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Abstract

Background: A first step in building a mathematical model of a biological system is often the analysis of the
temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as
Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a
given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains
contain the complete knowledge of the system. However, for truncated, noisy time series with background trends
this unique mapping breaks down and the question reduces to an inference problem of identifying the most
probable frequencies.

Results: In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages
over conventional methods by applying it to a number of test cases, including two types of biological time series.
Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy,
posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles
highlights the problem of time series with limited length. The results show that the Bayesian frequency detection
approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We

modelling the data without pre-processing.

demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of
different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for

Conclusions: Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier
Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-
known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy
time series, and the requirement for uniformly sampled data. Biological time series often deviate significantly from
the requirements of optimality for Fourier transformation. In this paper we present an alternative approach based
on Bayesian inference. We show the value of placing spectral analysis in the framework of Bayesian inference and
demonstrate how model comparison can automate this procedure.

Background
Pattern recognition is central to many scientific disciplines
and is often a first step in building a model that explains
the data. In particular, the study of periodic phenomena
and frequency detection has received much attention,
leading to the well-established field of spectral analysis.
Biology is rich with (near) periodic behaviour, with
sustained oscillations in the form of limit cycles playing
important roles in many diverse phenomena such as
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glycolytic metabolism, circadian rhythms, mitotic cycles,
cardiac rhythms, hormonal cycles, population dynamics,
epidemiological cycles, etc. [1]. A conventional method
for frequency detection is Fourier analysis. It is based on
the fact that it is possible to represent any integrable
function as an infinite sum of sines and cosines. The
Fourier Transform (FT) uses this property to reveal the
underlying components that are present in a signal [2].
Fourier theory has given rise to a wide range of diverse
developments and far-reaching applications, demonstrat-
ing the theory’s undisputed importance and impact. For
frequency detection, however, it is known that the FT
works optimally only for uniformly sampled, long,
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stationary time series. Furthermore, common procedures
of pre-processing the data can cause problems. Time
series can contain low frequency background fluctua-
tions or drift that are unrelated to the signal of interest.
For the FT, it is then necessary to remove the trends
using detrending techniques. As has been shown pre-
viously, this detrending leads to convolution of the sig-
nal that can both remove evidence for periodicity and
add false patterns [3]. Another known problem is alias-
ing. If a signal containing high frequencies is recorded
with a low sampling rate, peaks of high frequencies can
fold back into the frequency spectrum, appearing as low
frequencies [2]. The Gibbs phenomenon provides
another example where spurious peaks appear in a FT.
It occurs at points of discontinuity in a periodic func-
tion, and results in so-called ringing artefacts around
the “true” frequency peak [4]. As for the accuracy of the
frequency estimate, no direct information of this is
given by the output from a FT, since the sharpness of
the peaks depends on a combination of factors such as
noise levels and the length of the time series. For further
details, see the extensive FT literature (e.g. [2,5]).

Wavelet Transforms [6-10] offer an attractive alterna-
tive to Fourier Transforms. The main difference is that
they are localised in both the time and frequency
domain. This property makes wavelets better adapted to
problems with truncated data. Wavelets have found
wide-ranging applications and have proven to be parti-
cularly powerful for image processing and data compres-
sion [11-13].

Bayesian inference provides another approach for ana-
lysing data (for an introduction to Bayesian analysis, see
[14]). It addresses additional aspects of the problem,
such as the inherent uncertainty of the analysis and the
effects of external noise. Using this framework [3], the
method of Bayesian Spectrum Analysis (BSA) was devel-
oped by Bretthorst [15] and applied to Nuclear Mag-
netic Resonance (NMR) signals and parameter
estimation with great success [16,17].

There are several advantages of the Bayesian approach,
including an inherent mechanism for estimating the
accuracy of the result and all parameters, as well as the
ability to compare different hypotheses directly. Focus is
shifted to the question of interest by integrating out
other parameters and noise levels. Initial knowledge of
the system can be incorporated in the analysis and
expressed in the prior probability distributions. There
has been a recent flood of Bayesian papers with some
convincing applications and promising developments in
systems biology (see [18-30], and many others). The
Bayesian approach to time series analysis has proven its
value in fields such as NMR and ion cyclotron reso-
nance analysis (e.g. [31] and [32]).
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In this paper, we describe the development, imple-
mentation and testing of Bayesian model development
coupled with BSA and Nested Sampling, in a biological
context. We present a comparison of this approach with
the FT, applied to a number of simulated test cases and
two types of biological time series that present chal-
lenges to accurate frequency detection. We first present
some necessary background, upon which we build to
develop to our approach.

