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Abstract

Background: Network reconstructions at the cell level are a major development in Systems Biology. However, we
are far from fully exploiting its potentialities. Often, the incremental complexity of the pursued systems overrides
experimental capabilities, or increasingly sophisticated protocols are underutilized to merely refine confidence
levels of already established interactions. For metabolic networks, the currently employed confidence scoring
system rates reactions discretely according to nested categories of experimental evidence or model-based
likelihood.

Results: Here, we propose a complementary network-based scoring system that exploits the statistical regularities
of a metabolic network as a bipartite graph. As an illustration, we apply it to the metabolism of Escherichia coli. The
model is adjusted to the observations to derive connection probabilities between individual metabolite-reaction
pairs and, after validation, to assess the reliability of each reaction in probabilistic terms. This network-based scoring
system uncovers very specific reactions that could be functionally or evolutionary important, identifies prominent
experimental targets, and enables further confirmation of modeling results.

Conclusions: We foresee a wide range of potential applications at different sub-cellular or supra-cellular levels of
biological interactions given the natural bipartivity of many biological networks.

Background
A crucial milestone to understand and control cellular
behavior is the building up of reliable reconstructions of
the interactions spanning different functional levels. Such
reconstructions find a natural abstraction in the form of
complex networks [1-3], where nodes represent cellular
components such as genes, proteins, or metabolites, and
edges identify the presence of biological interactions
between them [4]. These network representations enable
to map the large-scale structure of cellular interactions
[5,6], to explore the basic principles of transcriptome and
proteome organization [6], to identify missing genes
encoding for specific metabolic functions [7], or to ana-
lyze emergent global phenomena in metabolism like
robustness and regulation [8-11].
At present, the information for complex network

representations of cellular systems comes primarily from
web-based databases, oftentimes manually curated with
information from multiple sources, like annotations

from the literature or new experiments [12]. It is com-
mon to take the reliability of these data for granted and
to draw from them resolute inferences about the prop-
erties or the behavior of the investigated organisms.
Although, in general, observations are getting more and
more precise, uncertainties about components or inter-
actions remain [13,14]: experimental targets are many
times biased towards the most rewarding in terms of
expected impact, experimental evidence gathered with
different methodologies is not always of the same qual-
ity, variability is unavoidably present in different organ-
isms of the same species, and perfect environmental
control is often difficult to achieve in experiments. In
particular, high-throughput techniques produce massive
data in comparison with more dedicated experiments at
the price of repeatedly reported inaccuracy [15].
In this scenario, prediction of interactions in probabil-

istic terms is possible on the basis of the structure of
the network alone and could serve to better characterize
network-based descriptions of biological systems and as
a guide for new experiments. In particular, the likeli-
hood of biochemical reactions in cellular metabolisms
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can be assessed in terms of a scoring system that assigns
a probability of occurrence to every reaction. This
claims for a new interpretation, since canonically a che-
mical reaction either exists or does not. For network
analysts, scoring a biochemical process in terms of its
likelihood is a computational challenge. Starting from
the assessment of individual links, as it has been done
for instance for protein-protein interaction networks
[16,17], the problem is conditioned by the need of non-
local models that faithfully capture the large-scale statis-
tical regularities of the networks, and by the require-
ment of sufficient reliability of the input observations. In
this respect, the experimental reconstruction of genome-
scale biochemical networks [18-21] is a well-established
procedure and available data are of sufficient quality and
can be exploited to get accurate network-based
predictions.
Here, we propose a computational network-based

reaction-scoring system and, subsequently, apply it to
the metabolism of E. coli. We introduce a link predic-
tion method that exploits the complex hierarchical
structure and the statistical regularities of metabolic
networks [22,23] and takes explicitly into account its
bipartite nature [24,25]. Our model is adjusted to the
observations in order to derive connection probabilities
[26-28] between metabolite-reaction pairs and, after
validation, we integrate individual link information to
assess the likelihood of each reaction, both in absolute
terms and relative to a random null model. Our net-
work-based scoring system ranks reactions with a con-
tinuously distributed index which breaks the degeneracy
and nested nature of experimental confidence scores
[21]. However, the two schemes are differently targeted:
confidence scores in the databases inform about the
level of experimental evidence of a reaction, while the
network-based score measures occurrence likelihood
based on statistical inference. Our aim is, thus, to com-
plement the existing experimental approach with new
and essential network-based computationally inferred
information.

