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Abstract

Background: With the advent of genomic technology, the size of metabolic networks that are subject to analysis
is growing. A common task when analyzing metabolic networks is to find all possible steady state regimes. There
are several technical issues that have to be addressed when analyzing large metabolic networks including
accumulation of numerical errors and presentation of the solution to the researcher. One way to resolve those
technical issues is to analyze the network using symbolic methods. The aim of this paper is to develop a routine
that symbolically finds the steady state solutions of large metabolic networks.

Results: A symbolic Gauss-Jordan elimination routine was developed for analyzing large metabolic networks. This
routine was tested by finding the steady state solutions for a number of curated stoichiometric matrices with the
largest having about 4000 reactions. The routine was able to find the solution with a computational time similar to
the time used by a numerical singular value decomposition routine. As an advantage of symbolic solution, a set of
independent fluxes can be suggested by the researcher leading to the formation of a desired flux basis describing

amino acid biosynthesis pathways of yeast.

the steady state solution of the network. These independent fluxes can be constrained using experimental data.
We demonstrate the application of constraints by calculating a flux distribution for the central metabolic and

Conclusions: We were able to find symbolic solutions for the steady state flux distribution of large metabolic
networks. The ability to choose a flux basis was found to be useful in the constraint process and provides a strong
argument for using symbolic Gauss-Jordan elimination in place of singular value decomposition.

Background

The explosion of tools available to simulate the systems
level properties of biological systems is indicative of the
wide scale uptake of integrative biology. The Systems
Biology Markup Language (SBML) Web site [1] now
lists over 200 packages that make use of their library.
This large number of tools reflects both the wide variety
and abundance of biological data now available to con-
strain biological models as well as the large variety of
simplifying assumptions made to gain insight from this
plethora of data.

At the core of many of these analytical tools is the
strict requirement of conservation of mass for each bio-
logical transformation. Because models of metabolic sys-
tems are typically under-determined, a common task
when analyzing them is to find all possible steady state
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regimes when the concentrations of each metabolite do
not change appreciably with time.

With the advent of genomic technology, the size of
networks that are subject to conservation analysis is
growing. This is true also of the amount of data that
constrains biological function, forcing the analysis pro-
cedure to become more involved. This is especially true
when faced with the realities of compartmentation in
large biological systems.

The analysis of systems of chemical reactions can be
traced back to 1921 when Jouguet established the notion
of independence of reactions and the invariants of a sys-
tem of reactions [2]. In the 1960s, with the advent of
computers, routines were written for solving systems of
chemical equations [3]. These were made accessible to
biologists and opened up the possibility for simulating
complex biological systems [4].

It may come as a surprise to many biologists that the
mathematically simple operation of finding a set of
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parameters that describe the steady state solution of
large chemical systems continues to challenge the limits
of widely used numerical libraries used to perform this
task, and the development of robust computational rou-
tines for this purpose continues to be an active research
area [5]. Sauro and Ingalls reviewed a number of techni-
cal issues related to the analysis of large biochemical
networks and mention the attractiveness of using
rational arithmetic routines that avoid the accumulation
of errors [6]. They point out that this symbolic approach
requires a complete rewrite of the algorithms used to
solve these systems. Programs that perform conservation
analysis exist. A review [6] discusses 13 software
packages that perform stoichiometric conservation ana-
lysis. However, only one of these (emPath by John
Woods) uses rational arithmetic. For analyzing large
metabolic networks the use of numerical algorithms
with floating point arithmetics seems to be considered
the only practical approach, especially because of the
numerical robustness of singular value decomposition
(SVD) algorithm that is an integral part of many analysis
tools. A more recent study uses a Computer Algebra
System for symbolic Metabolic Control Analysis [7].
The author notes that the most pertinent issue with
symbolic computation is its inefficiency and for the ana-
lysis of very large systems more efficient methods and
software need to be developed. Other methods exists to
avoid floating point operations, for example, de Figueir-
edo et al use a linear integer programming approach to
find the shortest elementary flux modes in genome scale
networks [8]. Linear programming was also used to
avoid exhaustive identification of elementary flux modes
as well as problems in computing null-space matrices
for large metabolic networks [9].

It is notable that existing software packages do not
take into account the inherit sparsity of large metabolic
networks [6]. This is most likely because the result of
SVD is generally non-sparse and further analysis would
require non-sparse data structures. So, the use of SVD
based algorithms for large metabolic networks will be
limited by the size of available computer memory. For
example, creating a dense stoichiometric matrix with
4000 reactions takes approximately 100MB of computer
memory and various matrix operations may increase the
actual memory need by a factor of ten. Holding the
same stoichiometric matrix in a sparse data structure is
almost one thousand times more memory efficient
(Recon 1 [10] has a sparsity of 99%, for instance).

