as an important
part of determining the parameter values of complex
biological models [26].
Recently, a method has been proposed in the literature

for inferring a complete and consistent set of kinetic
parameter values from incomplete and inconsistent data

[27]. This method, known as ‘parameter balancing,’
employs a Bayesian estimation approach based entirely
on published data pertaining the values of the underly-
ing kinetic parameters. Although parameter balancing
can be used to provide thermodynamically consistent
values for the kinetic parameters of a biochemical reac-
tion system, the method does not include quantitative
dynamic measurements of molecular concentrations. As
a consequence, parameter balancing may result in a
thermodynamically feasible biochemical reaction model
that does not adequately predict experimental observa-
tions of dynamic system behavior. Future research may
focus on combining TCMC with parameter balancing to
utilize published parameter sets as well as dynamic
experimental data.
A problem that we have not addressed in this paper is

the influence of ions, such as K+, and Ca2+, and certain
environmental factors, such as the temperature and pH,
on the thermodynamic behavior of a biochemical reac-
tion system [28]. Our objective in this paper is not to
address biochemical reaction systems with this level of
complexity, but to focus on the widely reported simpler
models of cellular function that consider only interac-
tions among biochemical reactants in a fixed environ-
ment. Note, however, that temperature and pH
dependence of parameters has been accounted for in
[27] via parameter balancing using log-linear equations
between biochemical parameters. Since arbitrary log-lin-
ear constraints between parameters can be enforced by
TCMC via (10), we suspect that TCMC can be used
directly or appropriately modified to handle additional
biochemical complexities that have not been addressed
in this paper.
Another problem that we have not addressed here is

constructing new biochemical reaction models of cellu-
lar function. Since, in this paper, we only address the
model calibration problem, we take (1) as given and
proceed to determine the parameter vector k from data.
In general, determining the structure (i.e., the stoichio-
metry) of a biochemical reaction network is an extre-
mely laborious task. Preliminary work indicates that
thermodynamics can also play a key role in estimating
the structural complexity of biochemical reaction sys-
tems [29]. Future scientific investigations are necessary
to further examine this open problem.

Additional material

Additional file 1: In this document, we provide supplementary
mathematical and computational details required to fully
understand the material presented in the Main Text.
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