Results and Discussion
Network-based reaction-scoring system
Beyond experimental evidence, it is possible to assess
the likelihood of reactions in genome-scale metabolic
reconstructions using theoretical models. Given an
experimentally derived metabolic reconstruction, a score
can be computed for each reaction on the basis of a sui-
table stochastic network-based model, as we propose in
the next section. In the context of bipartite network
representations [24,25], the model exploits the statistical
regularities that underlie the structure of a metabolic
network in order to ascertaining how well individual

links between metabolites and reactions fit the observed
topological patterns. In this way, it is possible to predict
probabilities of connection for all potential interactions,
those already present in the reconstruction and those
absent. These probabilities are further integrated for the
specific combination of metabolites involved in any par-
ticular reaction.
To define the network-based scores in quantitative

terms, we interpret that a reaction is equivalent to the
univocal combination of its associated metabolites, and
that every metabolite m has a probability pmr of being
associated to a reaction r. Once the connection prob-
abilities between metabolites and reactions are estimated
from the model, and assuming their mutual indepen-
dence, the probability that a certain combination ν of
metabolites co-occur in a reaction r is

qνr =
∏
m∈ν

pmr

∏
m′ �∈ν

(1 − pm′r), (1)

where the subindex m corresponds to metabolites in
the predefined set ν and m’ to those not included. The
average number of co-occurrences can be calculated as
the sum over all reactions

nν =
R∑
r=1

qνr . (2)

A network-based reaction score can then be defined as
the average number of occurrences nν that the model
associates to its particular combination of metabolites ν.
Defined in this way, these scores break the degeneracy
of reactions with identical experimental evidence.

The Tree Distance Bipartite model
In the following, we introduce and discuss a stochastic
network-based model to estimate the connection prob-
abilities between metabolites and reactions. Taking
advantage of their natural bipartite nature, we consider
network representations where metabolites and reac-
tions appear as two different classes of nodes, and meta-
bolites are connected by edges to the reactions they
participate in. We consider the simplest unweighted
undirected representation, where substrates and pro-
ducts are not differentiated. See Figure 1 for an example.
Previous works have shown that the complex organi-

zation of metabolic networks displays characteristic fea-
tures shared by other complex networks: short
topological diameter [29], steady state cycles [30] or
structural robustness [11], for instance. We implement a
large-scale model that takes advantage of some of those
organizing principles, in particular the heterogeneity in
the number of connections per metabolite (degree) [31],
to infer connection probabilities pmr between
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metabolites and reactions. Network-based models are
usually defined in terms of connection rules between
the nodes. These laws are usually stated independently
of observed systems to produce simulated networks that
summarize their topological structure. Notice that here,
in contrast, we compute the set of connection probabil-
ities that has the maximum likelihood to reproduce the

observed patterns in empirical metabolic networks, so
we are solving the inverse problem.
Our first step is to assume a metric space underlying

the structure of the empirical metabolic network. To
this end, we fit to it a hierarchical random graph [27],
once represented as a bipartite network with M metabo-
lites and R reactions (see Figure 1). More specifically,

Figure 1 Illustration of the method. Bipartite network representation and corresponding dendrogram. We illustrate the model with four
coupled stoichiometric equations in the pentose-phosphate pathway of E. coli. Reaction acronyms stand for the catalyzing enzyme: zwf, glucose-
6- phosphate dehydrogenase [EC 1. 1.1. 49]; pgl, 6- phospho-gluconolactonase [EC 3. 1. 1.31]; gnd, 6- phosphogluconate dehydrogenase [EC 1.1.1. 43];
rpe, ribulose- phosphate 3- epimerase [EC 5. 1.3. 1]. These equations are represented as an unweighted undirected bipartite network formed by
connections (black lines) between reactions (blue squares) and metabolites (orange circles). Notice that metabolites or reactions are not
connected among themselves. The model adjusts an underlying binary tree to the observed network structure where each internal node t is
associated with a tree probability rt, that is transformed into a distance dt = 1 rt. Every pair reaction-metabolite with minimum common
ancestor t is separated a distance dmr = dt (the NaN notation indicates that only one class of nodes populates the leaves of the child branches
such that the corresponding internal node does not contribute).
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we adjust the empirical bipartite network to a dendro-
gram, or binary tree structure, where metabolites and
reactions appear as leafs. This tree represents the under-
lying metric space, and each of the M + R - 1 internal
nodes t in the dendrogram has an associated distance dt,
so that each pair metabolite-reaction for which t is the
lowest common ancestor is separated by a distance in
the tree dmr = dt, independently from whether the link
actually exists in the empirical network or not. We find
these tree distances by fitting the tree to the empirical
network data combining a maximum-likelihood
approach with a Monte Carlo sampling method that
explores the space of all possible dendrograms (see
Methods). Our results are based on intensive numerical
simulations that average a large number of samples in
the stationary state when changes in the form of the
dendrogram do not modify the likelihood function
beyond fluctuations.
Once a distance dmr is associated to a metabolite-reac-