To our knowledge, no software package is available
that both makes use of rational arithmetic and accounts
for the inherit sparsity of large metabolic networks. To
use sparse representations of metabolic networks, SVD
based algorithms need to be replaced with alternative
algorithms that would preserve the sparsity property in
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their results. To achieve the same numerical robustness
of these algorithms as SVD provides, rational arith-
metics can be used. The decrease of performance due to
the use of rational arithmetics ought to be balanced by
the sparsity of matrices as the number of numerical
operations is reduced considerably. The aim of this
paper is to develop a routine that symbolically finds the
steady state solutions of large chemical systems.

Specifically, we have developed a routine that solves
for the kernel of large stoichiometric matrices using a
symbolic Gauss-Jordan Elimination (GJE) routine. For a
given metabolic network the routine computes steady
state solutions in a form of steady state flux relations
that define how certain fluxes termed as dependent
fluxes vary when the rest of fluxes termed as indepen-
dent fluxes are changed. The list of dependent and inde-
pendent flux variables can be either computed by the
routine or specified by the researcher. The performance
of this method is compared with Singular Value Decom-
position (SVD) implemented in a widely used numerical
routine. In addition, we demonstrate that the usefulness
of solving for the stoichiometric matrix kernel symboli-
cally goes beyond the avoidance of numerical errors.
Specifically, the kernel arrived at using GJE consists of
flux vectors that align with actual metabolic processes
which is useful for applying constraints on steady state
metabolism.

Results

A symbolic GJE routine was developed within Sympy-
Core [11] during the course of this research. This rou-
tine was tested by finding the kernels for a number of
curated metabolic models, and then utilized to calculate
a metabolic flux distribution for the central metabolic
and amino acid biosynthesis pathways of yeast.

Comparison of GJE and SVD
Five large metabolic networks of increasing complexity
were selected to test the performance of symbolic GJE
to that of numerical SVD. These metabolic networks
were formulated in a closed form as described by Famili
and Palsson [12]. To obtain non-trivial solutions to the
steady state equations, the metabolic networks need to
be converted to open form where the boundary condi-
tions are specified via transport fluxes into the network
rather than via external metabolites. For simplicity, we
convert the metabolic networks to open form by intro-
ducing transport fluxes across the network boundary to
metabolites that either appear in exactly one reaction or
are products of polymerization reactions (see Methods).
The kernel of five stoichiometric matrices were solved
for using both numerical SVD and the symbolic GJE
routine with the results given in Table 1. The computa-
tion time for both methods was found to be almost the
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Table 1 Performance of GJE versus SVD
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Model Publ. Species Reactions Flux variables CPU time (s) £SVD x107'2 Condition number
Orig. Open Dep. Indep. SVD GJE
Example 118 129 156 118 39 0.02 0.03 0.003 15
iPS189 [15] 433 350 482 413 69 03 04 0.07 31000
iND750 [16] 1177 1266 1561 1162 399 6.2 8.0 6.37 68000
AraGEM [17] 1767 1625 2361 1720 641 19.7 342 12.65 3000
iAF1260 [18] 1972 2382 2773 1960 813 305 343 143 2800
Recon 1 [10] 3188 3742 4480 3169 1311 1235 145.6 3263 71000

Kernel computation times for numerical SVD and symbolic GJE for the example yeast network given in Figure 3 and five genome-scale metabolic networks. All
techniques are described in Methods. The condition number was calculated for Vi,qep from Equation (9). The inversion of Vingep is required to directly compare
SVD results with the solution found from GJE. The difference between the results is given by ¢ syp in Equation (11).

same with SVD being slightly faster. However, we noted
that the numerical SVD routine used effectively two
CPUs (see Methods for details about the test computer
system) while the symbolic GJE routine used only one.
Hence for a number of parallel kernel calculations that
would consume all computer CPUs, the symbolic GJE
routine would be more productive. Figure 1 (top) illus-
trates how the kernel computation time depends on the
size of the network. The computational time increases
exponentially with the size. It should be noted that the
ratio of these exponents depends on a computer system
and underlying computational libraries. Also note that
the complexity of both SVD and GJE algorithms are O
(mn?), that is, increasing the network size by a factor of
10, the complexity should increase by 1000 times. The
actual complexity increase (about 400 for SVD and 640
for GJE) is smaller because of using threaded libraries
for the SVD routine and because of computing with
high sparsity for the GJE routine. The numerical errors
introduced when using SVD were found to be insignifi-
cant for the purpose of biological flux calculations and
confirm the fact of numerical robustness of the SVD
routine. This assessment was made by calculating the
maximum relative flux error esyp using Equation (11).
Note that this loss of accuracy is in agreement with the
condition number calculated for Vj,¢ep, in Equation (9);
the number of inaccurate digits is approximately equal
to the order of magnitude of esyp.

