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Abstract

that, although true, are not useful.

expression pattern.

Background: Messenger RNA expression is regulated by a complex interplay of different regulatory proteins.
Unfortunately, directly measuring the individual activity of these regulatory proteins is difficult, leaving us with only
the resulting gene expression pattern as a marker for the underlying regulatory network or regulator-gene
associations. Furthermore, traditional methods to predict these regulator-gene associations do not define the
relative importance of each association, leading to a large number of connections in the global regulatory network

Results: Here we present a Bayesian method that identifies which known transcriptional relationships in a
regulatory network are consistent with a given body of static gene expression data by eliminating the non-relevant
ones. The Partially Observed Bipartite Network (POBN) approach developed here is tested using E. coli expression
data and a transcriptional regulatory network derived from RegulonDB. When the regulatory network for E. coli was
integrated with 266 E. coli gene chip observations, POBN identified 93 out of 570 connections that were either
inconsistent or not adequately supported by the expression data.

Conclusion: POBN provides a systematic way to integrate known transcriptional networks with observed gene
expression data to better identify which transcriptional pathways are likely responsible for the observed gene

Background

Significant effort has been invested in identifying which
genes regulate the expression of which other genes in a
given genome[1-3]. The bioinformatics community has
collected many of these gene-gene regulatory relation-
ships into transcriptional networks that provide a global
view of how gene regulation is orchestrated. For exam-
ple, TRANSFAC collects protein-DNA binding interac-
tions to identify potential gene regulatory mechanisms
[4]. Similarly, RegulonDB provides a hand annotated
regulatory network for the E. coli genome[5]. As more
data become available, these transcriptional regulatory
networks will become increasingly complete in the sense
that they will describe the set of possible mechanisms
for regulating each gene.
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However, even with a fully complete and accurate
transcriptional regulatory network, only some of the reg-
ulatory relationships will be relevant for a given cellular
environment. For example, some gene regulatory
mechanisms may only be used in rare cases of stress, or
during a short developmental stage. In these cases, these
rarely used regulatory mechanisms are correct, but lar-
gely non-predictive and as such may not be relevant to
the process under study. In these specific cases, the gen-
eral regulatory network is less useful.

In this paper, we introduce a Bayesian network based
method to differentiate predictive and non-predictive
connections in a transcriptional regulatory network
given a body of gene expression data. The method we
term Partially Observed Bipartite Network, or POBN,
uses a simplified Bayesian network topology to describe
a regulatory network, as is illustrated in Figure 1. A
POBN has a top layer of unobserved regulators (protein
activities) that connect to a lower level of observed
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Figure 1 A partially observed bipartite network. A POBN model
of a mechanism based on 2 unobserved regulators associated with
4 observed genes G1-G4.

variables (MRNA expression values). By casting the reg-
ulators as unobserved, a POBN makes it explicit that
the activities of the regulatory proteins are unknown. As
a first approximation, the activity of a regulator could
be modeled as simply proportional to the mRNA
expression level of a transcription factor, however this
approximation ignores other regulatory events that are
known to influence the regulatory process. For example,
the activity of a regulator may be influenced by post-
translational modifications, changes in protein localiza-
tion, sequestration, and/or cleavage—all of which are
mediated by other pathways in the cell. Unfortunately,
this more complete view of transcriptional factor activity
is complex, poorly understood, and difficult to quantita-
tively model. To circumvent this problem, the POBN
approach allows the expression of the target genes to
dictate the likely activities of each regulator. In doing so,
POBN strives to identify regulatory topologies that are
maximally consistent with both the expression data and
the known regulatory network, while not specifying the
mechanistic details that lead to the particular state of
the regulatory proteins.

Expression data for learning these regulatory relation-
ships can be divided into two classes: time series and
static. Time series data consist of periodic measure-
ments of a sample to obtain a time varying gene expres-
sion profile, while static data consist of a set of
expression measurements made under different condi-
tions, treatments, or sample types. If designed correctly,
a time series study can identify the sequence of events
that trigger a regulatory event, as has been widely
explored elsewhere[6-8]. In contrast, a static study can
only be used to infer relationships between regulators
without a clear picture of the sequence. Methods to use
these static data for transcriptional regulatory network
analysis have been less widely explored, although a
majority of the gene expression data collected are static.
For example, over 80% of the expression data in the
public repository GEO are from static measurements.
Although more challenging, in this work we have cho-
sen to explore how these static data can be used to infer
regulatory networks using POBN.