tion pair, we correct for heterogeneity in the degrees of
metabolites. We compute estimated connection prob-
abilities pmr between all possible combinations metabo-
lite-reaction as

pmr =
1

1 +
dmr

μkm

,
(3)

where km is the degree of the metabolite and μ = 1/R
ensures that network realizations with these connection
probabilities have the same number of links as the
observed network. From this equation, it is clear that
the closer a pair is, the higher will be its connection
probability. A Tree Distance Bipartite (TDB) score for
every specific reaction can then be computed by apply-
ing Eq. (1) and Eq. (2).

TDB scores for E. coli metabolism. Validation and
Implementation
As an application of the methodology, we analyzed the
iAF1260 version of the K12 MG1655 strain of E. coli
[32] provided in the BiGG database [33,34]. From the
empirical data, we built a bipartite network representa-
tion (see Methods and Additional File 1) with 1479
reactions and 976 metabolites (network provided in
Additional File 2). As expected, the number of metabo-
lites entering into a reaction, kr, follows a nearly homo-
geneous distribution with mean <kr > = 4.82 and mode
5. In contrast, the number km of reactions in which a
metabolite participates displays a heterogeneous degree
distribution very close to a scale-free with P(km) ∼ k−2.1

m
and an average degree <km > = 7.30 (Additional File 1,
Figure S2). The most highly connected substrates have

more than a hundred and up to 841 connections (h+,
h2o, atp, pi, adp, ppi, nad, nadh).
The TDB probabilities pmr were validated using stan-

dard tools in medical decision making and signal-detec-
tion theory [35], and compared with corresponding
results from alternative models: the Configuration
Model for bipartite networks [24,36,37] (CMB), the
Hierarchical Random Graph model [27] generalized to
bipartite networks (HRBG), and a local approach based
on the computation of common neighbors (CN) [38]
(reactions) between pairs of metabolites (see Methods).
We checked two different aspects: the discrimination
power of the models, and the behavior of the predic-
tions under noisy conditions. We first measured the
receiver operating characteristic (ROC) curve of pre-
dicted probabilities.
To calculate the ROC curves we ranked the TDB

probabilities from highest to lowest. We took every
value in the rank as a threshold, and for each threshold
we computed the fraction of true connections and the
fraction of false connections above the threshold, the
True Positive Rate (TPR) and the False Positive Rate
(FPR) respectively, understanding that a true connection
is an observed link in the empirical network and a false
connection is an absent link. When representing the
TPR in front of the FPR, a completely random guess
would give a point along the diagonal line and points
above the diagonal represent improved classification
results. In relation to this, the area under the ROC
curve (AUC) is a scalar measure of accuracy [39]. In the
present context, it is calculated as the probability that a
randomly chosen empirical link in the metabolic net-
work has higher probability than a randomly chosen
non-existing one. The ROC curves are shown in Figure
2A. As also corroborated by the AUC value (AUCTDB =
0.88, AUCHRBG = 0.85, AUCCMB = 0.85, and AUCCN =
0.76), the TDB model has more discriminatory power
over a wide range of values as compared to other
alternatives.
The second test helps to evaluate robustness against