With our test computer system both numerical SVD
and symbolic GJE routines can easily cope with 4000+
reaction networks. To test the limits of these routines,
we repeatedly doubled the sizes of considered networks
by repeating given stoichiometric matrix diagonally
within a doubled stoichiometric matrix and then ran-
domly shuffling the columns. The doubled stoichio-
metric matrix would then correspond to two
independent but identical metabolic networks. The shuf-
fling is needed for modeling the structure of actual
metabolic network models where the order of columns
is arbitrary. The process of increasing the sizes of net-
works was repeated with doubled stoichiometric

matrices until applying our routines were close to
exceeding the resources of our computer system. Figure
1 (bottom) shows the dependence of the memory usage
on the size of the network. The memory usage for com-
puting the kernels increases exponentially with the size.
The two times smaller memory increase when using the
symbolic GJE routine compared to the numerical SVD
routine is explained by the fact that symbolic GJE rou-
tine preserves sparsity while the result of numerical
SVD routine is generally non-sparse. This is illustrated
in Figure 2 where the corresponding kernels from SVD
and GJE algorithms are shown for the example yeast
network (see next Section). For other tested networks
the sparsity of GJE kernels varied in the range 95-99.9%
and the sparsity of SVD kernels in 1-25%.

Application of constraints to the example yeast network
Often one needs to constrain the flux values that are
physiologically meaningful, that is, either they have been
experimentally measured or they must be non-negative
due to the irreversibility of some reactions. We demon-
strate the application of constraints by calculating a flux
distribution for an example yeast network. The meta-
bolic network is given as an SBML file in additional file
1: yeast_example.xml, and is laid out in Figure 3. This
network contains 129 reactions and 118 metabolites,
including 62 metabolites in the cytosol, 29 metabolites
in mitochondria, and 27 metabolites that are external to
the network. Because the list of external metabolites is
known in this example then the system can be con-
verted to open form by removing those rows from the
stoichiometric matrix that correspond to external meta-
bolites. Note that this is our alternative method of open-
ing metabolic networks (see Methods).

The symbolic GJE of the stoichiometric matrix for the
open system provides 91 relations for the dependent
fluxes expressed in terms of 39 independent fluxes. A
full list of reactions, metabolites, and steady state flux
relations is given in additional file 2: yeast_example.pdf.
The corresponding kernel matrix is shown in Figure 2.
The relations are formed from the rows of this matrix.
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Figure 1 Computational resources for computing kernels. The computational time (upper) and memory usage

of stoichiometric matrices using SVD and GJE algorithms for curated genome-scale networks. The system names correspond to those from Table
1. The squares correspond to SVD while circles to GJE. Numbers in upper legend denote the number of duplicated versions of the same
network (see Results). Note that the computational time increases with increasing network size and the growth rate is roughly the same for both

methods. However, SVD memory usage increases at twice the rate of GJE memory usage.

(lower) for computing kernels
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SVD

Figure 2 Kernels for the example yeast network. Two kernels of
the stoichiometric matrix of the example yeast network obtained
with SVD (left) and GJE (right) algorithms, respectively. The kernels
define the same steady state solutions but the sparsity of the GJE
kernel allows easier interpretation of these solutions.

The independent fluxes can be selected prior to per-
forming GJE. We compose the set of independent fluxes
from biomass production rates that have been experi-
mentally measured. In total, 26 measured biomass fluxes
taken from Cortassa et al [13] were used to constrain
this network. The table of such exchange fluxes and
their values is given in additional file 2: yeast_example.
pdf. The remaining 13 independent flux variables are
left unspecified which means that the symbolic GJE rou-
tine will choose a viable set of independent fluxes. In
this example these are all internal to the network.

After substituting the biomass production values into
the steady state flux relations, 27 dependent fluxes
become fully specified with 64 relations described by the
13 internal variables. Inspection of this system of equa-
tions (also given in additional file 2: yeast_example.pdf)

Page 5 of 13

immediately reveals which part of the metabolism each
of these 13 variables controls. Each internal variable is
connected to dependent variables via nonzero entries in
the corresponding column of the kernel matrix. The set
of these dependent variables share metabolites and thus
can be considered as one connected sub-network of the
original system. Five of these sub-networks determine
the split between cytosolic and mitochondrial valine,
leucine, alanine, and aspartate biosynthesis via BAT1
and BAT2, the split between LEU4 and LEUY9, ALT1
and ALT2, and AATI and AAT2. Two determine the
interconversion and transport of glutamine, glutamate,
and oxoglutarate via the split between GLT and GDH.
The remaining six determine: (1) urea cycle flux, (2)
relative production of glycine from either serine or
threonine, (3) the flux of D-Glucose 6-phosphate direc-
ted towards D-Ribulose 5-phosphate, (4) production of
pyruvate by the malic enzyme MAEI1, (5) the production
of phosphoenolpyruvate by PCK1, and (6) the relative
production of acetaldehyde to acetyl-CoA from pyru-
vate. Figure 3 gives one flux distribution calculated by
specifying the values for the 26 biomass fluxes and 13
internal fluxes. The values chosen to substitute into the
flux relations are highlighted on the figure.