To test the performance of the POBN algorithm for
regulatory network reconstruction, we focus on the
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regulatory networks in E. coli. The regulatory network
in E. coli is one of the best characterized, giving us a
clear picture of the network we expect to find. In addi-
tion, digital resources such as the RegulonDB database
provide the regulatory network in a machine readable
form that is suitable for comparison to the POBN
results.

Methods

In the following sections we describe the algorithms and
sample studies used to evaluate the POBN algorithm’s
ability to identify predictive and non-predictive regula-
tory relationships based on gene expression data.

Gene expression data

We tested POBN using a set of 266 gene expression
profiles in E. coli described elsewhere[9], and available
online on GEO as GSE6836. This dataset represents a
diverse range of biological backgrounds and environ-
mental conditions including genetic perturbations, drug
treatments, different growth phases, and a range of
metabolic states. The study is well suited to this work
because it contains many samples and covers a range of
perturbations.

The selection of genes that could be meaningfully ana-
lyzed using POBN was based on the following two cri-
teria: (1) genes must exhibit differential expression in at
least some samples; and (2) genes must be present as
target genes in the RegulonDB regulatory network. The
first criterion was enforced by selecting the 300 genes
with the largest variation as measured by the magnitude
of the standard deviation of the expression value across
samples. This selection approach will tend to favor
genes with larger absolute expression levels, and a
diverse range of expression values across the samples.
When the second criterion was applied, only 189 of the
300 genes were found in the RegulonDB network as tar-
gets, producing a final list of 189 genes.

Data discretization

For computational efficiency, the scoring metrics used in
this study require that the data be discretized. Data were
binned into three states, high, medium and low, with the
top third of the values assigned to high, the bottom
third assigned to low, and the remaining values assigned
to the medium bin. This even sized binning strategy is
widely used for discretization of gene expression data in
the systems biology community[10-13], and has been
shown empirically to be robust in capturing relevant
details of the systems under study. We note that the
POBN method can be used with continuous values
directly, however the continuous scoring algorithms that
are currently available are computationally impractical
for networks involving more than a few hidden nodes.
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Instead, POBN scores the probability of each network
using discrete data as described below.

Scoring method

The regulatory bipartite networks tested here are mod-
eled as a Bayesian network with the regulators as hidden
nodes. In this network, variables are modeled using a
multinomial model with Dirichlet priors, as is described
elsewhere[14-16]. Using a multinomial likelihood and
Dirichlet parameter priors leads the BD scoring metric
that is used in this work[14,17]. This means that the
parameter priors are modeled as Dirichlet distributions,
and helps to reduce over-fitting. See the additional file
1: scoring_metric.doc for a more detailed discussion
about Bayesian networks with hidden nodes. Below we
provide a brief summary of the modified sampling-scor-
ing method used in this work.

The end goal of our method is to test each single reg-
ulatory connection (regulator-gene associations) in a
bipartite network to identify the connections that are
more predictive than others based on a specific data set.
For this, a score or a likelihood of the network with all
the initial connections present needs to be evaluated.
Then, a connection is removed and a new score for the
resultant network without the connection is evaluated.
The non-predictive associations can be identified as the
ones that improve the initial network score once they
are disconnected.

In most Bayesian network problems, a completely
observed data set is used to estimate the likelihood or
score of a network with the metric explained in the addi-
tional file 1: scoring_metric.doc. The scoring process with
complete data is fast and thousands of networks can be
score in minutes. However, in the networks studied in this
work, the activity of the regulators is not observed which
produce a data set with numerous missing entries. One
way to handle these missing entries is to use Gibbs sam-
pling, as is described in additional file 1: scoring_metric.
doc and elsewhere[18-21]. However, using Gibbs sampling
alone requires that all possible disconnections must be
scored and sampled —a process that is computationally
impractical when many missing entries are present.

To overcome this computational limitation, we have
developed a new sampling-scoring approach to evaluate
the score of a network each time a regulator-gene con-
nection is eliminated. This new POBN approach is
described below.

The sampling and scoring was done using PEBL, a
python library previously developed in our group[17].
PEBL evaluates the probability of a discretized dataset
given a topology using the BD (Bayesian Dirichlet) scor-
ing metric described elsewhere[14]. The source code for
PEBL is freely available online (http://code.google.com/
p/pebl-project/).
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The scoring process in our simulations comprised two
main steps: (1) Gibbs sampling of the missing entries
using the initial global graph and the discretized data
and (2) calculating of an average score across the miss-
ing entries samples. These missing entries samples are
set of different states configurations for the missing
values. One set of configurations includes a complete
round of states values (a single sample for each of the
missing entries). The average score for each network
was estimated using the BD metric and the sampled
states for the hidden nodes obtained in step (1). This
scoring process was carried out for the initial network
and each single edge removal from that initial network.
Note that Gibbs sampling was done only for the initial
network. The same set of states configurations were
used to estimate the average score of each single edge
removal. This approximation assumed that the number
of predictive edges is greater than the non-predictive
ones, thus contributing significantly more to the net-
work score.