noise. Links were removed from the empirical network
in order to see whether our algorithm was able to dis-
tinguish those from non-existing links. After removing a
subset of links uniformly at random in the original net-
work, a new set of connection probabilities was calcu-
lated on the basis of the remaining part of the network.
The new probabilities associated to the removed con-
nections were compared one by one to that of non-
existing links. This statistic ranges from 0.5 to 1 and
indicates how much better our method performs as
compared to a by chance baseline accuracy of 0.5. We
calculated this accuracy statistic, that is shown in Figure
2B, for different fractions of removed links. For the TDB
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model, when 1% of the 7127 links in the network are
removed the index takes a value of 0.87, meaning that
87% of the times removed links are ranked higher in
probability than non-existing links.
In both tests, the TDB model outperforms all other

strategies. Furthermore, TDB probabilities are well cali-
brated, meaning that the distributional forecasts and the
observations are statistically consistent (Additional File
1, Figure S4). In view of these results, we accepted the
accuracy at the statistical level of the predicted probabil-
ities and we used them to compute theoretical scores
STDB = nν(pTDB

mr ) following Eq. (1) and Eq. (2) (provided
in Additional File 2). Very high values of the TDB
scores are typically associated to non-specific reactions
dominated by carrier metabolites (hubs in network-
based terms). At the top of the rank, the four different
reactions with the highest values form a group of out-
liers (short plateau in the top graph of Figure 3) corre-
sponding to reactions whose metabolites are exclusively
hubs. These reactions are the inorganic diphosphatase,
which hydrolyzes the pyrophosphate anion into inor-
ganic phosphate; the hydrolase of ATP into ADP, which
appears in the Nucleotides Salvage pathway and as a
reaction for ATP maintenance requirement according to

flux balance analysis, and mediates also the uptake of
phosphate; and the ATP synthase in the Oxidative Phos-
phorylation pathway that takes four protons in peri-
plasm to produce one ATP in cytosol from ADP. These
non-specific reactions are at the end of catabolic chains
and are likely to be shared by many different organisms.
For instance, we checked that, according to the BiGG
database [33,34], these reactions are also present in
yeast (S. cerevisiae iMM904) and that inorganic dipho-
sphatase and ATP synthase appear in human metabo-
lism as well, where the hydrolase of ATP into ADP
mediates the active transport of different metabolites
across compartments. Even very simple organisms like
Mycoplasma pneumoniae [20] use the inorganic dipho-
sphatase reaction and the hydrolase of ATP into ADP in
their metabolism. In [29], the presence of inorganic
diphosphatase is reported in 101 out of 107 organisms
spanning a wide taxonomical range, and the hydrolase of
ATP into ADP is found into 25 of those. At the other
extreme of the spectrum, low values of STDB scores are
associated with very specific reactions involving rare
metabolites, in the sense that they enter a small number
of reactions, or with unlikely reactions, like those invol-
ving a large number of metabolites. As an example, the
thiazole phosphate synthesis is the largest reaction in
the database involving twelve metabolites and has the
lowest STDB score, seventeen orders of magnitude below
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the maximum. In between, STDB scores adopt a broad
distribution of continuous values.
In the BiGG database, every reaction (except for

exchanges and transports through outer membrane) is
annotated with a confidence score assessing its level of
experimental evidence. These values are discrete and
range from 4 at the top, when there is direct biochem-
ical proof, to 0 at the bottom, if the reaction is included
with no experimental evidence but only because it
improves modeling results. In between, values of 3 cor-
respond to genomic evidence, level 2 refers to sequence
homology evidence, and 1 stands for physiological evi-
dence. This confidence scoring system presents some
shortcomings, one being the degeneracy implicit in the
use of only five discrete values for lists of hundreds or
thousands of reactions, another the fact that different
categories are not disjoint but nested, meaning that one
backs the other. An additional worth remarking feature
concerns the mean degree of the metabolites participat-
ing the reactions in each scoring level. Quite unexpect-
edly, we found a strong bias as this measure
monotonously increases when decreasing rank from 4 to
1. More specifically, the average degree of metabolites
entering into reactions with high level of confidence
score is, on average, smaller than the average degree of
metabolites associated to reactions with low level of
confidence score.
It is not completely surprising, as the just mentioned