In addition to constraining the measured independent
variables directly, knowledge about the dependent fluxes
in the example yeast network was used to constrain the
network. We specified the net flux direction for reac-
tions that involved the production of carbon dioxide.
The constraints of measured flux values and the speci-
fied net flux direction of reactions, can be written as a
system of 91 flux relations, 26 measured independent
fluxes, and 17 inequalities. Following this all redundan-
cies were removed using computational geometry tech-
niques described in Methods. The result is a set of five
upper and lower bound conditions for 5 independent
fluxes, given in additional file 2: yeast_example.pdf.

Discussion

It is now computationally practical to find the kernel of
large stoichiometric matrices symbolically. The compu-
tational expense of symbolic GJE was not found to be
overly restrictive with SympyCore [11], the package we
used for analyzing genome-scale metabolic networks.
The kernel obtained using the symbolic approach avoids
numerical errors that may occur when applying numeri-
cal methods. The numerical errors result from the mul-
titude of row operations that are needed to decompose
large stoichiometric matrices [6]. The maximum relative
flux error presented in Table 1 was found to be insignif-
icant for biological flux calculations. However, symbolic
GJE was found to be useful in more ways than avoiding
numerical errors.
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Figure 3 Example yeast network. One flux distribution for the central metabolic and amino acid biosynthesis pathways of yeast. Metabolite
abbreviations, reaction details, and the symbolic flux relations used to calculate this steady state are provided in additional file 2: yeast_example.
pdf. The values of the independent flux variables substituted into the flux relations are set in italic font. The mitochondrial compartment is
separated with a purple boarder and all inter-compartmental transport reactions are given as orange arrows. Amino acid synthesis reactions are
green, and all transport fluxes out of the system are depicted with green cartoon bubbles. The pentose phosphate pathway reactions are given
in red and the urea cycle is shown in brown. Dots are placed next to reactions that are coupled; pink dots indicate the transformation of
glutamate to oxoglutarate, and the blue dot shows the transformation of glutamine to glutamate. Species that occur in more than one place
within one compartment are circled with a dotted blue line.
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Symbolic relationships give an informative representation
of metabolic network structure

There are several technical issues that complicate analy-
sis of large metabolic networks. Among them are
numerical robustness of the algorithm and presentation
of solution to the researcher [5,6]. Those problems are
resolved when using symbolic GJE presented in this
work. While GJE and SVD provide mathematically
equivalent methods of solving for the steady state flux
relations of metabolic networks, there is a difference in
how the solutions are formed. In SVD, steady state solu-
tion is given through a combination of eigenvectors that
often span the entire metabolic network [12]. Those
eigenvectors contain information about the metabolic
network, however extracting and interpreting this infor-
mation is not always trivial and has inspired the creation
of a diverse set of tools and techniques [14]. In contrast,
symbolic GJE gives the researcher an opportunity to
find the set of independent fluxes and relationships
between independent and dependent fluxes. Through
such relationships it is easy to see which dependent
fluxes are influenced by any particular independent flux
and gain insight into the operation of the metabolic
network.

In the example yeast network given in Figure 3, many
different sets of independent fluxes can be used to find a
steady state solution. The GJE routine allows the
researcher to specify which independent fluxes will be
used to form the solution. By choosing biomass produc-
tion rates, one can constrain the operation of the meta-
bolic network to any given set of biomass measurements.

In our example, application of biomass constraints
leaves 13 independent variables that are internal to the
network and define all steady state flux distributions.
We found that these 13 independent fluxes influence
only a specific portion of the metabolism. Each inde-
pendent variable only influences those dependent
fluxes that have non-zero values in its column of the
GJE kernel matrix. This property has potentially far
reaching implications for the physical interpretation of
steady state metabolism in large networks. All nonzero
entries in each column of the GJE kernel define a set
of dependent variables. These variables share metabo-
lites and thus form a sub-network. Sub-networks that
share common dependent variables can be combined
into a larger sub-network. For example, it allows one
to identify sub-networks within the metabolic network
that are linked with shared metabolites and are con-
trolled by sets of independent fluxes. In the example
yeast network two fluxes are needed to describe gluta-
mine, glutamate, and oxoglutarate transport and inter-
conversion while five fluxes control the split between
cytosolic and mitochondrial production of valine, leu-
cine, alanine, and aspartate. The loops within these
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sub-networks are determined solely by independent
fluxes that occur within each sub-network.

Applicability of symbolic GJE and technical issues

We found that the computational time of applying sym-
bolic GJE and numerical SVD routines to be similar for
all networks considered. The memory usage of numeri-
cal SVD routine for networks with 6000+ reactions
became close to exceeding memory resources of our test
computer system. With the same memory usage level
GJE routine would be able to analyze a network with
10° reactions, however, this calculation is estimated to
take one year. Even when memory usage will be opti-
mized in the SVD routine, the doubling network size
will quadruple SVD memory usage while GJE memory
usage would only double. This is because GJE algorithm
preserves sparsity.