We used an empirical approach to estimate the
required number of saved configuration states after
Gibbs sampling to estimate the score for any network.
The criterion used to define a connection as predictive
or non-predictive was the rank of the initial global net-
work based on score relative to all the tested edges dis-
connections (score of networks after each
disconnection). The connection evaluation process (pre-
dictive vs. non-predictive) will be explained in the next
section. Based on this approach, set of configuration
sates after Gibbs sampling with sizes of 100, 250, 500
and 1,000 rounds were tested for a first POBN optimiza-
tion cycle. We observed insignificant changes between
the results obtained for 250, 500, and 1,000 rounds of
sampling. For these 3 set of configuration states sizes, 3
non-predictive edges out of 75-78 cast as non-predictive
(as described in the next section) were observed to be
different between each set results. Nevertheless, the net-
works evaluated after disconnecting these three discre-
pant edges ranked just below the criterion established to
cast the edge as predictive/non-predictive. For the 100
rounds of states configurations case, the difference was
of 6 edges. As a result of this analysis, all subsequent
POBN optimization cycles were run by collecting 250
configuration states after Gibbs sampling of the initial
network as a balance between accuracy and computa-
tional efficiency.

Network searching and optimization process

The filtered 189 genes were mapped to target genes in
the RegulonDB network. This mapped network pro-
duced a bipartite graph between regulators and targets
containing 570 connections between 62 unobserved reg-
ulators and the selected 189 genes.
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Given this network as an initial global network, we
examined all one-edge removals in this network, resulting
in 570 additional networks to be scored (one per edge
removal), for a total of 571 networks. A complete list of
these connections present in our initial global network is
provided in the additional file 2: initial_global_net.xls.

If removing an edge in the global network improved
the score then the disconnected edge was labeled as
non-predictive. If the initial global network did not rank
first on the score list, we proceeded with another
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scoring round (POBN cycle) after updating the initial
global graph by eliminating the set of non-predictive
connections. These steps were repeated until the start-
ing global regulatory network (initial network for each
cycle) ranked first on the list as the best network. Figure
2 shows a conceptual flow diagram of this process.
Source code for the optimization is provided in the sup-
plementary material additional file 3: POBN_single_-
round.py. The data and network format needed by
PEBL is also explained in this same file.

Select differentially expressed genes
based on the observed variance of the
expression level

\ 4

Map genes to the regulatory topology
(RegulonDB). If no mapping exist for
a genes as “target gene”, omit gene.

A 4

Sample the states of the missing
entries for the regulators in the global

network using a Gibbs sampler based
on the BD metric.

\ 4
Calculate the average score for the
global network and each single
disconnection. Used the sampled
configurations for the regulators to
score all networks.

Did
the global
graph rank as the
best model based
on score?

Eliminate all connections that after
deletion and scoring of the resultant
network, makes the resultant network
score better than the global network
(inactive edges).

Stop optimization. Current global
graph does not contain inactive
connections based on data.

Update global graph to the trimmed
network.

global network.

Figure 2 POBN algorithm conceptual diagram. Note that the creation of the non-predictive edges list is based on the rank of the network
after an optimization round. If a connection is eliminated and the resulting model has a worse score than the initial network, this connection
should stay as it plays an explanatory role based on the data. Otherwise, the connection is listed as non-predictive and eliminated from the
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Synthetic Network Validation

To assess the POBN algorithm’s discriminatory capabil-
ity, we tested the algorithm using a synthetic dataset
where the predictive and non-predictive edges are
known beforehand. First, a bipartite network was
defined with 4 regulators and 9 response variables. Each
response variable was assigned to have 1-3 parents for a
total of 11 connections in the synthetic network. After
defining the topology, conditional probabilities were
assigned for all nodes based on connectivity and the 3
discrete values that were allowed. Based on these para-
meters, 5,000 samples were generated to create a data
set simulating a discrete static data set, full details of
which are provided in the supplementary material. See
additional file 4: synthetic_data_generation.py for the
data generation script.