Bayesian inference

Data is rarely available in sufficient quantity and quality
to allow for exact scientific deduction. Instead we are
forced to infer models from incomplete knowledge.
Bayesian inference is based on Bayes’ Rule, which evalu-
ates a hypothesis, H, in light of some data, D, and some
prior information, 1. It is a method of assigning prob-
abilities based on the current state of knowledge, allow-
ing for subsequent re-evaluation as new data becomes
available. The goal is to determine P (H |D, I), the pos-
terior probability distribution of the hypothesis, given
the data and the prior information. With Bayes’ rule, the
posterior can be expressed in terms of other probabil-
ities as

P(D|H, I) P(H|I)

P(H|D, ) = P(DI)

, 1)
where P(D|H, I) is the probability of observing the
data given the hypothesis and the prior, P(H|I) is the
prior probability of the hypothesis, and P(D|I) is the
probability of the data given the prior. When the
hypothesis is the variable and the data is held constant,
P(D|H, I) is called the likelihood function, and when the
hypothesis is constant it is called the probability of
obtaining a specified outcome (data). When evaluating
only one hypothesis, P(D|]) is a normalising constant,
but when investigating more than one hypothesis this
term plays a key role and is called the evidence [33].

Bayesian Spectrum Analysis

Our presentation in this section follows closely that of
Bretthorst [15]. The aim is to infer the most probable
frequency (or frequencies), @, from the given data. We
start by building a model (the hypothesis H) for the
observed data, parameterised by angular frequency, o,
and amplitudes, ¢, and then use Bayes’ rule to compute
the posterior probability of the parameters, P(w, c|D, H,
I). By assigning priors to the model parameters ¢ and
integrating over these, we arrive at the posterior prob-
ability for the parameter of interest, o,
P(w|D,H,I) = [ dcP(w, c|D, H,I). This is referred to as
the marginal posterior probability of w. We note that @
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is an r-tuple, {®,, w,, ..., ®,}, with as many elements as
there are distinct frequencies in the data.

A general model for observed data sampled at N dis-
crete time points, D = {d(t;), .., d(¢y)}, includes the sig-
nal of interest, s(¢;), a possible background function, g
(¢;), and the noise present in the system, e(t;),

d(ti) = s(t:) + g(6i) + e(t). ()

The signal function will usually be unknown and may
be complicated, but can be approximated by a linear
combination of mg model functions, y;, that we parame-
terise by the quantity of interest, w:

s(t) = Y (e, 1), 3)

j=1

in which a = {a, ...
coefficients.

Similarly, the background function, g(¢;), can be
approximated by a set of m, functions, {;, that are inde-
pendent of w,

,am,} are the expansion

Mg

8(t) = D big(n), @
j=1

where b = { b1, ..., bn} are the background model

function expansion coefficients.

Since a and b are not the main focus of the analysis,
we will aim to integrate them out of the equations by
marginalisation. Parameters that are treated in this man-
ner as often referred to as nuisance parameters, which
we denote here by ¢ = {ai, ..., dpn,b1, .. .,bmg},
Although the signal function depends on @, whereas the
background function does not, for notational purposes
we introduce the set of model functions, ¢; which con-
sists of both w; and {;. This allows us to condense the
model equation into

f(6) =s(t) +8(6) = Y _ iy, 1), (5)

j=1

such that now d(¢,) = fit;) + e(;) and m is now the total
number of model functions, 1, + m, The model functions
will typically not be orthogonal functions over the time
series domain. This, however, can be achieved by Cholesky
decomposition. In all subsequent calculations an orthogo-
nal basis is used. From Bayes’ rule, the joint probability
distribution of the model for the parameters @ and c is

P(D|w, ¢, H,I)P(w, c|H, I)

P(w, c|D, H, 1) = P(DIH, T)

(6)

The likelihood function, P(D|w, ¢, H, I), is calculated
by comparing data produced by the model signal,
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equation (5), to real experimental data. If the model per-
fectly captures the signal, the difference between the
model data and the real data is simply the noise in the
system. The model of the data in equation (2) includes
noise, e(t;), which we assume to be time independent in
the further developments. The true noise level is
unknown, but for a given noise power, 67, the principle
of maximum entropy leads to the use of a normal distri-

bution,
1 e?
exp  — . 7
V2ro? p{ 2‘72} @
A noise model of this form ensures that the accuracy
of the results is maximally conservative for a given noise
power. We will later integrate over all possible noise
levels to remove the dependence on o. With the
described signal and this noise model, the likelihood
was calculated by Bretthorst [15] to be

P(elo, 1) =

—Ni
P(D|w, o, ¢, H, I) cc o Nexp Q , (8)
202

where N is the number of data points, and

_ 2 m N 1 m m
Q=d>— > Y gdigj(w, t)+ > > Dcicr,  (9)
Niqia N T
where 42 is the mean-square of the data,
d* = (XX, d*)/N, and @ is the matrix of the model

functions, @y, = Zfi 1 Pi(@, ti) (o, t;)

The goal of the analysis is to compute the posterior
probability for frequencies in the data, i.e. to go from
the joint probability distribution to a posterior probabil-
ity of @, independent of the other parameters. By inte-
grating over all possible values of the parameters ¢ and
¢, the remainder is the marginal posterior of the para-
meters of interest, w={w, w,, ..., »,}. This is an essential
advantage of the Bayesian framework, allowing the ana-
lysis to focus on estimating the parameters of interest,
regardless of the values of the others. If necessary, the
other parameters can be estimated at a later point.