test seems to suggest, that absolute indices based on the
architecture of the empirical network may go differently
as compared to qualitative indicators assigned from
updated experimental information. We, thus, aim at
complementing the potentialities of both scoring sys-
tems by cross-comparing them. In this respect, first we
look for reactions with strong experimental evidence
(values 4 and 3) that at the same time score low in the
TDB system. Those correspond to very specific reactions
that could be functionally or evolutionary important.
Examples are the five FMNH2-dependent monooxygen-
ase reactions in the Inorganic Ion Transport pathway,
the Pyridoxine 5’-phosphate synthase reaction in the
Cofactor and Prosthetic Group Biosynthesis pathway, or
the Taurine dioxygenase reaction in the Alternate Car-
bon metabolism. Conversely, a weak experimental evi-
dence, scores 2 or 1 in the database, but a high value of
the STDB score, qualifies the reaction as a good target
for further experimental verification in standard condi-
tions. Many examples are found within the transport
subsystems, like reactions of transport via ABC system
(iron (II) and (III), phosphatidylglycerol, phosphatidate).
If the STDB score is low, the reaction could be difficult
to be observed experimentally except for very specific
environments. Finally, high STDB scores for reactions
that where required for modeling, score 0 in the

database, denote consistency between our model and
steady-state flux optimization solutions. It is worth
remarking that these reactions involve more than one
carrier metabolite and stand out as potential experimen-
tal targets in standard conditions. However, a variety of
reactions manifest discrepancies between both model-
based likelihoods. More specifically, we differentiate two
situations. The first does not entail contradiction and
refers to very specific reactions with low STDB scores
involving rare metabolites that, on the other hand, seem
to be essential for the viability of the bacteria according
to flux balance analysis. This points out to potential
experimental targets in non-standard conditions. Reac-
tions in the subsystem of Cofactor and Prosthetic Group
Biosynthesis are, for instance, in this category. In con-
trast, the second situation involves reactions like those
with the highest number of participating metabolites,
which according to confidence scores in the database
were included in the reconstruction on the basis of
modeling reasons while our methodology predicts very
low scores. For them, we believe that low STDB scores
point indeed to insufficient ne detail resolution in the
database and we are suspicious that new experiments
may show a split of the high degree reactions into a set
of coupled lower degree ones.

Relative TDB scores
Along with absolute scores, we also analyzed relative
scores defined on the basis of the Configuration Model
for bipartite networks (CMB) [24,36,37] (see Methods).
The latter assumes the actual degree distributions for
metabolites and reactions and it is otherwise maximally
random in the assembly of connections. The SCMB score
of a reaction represents its probability of occurrence
according to the configuration model and we use this
value to compute the relative score as the ratio ∑ =
STDB /SCMB (provided in Additional File 2). Since differ-
ences between both scores are mainly related to the
consideration of tree distances between metabolites and
reactions in the TDB model, a relative score ∑ = STDB
/SCMB > 1 (< 1) points to the presence of tree distance
correlations (anticorrelations) in the bipartite network,
which are absent in the random case. In other words, a
ratio higher (smaller) than one for a certain reaction
indicates that its metabolites have a tendency to aggre-
gate (avoid each other) as compared to the random case.
The ranking of relative scores is shown in the bottom

graph of Figure 3, where several clusters can be differen-
tiated. The first three clusters appear in slightly tilted
plateaus with levels well separated by appreciable jumps.
Each of them is formed by a subgroup of reactions that,
according to the database, tend to belong to the same
subsystem and share characteristic combinations of
metabolites. The first group includes the FMNH2-

Serrano and Sagués BMC Systems Biology 2011, 5:76
http://www.biomedcentral.com/1752-0509/5/76

Page 6 of 9



dependent monooxygenase reactions, mentioned above as
highly specific, with flavin mononucleotide and sulfite as
reactants. The two reactions in the second plateau
belong to the Glycerophospholipid Metabolism subsys-
tem and are the only two in the database associated to
acyl phosphatidylglycerol. The third cluster gathers
together the eleven reactions containing 2-Demethylme-
naquinone 8. It is remarkable that, in general, the reac-
tions in these clusters have attached a high DB
confidence score. Exceptions appear in the third cluster,
where one reaction has an experimental evidence score
less than 3 while four reactions are included for model-
ing reasons, so that they become interesting targets for
further experimental verification. For the rest, most of
the scores have values above but close to one and there
are also over two hundred reactions with ratios below
one. At the very tail, one finds a set of reactions that
share the common characteristic of being those with the
highest reaction degree and with weak or just modeling
evidence. In particular, thiazole phosphate synthesis is
the sole reaction involving twelve metabolites in the
database and has the lowest relative score ∑ = 0.3, and
noticeably also the lowest absolute STDB score (its confi-
dence score in the database is 2).
Relative scores conform better than absolute scores to

the idea of pathways as functional modules, since they
accentuate the e ect of tree distances that we expect to
be related with the modular organization of the net-
work. This topic will be explored in depth in future
work.