After sampling, the values of the 4 regulators were
removed, making these regulator variables unobserved.
Next, all combinations of possible non-predictive con-
nections were added to the initial graph one at a time
for a total of 25 cases, i.e. 25 = (4 regulators)*(9
response variables)-(11 defined connections). Once a
single non-predictive edge was added, the weight for all
edges in the graph were evaluated as described in the
Scoring Method section above. This same process was
repeated for all combinations of pairs of non-predictive
edges that could be added to the original graph (300
pair addition cases).

Results

Synthetic data set

The synthetic case study provides a way to evaluate
POBN'’s ability to discriminate between non-predictive
and predictive edges with a known network. When a sin-
gle non-predictive edge was added in all possible posi-
tions, 23-22-24 out of 25 non-predictive edges were
correctly identified in three independent runs, and in no
case was a true edge called non-predictive. For the cases
where POBN did not call the added edge non-predictive,
the non-predictive edge was ranked as the first or second
weakest (score just below the initial graph). When a pair
of non-predictive edges were added in all possible posi-
tions, in 282 out of 300 cases the non-predictive edges
were correctly identified and in 13 of the remaining 18
cases the connections were ranked as the first or second
weakest. Here again, in no case was a true edge called
non-predictive. In runs with fewer samples the number
of hits were lower but the algorithm was consistently pre-
cise in not calling a true edge non-predictive.

Overall, these synthetic results indicate that the POBN
algorithm is frequently able to correctly identify the
added non-predictive edge(s) with no observable false
positive rate and a moderate false negative rate. This
result suggests that the edges POBN identifies as non-
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predictive in the biological dataset will likely be non-
predictive, however, edges deemed predictive may be
only marginally so, depending on where they appear
relative to the initial network.

Non-predictive connections predicted using gene
expression data

When the POBN analysis was applied to experimentally
gathered gene expression data, the algorithm identified
93 non-predictive connections out of the 570 connec-
tions present in the initial regulatory network from Reg-
ulonDB. From this total, 75 non-predictive connections
were found during the first sampling-score-ranking
cycle of POBN analysis, 13 in a second cycle, and the
last 5 in a third cycle. After the third optimization
round, the score of the initial graph was no longer
improved by removing any edges. During all the rounds
of optimization, we observed that well characterized reg-
ulatory associations in E. coli such as the genes regu-
lated by LexA (recA, recN, sulA, umuD, lexA) and AraC
(araA, araB) were within the group of the best scoring
edges in the network. A complete list of the 93 connec-
tions cast as non-predictive and the final trimmed net-
work is provided in additional file 5: removed_edges.pdf
and additional file 6: trimmed_net.xls. The additional
file 7: initial_global_net.dot and the additional file 8:
trimmed_graph.dot contain a graphical representation of
the initial global network and the trimmed network.

Discussion

By integrating a specific expression data set and a global
regulatory network, POBN is able to identify a simplified
regulatory network that is both mechanistically sound
and maximally consistent with the expression data. This
simplified network suggests which connections are of
particular importance in the expression data.

During the optimization process, we observed that
POBN tended to remove edges from genes that had the
higher connectivity (>3 parents). In the initial regulatory
network from RegulonDB, each target gene had between
1-9 parent regulators. After POBN optimization, the
connectivity range was between 1-6 regulators per gene
with most genes having between 1-4 parents.

An extreme example of regulator trimming took place
for the gene ompF. This gene is associated with 9 regu-
lators based on the RegulonDB database. After optimiza-
tion, 8 regulatory connections were removed from ompF
suggesting that, based on the data set under study, the
expression of this gene is better explained by 1 regulator
rather than 9. Upon examination of the siblings of ompF
in the optimized network (e.g. the genes that are also
regulated by the same single parent), we see a regular,
but nonlinear relationship between the gene expression
values of ompF and its siblings (see Figure 3).
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Figure 3 Expression value comparisons between siblings. The expression of all the genes shown are associated by the same sigma factor
sigma70. Panels (A) and (B) compare the expression values of genes that originally appeared associated only by the same sigma factor in the
global regulatory network. The genes rspD and rspM shown in (A), are nearly linear related, while glyW and asnT shown in (B) have a more
complex relationship. After POBN optimization, ompF gene was disconnected from 8 of its 9 originally regulators in the global regulatory
network. Panels (C) and (D) illustrate two examples of the association of ompF with genes under this same single sigma factor sigma70. Note
that different but clear non-linear associations are observed between ompF and its siblings.