We did not observe the phenomena of coefficient
explosion that would be typical for GJE algorithm using
rational arithmetics on large matrices. This is explained
because genome-scale stoichiometric matrices are inher-
ently sparse and majority of elements are small integers
such as 1 or -1. In addition, SympyCore [11] minimizes
the number of operations by its pivot element selection
rule (see Methods) to reduce computational time and
this has added benefit of reducing the chance of coeffi-
cient explosion.

The reduced row echelon form of the stoichiometric
matrix is formed by elementary row operations. The
sequence of elementary row operations typically depends
on the original ordering of the rows and columns, which
is arbitrary. However, if one chooses the set of indepen-
dent flux variables, i.e. columns to be skipped in the
reduction process, the same reduced row echelon form
of the matrix is found irregardless of the original order-
ing of the rows and columns. For this to be true, the
columns corresponding to the chosen set must be line-
arly independent. When a viable set of independent flux
variables is unknown or only partially known before-
hand, the GJE routine implemented in SympyCore will
choose the remaining independent flux variables to
complete the matrix reduction process.

Flux analysis in vivo

One of the most challenging tasks for the analysis of
fluxes in vivo is intracellular compartmentation. There
are several levels of compartmentation that ought to be
taken into account in a large scale metabolic model.
They range from the organ level to the sub-cellular
level. The genome-scale metabolic models used in this
text [10] are typical in that they are compartmentalized
into standard intracellular compartments separated by
membrane barriers, such as mitochondria. However,
even smaller compartmental units exist such as
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submembrane space leading to the coupling between the
K-ATP sensitive channel and creatine kinase [19], or
intracellular diffusion barriers grouping ATPases and
mitochondrial oxidative phosphorylation in cardiomyo-
cytes [20-23], and the compartmentation of metabolites
within enzyme systems [24]. These forms of compart-
mentation are often excluded from metabolic models. A
genome-scale model that includes all such smaller com-
partmental units has yet to be formulated and will be
larger. The symbolic GJE routine developed in this
paper would be a suitable tool to analyze such large net-
works due to its efficiency.

Frequently, compartmentation can be analyzed by fully
or partially decoupling the links between metabolites
and reactions in the stoichiometric matrix. However,
concentration gradients within the cell cannot be incor-
porated into a stoichiometric model. This form of com-
partmentation requires the use of reaction-diffusion
models that take into account the three dimensional
organization of the cell [25,26], and the development
and application of specialized techniques such as the
measurement of diffusion coefficient in the cell [27] and
the use of kinetic measurements to estimate the diffu-
sion restrictions partitioning the cell into compartments
[22]. Thus the concentration gradients limit the applica-
tion of stoichiometric modeling to the thermodynamic
level.

Even without resorting to spatial modeling, the analy-
sis of compartmentation remains challenging since more
data is required to constrain the extra degrees of free-
dom introduced when splitting up metabolic pools. A
recent organ level study of human brain [28] discusses
the challenges of both composing an organ level com-
partmentalized model and obtaining the data required
to constrain it. Our analysis of the example yeast net-
work shows that each degree of freedom controls a local
sub-networks of fluxes. By specifying intercompartmen-
tal fluxes to be part of the set of independent fluxes the
influence of compartmentation may be characterized by
a subset of variables making the analysis of compart-
mentation more straight forward.

Functional coupling within enzyme systems is often
neglected in large scale metabolic models. When study-
ing enzyme kinetics, it is often assumed that the distri-
bution of the states of the enzyme remains stationary
and is determined by the availability of metabolites. This
assumption has been applied to study coupled enzyme
systems [29] whose steady state is non-trivial since they
may contain hundreds of transformations. When this
assumption is made, individual mechanistic transforma-
tions can be treated in the same way as chemical reac-
tions. The ability to choose some of these mechanistic
transformations to be part of the set of independent
fluxes would aid in the constraint process. It would also
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help one to incorporate enzyme mechanisms into larger
stoichiometric models since the fluxes through the
branches in the enzyme mechanism would be controlled
by a subset of the independent variables and this subset
would not influence remote regions of the metabolism.

Several approaches have been developed to study flux
distributions in vivo without perturbing enzyme func-
tion. Notably, isotope labeling [30] and magnetization
transfer [31]. The dynamic component of the labeling
can be used to reveal compartmental effects such as the
identification of barriers to metabolite transport. How-
ever this approach requires the use of optimization tools
that must scan a high-dimensional space [30]. Recently,
an improved optimization approach was developed that
makes use of a flux coordinate system found using GJE
[32]. Our GJE routine allows for the pre-selection of the
independent variables, and it is anticipated that a well
chosen flux coordinate system would further improve
the application of this optimization procedure.