Conclusions
The computational network-based TDB scoring system
is able to assess, in probabilistic terms, the likelihood of
reactions in metabolic reconstructions solely on the
basis of the structure of the bipartite interactions
between metabolites and reactions. It relies on a link
prediction method adjusted to the observations that
exploits the statistical regularities of the empirical net-
work to estimate connection probabilities, that after-
wards are integrated at the level of reactions. As a
result, our TDB scoring system is able to break the
degeneracy of currently employed scores that only use a
discrete number of integers to label different levels of
empirical evidence or model-based likelihood. We stress
the main advantages of our procedure. First, our system
permits to single out those reactions, well confirmed
experimentally, that turn out to be highly specific as a
potential signature of functional or evolutionary impact.
Conversely, our analysis can help experimentalists to
choose, among their potential targets, those reactions
that appear, according to our scheme, more probable as
compared to metabolic processes more prone to operate

under non-standard conditions. In addition, our scoring
system may provide information for unranked databases,
and can be contrasted with other model-based alterna-
tives such as steady state flux optimization solutions.
When compared with a random null model that just
accounts for heterogeneity in the number of connections
per element, relative scores detect and quantify the ten-
dency of groups of metabolites to aggregate or disaggre-
gate. These distance-based correlations or
anticorrelations in the underlying tree metric space
raises a question worth exploring in the future in rela-
tion to functional modules.
In a broader context, many biological interactions find

a natural representation in the form of bipartite net-
works. The ubiquity of these bipartite structures in cel-
lular networks foretells a wide range of potential
applications of the present methodology, from the esti-
mation of gene-reaction associations in metabolic net-
work reconstructions to the assessment of codon-gene
association probabilities and of protein complexes.

Methods
Fitting the binary tree to the bipartite network
We adjust a binary tree to the observed data. The tree
has M + R - 1 internal nodes at its bifurcation points
and M + R leaves corresponding to the nodes of the
metabolic bipartite network, M metabolites and its R
reactions. Each internal node t has an associated tree
probability rt that we transform into a distance dt = 1 -
rt. Each pair metabolite-reaction having as lowest com-
mon ancestor t is then separated by a distance dmr = dt.
Given a dendrogram, the internal probabilities rt are
only dependent on the structure of the empirical bipar-
tite network and can be calculated as the fraction of
observed connections between leaves in each branch of
the internal node over the total possible. To find the
dendrogram that best fits the real data in terms of likeli-
hood, we assume that all trees are a priori equally prob-
able and explore the space of possibilities using a
Markov chain Monte Carlo method [40] combined with
a maximum likelihood approach, following the metho-
dology in [27].
In statistical inference, the likelihood L of a statistical

model for a certain set of observed data is the probabil-
ity that the model is a correct explanation, and allows
us to estimate its unknown parameters. For a set of con-
nection probabilities rt, and taking into account the
underlying tree, the likelihood function becomes

L(D,ρt) =
∏
t∈D

ρ
Et
t (1 − ρt)Et−Et . (4)