Sigma factor sigma70

Note that even when the sigma factor sigma70 is con-
sidered a global factor needed for the transcription of
most genes and its elimination from the initial network
could simplify the computational analysis, we decided to
keep it as part of the network to be optimized for the
following two reasons: (1) The global network from Reg-
ulonDB contained several genes that had high variance
in their expression data across samples and were only
associated with sigma70. These genes were primarily
associated with ribosomal subunits, t-RNAs, and ATP/
metabolism processes. Because the purpose of POBN is
to evaluate a general regulatory network knowledge in
the context of a specific dataset, we kept sigma70 as it
was the only known entity associated with the transcrip-
tion of these highly expressed group of genes. (2) Tran-
scriptional regulation often involves the co-action of
different proteins and factors. One of the challenges
when analyzing biological data is the presence of

combinatoric phenomena that accurately explain the
expression variances. If sigma70 participates in a combi-
natoric effect, eliminating sigma70 will reduce the accu-
racy of the network and the POBN analysis in general.
As an example of this combinatoric effect, consider the
regulation of genes yfiD, aceE and aceF suggested in
RegulonDB. In the network from RegulonDB these
genes appear regulated by 4 transcription factors but
sigma?0 is only associated with aceE and aceF and not
with yfiD. In cases like this, the decision to eliminate
predictive/non-predictive associations between regula-
tors-genes could be affected if sigma70 is removed.

To evaluate the importance of sigma70 in the analysis,
we also tested POBN with an initial network not includ-
ing sigma70. The initial network was reduced from 570
regulatory associations to 402 (168 connections less cor-
responding to sigma70). After the simulation, POBN
identified 32 non-predictive connections, all of which
were predicted before as part of the group of 93 non-
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predictive associations when sigma70 was part of the
initial network. The remaining 61 not included within
these results consisted of 4 connections associated only
with sigma70 (4 genes that were eliminated from the
network as part of the new assumption) and 57 connec-
tions associated with other transcription factors. Most of
these 57 connections, previously classified as non-pre-
dictive associations when sigma70 was part of the initial
network, were associated with dual regulators such as
ENR, CRP, ArcA, IHF and H-NS. In addition, this group
of 57 connections ranked within the weakest 15% group
of the total connections based on score suggesting that
the initial not-relevant prediction for these connections
were not far from reality. Sigma70 is biologically asso-
ciated with the target genes of these dual regulators
(FNR, CRP, ArcA, IHF and H-NS) and is part of the
requirement for the transcriptional regulation to start.
Nevertheless, global regulators and/or factors like
sigma70 may require special considerations on computa-
tional analysis and is a topic of future work.

One may ask why any edges should be removed from
the annotated regulatory network at all. Presumably the
annotated network is well validated experimentally, and
as such should represent our best prediction of the gene
regulatory relationships. Based on the analysis here, we
see two possible explanations. First, it is possible that
the edge identified as non-predictive is not actually a
regulatory relationship at all. In this case, the regulatory
relationship present in RegulonDB would be an error or
missannotation in the database. A second more likely
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reason for an edge to be called non-predictive is that
the regulatory association is biologically correct, but is
not predictive in the gene expression samples used in
this study. In this latter case, removing the regulatory
connection does not suggest that the there is no biologi-
cal mechanism for the relationship, but instead that the
connection is not relevant to the study. POBN cannot
distinguish missannotations vs. non-predictive interac-
tions, but either case represents unwanted pieces of
information for the system under study. In both cases,
POBN will favor reducing the number of regulators for
each gene and consequently reducing the complexity of
the model with little or no impact on the model’s ability
to predict the observed gene expression data even when
the exact reason for the disconnection cannot be
distinguished.

It was consistently observed that cases of genes in the
same operon were disconnected from the same regula-
tor or group of regulators after POBN optimization. In
other cases none of the gene members of an operon
were disconnected at all. See Figure 4 for some exam-
ples. This was expected to happen because, in most
cases, genes in the same operon are regulated by the
same group of regulators. It is interesting to notice that
even when POBN visited each gene individually with no
operon definition during the simulation, it was consis-
tent in disconnecting (or not) all the member genes in
an operon from the same regulators. Note that there
can be few cases of complex operons that can transcribe
subsets of genes by means of different promoters and

(A) (B)

‘ArcA) ‘FNR} /Fur) ‘GadE) (CRP) ‘O70)

were predicted for each gene within each group.