Different representations of steady state solutions

The goals of constraint based flux analysis are currently
pursued using an increasing number of complimentary
approaches including extreme currents [33], extreme
pathways [34], elementary modes [35,36], minimal gen-
erators [37], minimal metabolic behaviors [38], and
other techniques [39]. In this paper we only applied
symbolic GJE algorithm to carry out Metabolic Flux
Analysis (MFA).

SympyCore can be extended by implementing the
double description method [40] which is an integral part
of Elementary Flux Mode Analysis (EFMA).

Although both MFA and EFMA provide solutions to
the same steady state problem, comparing these solu-
tions must take into account differences in the represen-
tations of the solutions and underlying assumptions in
these methods. While MFA defines a subspace of steady
state flux distributions then EFMA restricts this sub-
space by taking into account of irreversibility of certain
reactions.

Within MFA, to represent a point in such a flux sub-
space, it is convenient to use a linear combination of
the columns of the kernel of the stoichiometric matrix.
Note that such a kernel is not unique: in the SVD
approach the kernel depends on the ordering of reac-
tions as they are used to compose the stoichiometric
matrix; and in the symbolic GJE approach, the kernel
depends on the initial choice of independent and depen-
dent flux variables. Reaction irreversibilities convert to
constraints on the coefficients of the linear combination.
In the case of the SVD kernel, these constraints are dif-
ficult to interpret because of the convolved nature of
the SVD coefficients: change of one coefficient will have
effect to all fluxes. In the case of the GJE kernel, the
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coefficients are fluxes themselves (independent fluxes)
and hence the constraints on the coefficients have a
straightforward interpretation.

Within EFMA, it is mathematically more convenient
to use convex polytope to represent the restricted part
of the flux subspace because the conditions of reaction
irreversibilities directly define the representation. This
approach has given rise to the now widely used notation
of elementary flux modes [41] and extreme pathways
[34] that mathematically speaking are extreme rays of
the convex polytope of thermodynamically feasible
steady state flux distributions. It is interesting to note
that in the case of pointed polytope the steady state flux
distribution can be represented as a conical combination
of elementary flux modes. While the elementary flux
modes are uniquely determined then different combina-
tions of elementary flux modes may define the same
steady state solutions. This is orthogonal to kernel based
representations: steady state solutions can be repre-
sented via different kernels but when fixing a kernel
then the linear combination of its columns uniquely
defines the flux distribution.

Conclusions

A symbolic GJE routine was developed within Sympy-
Core [11] to efficiently calculate the steady state flux
distribution of genome-scale metabolic networks.

Constraints can be applied directly to each indepen-
dent flux. The independent flux variables can be speci-
fied in the symbolic GJE routine to match the measured
data available. In addition, it was demonstrated that
knowledge regarding dependent flux variables can be
used to find limits on the possible ranges of indepen-
dent flux variables.

We found that independent fluxes influence only spe-
cific portions of the metabolism and sub-networks can
be identified from the GJE kernel matrix. This property
has potentially far reaching implications for the physical
interpretation of steady metabolism in genome-scale
metabolic networks.

Note that usage of the symbolic GJE routine does not
introduce numerical errors while numerical SVD rou-
tines do. We estimated the relative flux error introduced
by the numerical SVD routine and concluded that the
numerical errors are insignificant for biological applica-
tions and confirm the numerical robustness of the SVD
routine. Both numerical SVD and symbolic GJE routines
are equivalent with respect to computation time, how-
ever, the memory consumed by numerical SVD routine
increases two times faster than that of the symbolic GJE
routine using sparse data structures.

The main arguments for using symbolic GJE routine
for analyzing large metabolic networks are memory effi-
ciency, numerical robustness, freedom of choosing
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different sets of independent fluxes, and the ability to
define sub-networks.

Our results show that symbolic implementation of
relevant algorithms are competitive with highly efficient
numerical algorithms when taking into account the
inherit sparsity of genome-scale metabolic networks.

Methods

In this section we present two alternative procedures to
obtain steady state solutions of possibly large under-
determined metabolic networks. The first approach uses
a symbolic GJE algorithm that guarantees exact solu-
tions and the second approach uses SVD implemented
in a numerical algorithm that ought to give better per-
formance. In addition, we describe a method for apply-
ing constraints to the steady state solution.