As for unipartite graphs, the variable Et stands for the
number of actual edges in the empirical bigraph, in our
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case those that connect metabolites and reactions in the
bipartite graph with t as their lowest common ancestor
in the tree. The variable εt corresponds to the total pos-
sible number of such edges given reactions and metabo-
lites in the different branches of the common ancestor t,
discounting internal combinations. In the unipartite
case, εt = LtRt, being Lt and Rt the number of leaves in
the left and right subtrees rooted at t. In our scheme for
bipartite networks, εt = LtmRtr + LtrRtm, counting possi-
ble combinations between metabolite leaves in the left
subtree and reaction leaves in the right subtrees and
vice versa. Then, rt = Et/εt maximize L.
Starting from a random configuration, we move

among all possible sets of dendrograms by performing
random swaps between one of the branches of a ran-
domly chosen internal node and the alternative branch
at its father level. This exploration is appropriate
because it is ergodic and fulfils detailed balance. The
likelihood of the new dendrogram produced in this way
is computed and the dendrogram is accepted or rejected
according to the standard Metropolis-Hastings rule [40]:
the transition is accepted whenever the likelihood does
not decrease and otherwise it is accepted with a prob-
ability exp(ΔlogL) (for computational purposes, it is
more convenient to work with the logarithm of the like-
lihood function).
After a transient period when L reaches its equili-

brium value (except typical fluctuations) the system
reaches a stationary state where we sample over 103

dendrograms at regular intervals to produce an average
measure of rt and so of rmr for each possible metabo-
lite-reaction pair. This model, the Hierarchical Random
Bipartite Graph (HRBG), is a generalization for bipartite
networks of the model introduced in [27]. As explained
in the main text, in our TDB model we correct the tree
distances dmr (dmr = 1 - rmr) for heterogeneity in the
degrees of metabolites. We renormalize the distances
according to Eq. (3) to produce the connection probabil-
ities pmr that we use in the construction of the probabil-
istic reaction scores.

Other alternative methods
The Configuration Model for bipartite networks
The Configuration Model for bipartite networks
[24,36,37] (CMB) assumes a certain number of reactions
R, a certain number of metabolites M, and their degree
distributions P(kr) and P (km), which should fulfill the
requirement 〈kr〉 R = 〈km〉 M, where 〈kr〉 is the average
number of metabolites in the reactions and 〈km〉 is the
average number of reactions in which metabolites parti-
cipate. Metabolites and reactions are partitioned into
two different classes and each element in each class is
assigned an expected degree from the corresponding
distribution, which is attached in the form of stubs. Two

stubs, one in each partition, are selected at random and
the link between the metabolite and the reaction is cre-
ated avoiding multiple connections. For the CMB

model, pmr =
kmkr
〈kr〉R

and Eq. (2) can be calculated analyti-

cally. Since the distribution of the bipartite degrees of
the reactions is nearly homogeneous, kr ≈ 〈kr〉, it
becomes

nν ≈ R
∏
m∈ν

km
R

∏
m′ �∈ν

(
1 − k′

m

R

)
, (5)

that gives the CMB probabilistic score for a metabolic
reaction when its set of associated metabolites is ν.
Common Neighbors
Common neighbors [38] (CN) is a local similarity mea-
sure that counts the number of shared neighbors by a
given pair. This measure represents a family of overlap
measures quantifying similarity between nodes and a
normalized version was specifically introduced for the
study of the hierarchical modularity of metabolic net-
works and to delineate the functional modules based on
the network topology [23]. In the case of bipartite meta-
bolic networks, we define common neighbors for a pair
of metabolites as the number of reactions in which they
are concurrent, omm’, and we estimate the probability of
connection metabolite-reaction as
pmr =

∑
m′⊂r omm′/

∑
∀m′ omm′.

E. coli bipartite network representation
The iAF1260 version of the K12 MG1655 strain of E.
coli [32] provided in the BiGG database [33,34] com-
prises 1039 metabolites and 2381 reactions of different
nature happening in three different compartments: cyto-
sol, periplasm, and a third symbolic one representing
the extra-organism. For a meaningful conceptualization
of this metabolic system as an undirected unweighted
bipartite network, self-connections and dangling ends
are avoided. To this end, we obviated exchange and dif-
fusion reactions. We also neglected isomerizations and
identified isomers as the same metabolite, but only
whenever a reaction that carried out the isomerization
could be identified in the database. This left a total of
1479 reactions that involve 976 metabolites. Finally, 5
metabolites were removed (mn2, ca2, na1, ag, and cl)
because they do not enter in any reaction involving che-
mical transformation. See Additional File 1 for further
details.

Additional material

Additional file 1: Supporting figures and text for E. coli metabolism
bipartite network representation and further validation of the
model.
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Additional file 2: Database with reaction probability scores for E.
coli metabolism and bipartite network representation in edge list
format.
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