Figure 4 Optimization of genes grouped in the same operon. The networks in the top section are sub-networks of the original global
network. Each sub-network has the original connectivity for the genes as suggested by RegulonDB and the target genes in each case form part
of the same operon. In each case, each gene has an identical parent set. Note that in the three cases, the same non-predictive connections

(C)
‘070)
POBN
i)
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internal transcriptional units within the same operon
[22]. For example, in Figure 4.b the operon grouping the
shown genes consists of three transcriptional units with
three different promoters. That is why RegulonDB has
the regulator IHF associated with only sucB and sucC
and not with the rest of the members of the operon.
After POBN, these two genes sucB and sucC were dis-
connected from IHF and also from the same regulators
that the other members of the operon were discon-
nected (FNR and ArcA). This suggests that all the genes
in this operon were transcribed by mean of a common
promoter.

The regulation of genes can be a dynamic and competi-
tive process in which genes might need the co-action of
other regulators and/or compete for regulatory binding
sites. In addition, some regulators can have dual regula-
tory roles. This explains why in some cases a regulator or
a combination of regulators were predicted to be the
main control entities for the expression of some genes
while in other cases the same regulators were discon-
nected from their target genes. An example of this can be
observed in Figure 4. In Figure 4.a the expression of the
genes are better explained by ArcA and FNR and POBN
suggests that Fur, CRP and GadE does not contribute
much. In contrast, for the genes illustrated in Figure 4b,
the expression variance is predicted to be better
explained by Fur and CRP and not by ArcA and FNR.

The genes metZ, metW, and metV illustrate an inter-
esting ability of POBN, as all of these genes are asso-
ciated with only sigma70 in the prior global network
from RegulonDB. After optimization with POBN, these
methionine t-RNA coding genes ended with no parents
at the end of the analysis as shown in Figure 4C. A pos-
sible explanation for this parent elimination is that, for
these genes, the prior network in RegulonDB did not
have a complete list of possible regulators. There is evi-
dence in the literature that under grow rate perturba-
tions, the factor for inversion stimulation Fis, is been
known to drastically alter the tRNAs pool composition
including methionine tRNAs[23]. The intracellular con-
centration of this global regulator (Fis) varies substan-
tially in response to changes in the nutritional
environment and growth phases[24], conditions present
as part of the samples set used in this study. It is possi-
ble that the expression variance for these genes metZ,
metW and metV is better explained by a different regu-
lator, i.e Fis instead of only sigma70. These results sug-
gest that even when the true regulator is missing, POBN
can still discriminate between consistent and inconsis-
tent connections.

Conclusion
By using a Bayesian network based approach the POBN
algorithm is able to identify both linear and nonlinear
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relationships. For example, the regulatory relationship
shown in Figure 3 includes both linear and nonlinear
relationships. By identifying both kinds of relationships,
POBN is able to detect relationships between genes that
are not possible to detect using linear methods or most
commonly used clustering methods.

In a larger context, the POBN approach provides a gen-
eral way to integrate static observational data with knowl-
edge about known regulatory relationships. In the example
provided here, we found networks that were maximally
consistent with both a set of gene expression data and a
gene regulatory network. One could use a similar
approach to identify relevant or predictive signaling path-
ways or protein phosphorylation networks from a mixture
of experimental data and known topologies. By using
POBN, all members of the network need not be directly
observed, as long the measurements that are used in some
way reflect the activity of the unobserved nodes.

Additional material

Additional file 1: Static Bayesian networks and missing data. This
document provides more details about the Bayesian network metric
used in this study as well as the Gibbs sampling approach used.

Additional file 2: Initial global network. Table shows all the regulatory
associations for the E. coli genes analyzed in this study: 189 genes with
their 62 regulators as suggested by RegulonDB.

Additional file 3: POBN single round script. This python script shows
the steps to execute a single POBN optimization round given an initial
network and gene expression data.

Additional file 4: Synthetic data generation script. This python script
shows the steps to generate a synthetic data set to test POBN.

Additional file 5: Edges cast as non-predictive. This table shows all
the non-predictive regulatory associations found in this study.

Additional file 6: Trimmed E. coli network. Table shows all the
regulatory associations for the E. coli genes after POBN optimization: 185
genes and 46 regulators

Additional file 7: Initial E. coli global network. This file contain all the
regulatory associations for the E. coli genes analyzed in this study in a
“dot” graphic format: 189 genes and 62 regulators.

Additional file 8: Trimmed E. coli network. This file contain all the
regulatory associations for the E. coli genes after POBN optimizatuon in a
"dot” graphic format: 185 genes and 46 regulators.
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