Statement of the steady state problem

Every chemical reaction and thus reaction system has
the strict requirement of conservation of mass. A system
of mass balances around each species has the form:

x = Ny, (1)

where x is a length m vector of the time derivative for
each mass density of metabolic species, N is the m x n
stoichiometric matrix that links metabolites to their
reactions via stoichiometry, and v is a length n vector
that describes the flux through each reaction. For a sys-
tem at steady state with n reactions and m species, the
system of chemical reactions becomes:

Nv = 0. (2)

The number of flux variables that need to be specified
to calculate a viable steady state is f = n - r where r is
the rank of N. Let us denote the vectors of dependent
and independent flux variables as vqep, and vingep 0of
length r and f, respectively. Then with a n x n permuta-
tion matrix P that reorders the columns of N such that
columns corresponding to dependent flux variables
appear earliest, the steady state Equation (2) reads

vadep + N2vindep =0, (3)

where v = P[ Vdep ] and N = [N; N,] P'. Clearly,
Vindep

when the m x r matrix N; is regular (m = r and det N;
# 0), the relation between v4e, and vj,q4e, Vectors can be
computed directly:

Vdep = _N1_1N2vindep- (4)

However, for many metabolic networks the stoichio-
metric matrix N may contain linearly dependent rows
(r < m). In addition, vj,4ep or P are not known in
advance.
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In the following we consider two methods based on
GJE and SVD procedures that solve Equation (2) for the
relation between dependent and independent flux vari-
ables: The general solution is written as:

v
p=P dep )
Vindep

Vdep = Rvindep .

(5a)

(5b)

We identify R as a kernel of the steady state solution
where the columns are flux basis vectors and vi,qep are
flux coordinates.

Solving the steady state problem via GJE

Solving the steady state problem via GJE is based on trans-
forming the stoichiometric matrix N to a row-echelon
form NF where all columns corresponding to dependent
flux variables would have exactly one nonzero element
and Equation (5) can be easily composed (NlCIE is identity
matrix and hence R = —N?IE). The column permutation
matrix P is constructed during the GJE process while
applying the leading row and column selection rules (pivot
element selection). One of the advantage of using GJE is
that it allows one to influence the pivot element selection
rules so that a preferred flux basis for the system will be
obtained. If the selected flux variables cannot form a basis,
the routine will move one or more of the preselected inde-
pendent variables to become dependent.

Note that in numerical GJE algorithms the typical
leading row and column selection rule consists of
choosing a pivot element with largest absolute value for
maximal numerical stability. Symbolic GJE algorithms
that calculate in fractions avoid numerical rounding
errors and can implement more optimal selection rules
that take into account the sparsity of the system. In
SympyCore [11] the leading row and column selection
rule consists of choosing such a pivot element that
minimizes the number of row operations for minimal
computation time.

Solving the steady state problem via SVD

Solving the steady state problem via SVD is based on
decomposing the stoichiometric matrix N into a dot
product of three matrices:

Orxr

Orxt VT
N=Umxm[ ' ][ ““fxn], (6)
O(mfr)xr O(mfr)Xf VEer rxn

where u, v = [Vi, Vie] are orthogonal matrices and &
is a diagonal matrix with nonzero values on the diago-
nal. The solution to the steady state Equation (2) is

v = Vier@, (7)
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where o is a f vector of arbitrary parameters. Note
that the SVD approach does not provide a numerically
reliable and efficient way to determine the vectors of
dependent and independent flux variables and in the fol-
lowing we use these in the form of the permutation
matrix P found from the GJE approach:

|: Vdep ] = PTVker“ = |: Vdep ]“: (8)

Vindep Vindep
which gives Equation (5b):
Vdep = VdepVi_néepvindepr 9)

where Vi,qep is a regular f x f matrix.

Processing and analysis of metabolic networks

SBML models of metabolic networks were obtained
from the BiGG database [42]. During the parsing all
floating point numbers were converted to fractional
numbers. All species that did not participate in any
reactions were excluded. Species that are appear as both
a reactant and product, i.e. in polymerization reactions,
were removed from the list of reactants, and an addi-
tional reaction transporting this species across the sys-
tem boundary was added.

Each metabolic network was transformed into open
form using the following rule: if a species participated in
exactly one reaction, a reaction transporting this species
across the system boundary was added. As an alternative
rule used in the example yeast network, if all transport
reactions out of the system are known, then transforma-
tion to open form is accomplished by removing rows for
the species that are external to the system.

Both of these approaches result in equivalent steady
state solutions because adding extra reactions extends
linear pathways that each contain a species that exits the
system. Both approaches were applied to the example
yeast network: external species were removed to calculate
the flux distribution in Figure 3 and additional file 2:
yeast_example.pdf while the algorithm to add extra trans-
port reactions was used to calculate the values in Table 1.

Composing the example yeast network

The example yeast network given in Figure 3 was manu-
ally composed for analyzing carbon isotope dynamics, and
thus excludes metabolites that do not participate in carbon
rearrangement, i.e. cofactors. To simplify the model, Car-
bon 3 of histidine (by InChl carbon number) was assumed
to come from bicarbonate, and not Carbon 2 of ATP.
Similarly, Carbon 1 of methionine was also assumed to
come from bicarbonate, and not 5-Methyltetrahydropter-
oyltri-L-glutamate. In addition, the glyoxylate cycle and
thus the third pathway for producing glycine was removed.
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All relevant details of the network including metabolite
abbreviations, reaction definitions, the steady state solu-
tion, and substituted flux values used to constrain the sys-
tem are given in additional file 2: yeast_example.pdf.

The example yeast network makes use of fictitious
metabolites that link the stoichiometry of coupled reac-
tions. The three pentose phosphate pathway reactions
are broken into two parts each linked with a fictitious
metabolite that represents the carbon skeleton that is
broken off of one metabolite in the first step and trans-
ferred to the next. In the additional file 2: yeast_example.
pdf fictitious metabolite names start with either a capital
X, Y, or Z, followed by a lower case Greek number indi-
cating the number of carbons they contain followed by a
section indicating their use. This latter section is either
the yeast enzyme they participate in, the code for the
metabolite they are derived from, or GOG indicating the
transfer of glutamate to 2-Oxoglutarate.

Applying constraints to the steady state solution

The GJE routine provides a flux based coordinate system
to describe the steady state flux space while SVD pro-
vides an orthogonal coordinate system. When specifying
a flux value that is part of a flux coordinate system, one
dimension from the steady state flux space is removed.

Many different sets of independent flux variables can
form a coordinate system for the steady state flux space.
The GJE routine allows the researcher to specify which
flux variables forms a flux coordinate system and thus
can match the choice of coordinate system with the
experimental data available. The basis vectors formed
from a flux coordinate system are often sparse and tend
to span connected portions of the metabolism.

Let us assume a relation between dependent and inde-
pendent flux variables as given in Equation (5). In addition
to that, let us assume some constraining knowledge about
the dependent variables, for example, the flux positivity for
irreversible reactions: Vdep, = O for some i € [1; r]. The
problem being solved is how the constraints on vq, con-
strain the independent flux variables v j,4ep. The goal is to
determine how the steady state flux space is bounded.
This is useful for many techniques used to analyze the
properties of metabolic networks, for example in optimiza-
tion procedures that must scan the steady state flux space
while avoiding regions that are not feasible [32].

To find the constraints for v j,qep, We set up the fol-
lowing system:

Vdep = Rvindep/ (10a)
GVindep = b, (10b)
Qvgep > 0, (10c)
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where g x f matrix G and g vector b define g mea-
sured data constraints for vingep; q x r matrix Q that
defines q positivity constraints for vg.,. The system in
Equation (10) defines a convex polytope and due to the
constraining parts it is redundant. The redundancy can
be removed by using the following geometric computa-
tion algorithm: solve the vertex enumeration problem
for the convex polytope defined by Equation (10) and
then using the obtained vertexes and rays solve the facet
enumeration problem. The solution to the facet enu-
meration problem is a set of inequalities that has no
redundancies and defines the same convex polytope as
Equation (10). Note that the intermediate result of the
vertex enumeration problem (polytope vertexes and
rays) provides convenient information to volume scan-
ning applications.

Computational software and error analysis

The GJE results of this paper are obtained using a
Python package SympyCore [11] that implements both
memory and processor efficient sparse matrix structures
and manipulation algorithms. For solving the steady
state problem we are using the symbolic matrix object
method get gauss_ jordan elimination o-
perations that allows one to specify the list of pre-
ferred leading columns (that is, the preferred list of
dependent flux variables) for the GJE algorithm and
after applying the GJE process the method returns a
matrix object that is in row-echelon form. In addition to
that, the method returns also a list of all applied row
operations that can be later efficiently applied to other
matrix objects. This feature is especially useful for add-
ing extra columns to a stoichiometric matrix and then
applying GJE process without the need to recompute
the row-echelon form of the original matrix. One could
use this to add transport reactions to a metabolic net-
work during the constraint process.

The SVD results of this paper were obtained using a
Python package NumPy [43] that provides a function
numpy.linalg.svd for computing SVD of an array object.
NumPy was built with LAPACK and ATLAS (version
3.8.3) libraries that provide a state-of-the-art routine
(dgesdd) for computing SVD.

Since the results obtained with the symbolic GJE rou-
tine are correct and the results of the numerical SVD
routine contain numerical rounding errors then in the
error analysis we are using maximal relative flux error

f GJE SVD
2o IR = RGP

2 S max(1, R, [RSVP|
j=1 /A

gsvD = (11)

where Ri?IE and RiSjVD are matrix elements in Equation
(5) obtained with GJE and SVD routines, respectively.
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Note that egyp characterizes relative errors in dependent
flux variables introduced by the numerical SVD routine.

For solving vertex and facet enumeration problems we
use a Python package pycddlib [44], a wrapper of the
cddlib (version 094g) that implements the double
description method [40].

The Python scripts used for computing the results are
available in SympyCore [45]. The performance timings
were obtained on a Ubuntu Linux dual-core (AMD Phe-
nom(tm) II X2 550) computer with 4GB RAM.

Additional material

Additional file 1: SBML model of the example yeast network. This
file is marked up in SBML and contains all of the reactions of the
example yeast network.

Additional file 2: SBML model details. This is a PDF file that
summarizes the details of the model given in additional file 1:
yeast_examplexml and presents all calculated results.
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