To integrate over the ¢ and c values, priors must first
be assigned to them. We chose uniform priors for ¢ and
o, representing complete lack of knowledge. We know
that o is continuous and must be positive, and in such
cases a Jeffreys prior is appropriate, P(c|I) = 1/0. Both
the uniform distribution over continuous variables and
the Jeffreys prior are known as improper priors if
bounds are not specified as they cannot be normalised.
For more information on prior assignment see [3,15].

Using the general model, equation (5), assigning the
priors, calculating the likelihood function, equation (8),
and integrating out the amplitudes and noise para-
meters, the posterior probability distribution of @ is
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proportional to

m—N
2 2
PllD, H, o [1-"" , (10)
N2

where / is the projection of the data onto the ortho-
normal model functions, hj_= Zf\i 1 didj(w, t;), and 2 is
the mean-square of the /;, h? = (Z]'ZI h]-z)/m, [15]. This
expression of the posterior allows us to identify the
strongest frequencies present in the data. For a good
model, there will be a high probability peak in the pos-
terior distribution at that ® = {w;, wo, ..., ®,}.

Results and Discussion

We employed the framework developed by Jaynes [3]
and Bretthorst [15] to investigate the frequency compo-
nents in a number of biological time series.

Model comparison

After evaluating the probability of parameters in light of
a certain hypothesis, it is important to question the
validity of that hypothesis. Thus, the next step in Baye-
sian inference is to compare the probability of different
hypotheses. The hypothesis is now a particular model of
the signal, H;, out of a set of M models {Hy, ..., Hyg,
and using Bayes’ Rule, the posterior probability of this
model is

P(H;|I)P(D|H;, I)

P(H;|D,I) = P(DIT)

(11)
Then two different models, H; and Hj, can be com-
pared by taking their ratios,

P(H;|D,I) _ P(H;|I)P(D|H;, I)

P(HLID, 1) ~ P(ELIDP(DIH, 1)’ (12

The probability of the data given our prior informa-
tion, P(D|H;, I), which was a normalisation constant in
equation (6), will now vary between models, and is
called the evidence. It evaluates the fit of the data to the
model, whilst penalising models that include more para-
meters. Each additional model parameter should be fol-
lowed by a significant increase in probability, otherwise
the simpler model is preferred. Thus, Bayesian model
comparison naturally follows the principle of Occam’s
razor [33,34].

Model development

It will often not be obvious which function to choose to
model trends in the data, so an approach using basis
functions and expanding these to different orders will
be of advantage, as in equation (4). Each expansion
represents a different model, H;, and these can be com-
pared using inference techniques. Likewise, different
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functions for capturing the signals in the data and mod-
elling a different number of signals correspond to differ-
ent models for data. Following [3,14,33], we use the
posterior ratio to evaluate different models.

This model ratio can be used to determine the num-
ber of background model functions for each time series.
The posterior probability ratio is calculated between
model H, and H, ., where H, is a model including »
background functions. To obtain the model ratio, priors
are assigned to each of the models and their likelihood
functions are calculated. Assigning equal prior probabil-
ity to all models reduces this to the ratio of evidences.
To compute the evidences we need to integrate the like-
lihood, P(D|w, o, ¢, H,, I) from equation (8), over o, o,
and c for each model H,. By assigning proper normal-
ised priors to all model parameters it is possible to inte-
grate over them around the maximum likelihood
estimate. Following Bretthorst’s derivation for location
parameters [15], we assign Gaussian priors to the ampli-
tudes with hyperparameters for the variances. Since the
variances are scale parameters, they are subsequently
assigned Jeffreys’ priors with an upper and lower bound.
This allows us to normalise them and integrate, leaving
the defined bounds as parameters in the final equation.
For models with the same bounds these terms cancel
out in the model ratio. The evidence for a given model,
H,, was calculated by Bretthorst [15] to be

P(D|H,, I) =

r(m/2) [ mh2({&}) 2
2 log(Rs) 2

I'(r/2) | re? ~2 - 13
2log(Ry)|: 5 :| TR (13)
m+r—N
L(IN —m—r]/2) |:Nd2 - th({a})} 2
X ’
2log(Rs) 2

where J, ¥ and ¢ are the prior variances for ampli-
tudes, frequencies and noise, respectively, R5, R, and R,
are the ratios of the integral bounds for these variances,
h2({@}) is the mean-square projection of the data onto
the orthonormal model functions at the maximum like-
lihood point for model H,, 42 is the mean-square of the
o value that maximises the likelihood,
w? =Y, 6)2) / 1, and r is the number of @ parameters,

o = {w, .., ,}. The Jacobian v]_é ~‘~Vr_é is obtained by
orthogonalising the Taylor-expansion of j2 around the
maximum-likelihood point, ¢. See Bretthorst for further
details [15]. For cases in which the number of frequen-
cies in the data exceeds the dimension of omega, for
instance multiple frequency data with a single frequency

model, the above approximation for the evidence is ill-
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suited as the posterior will cease to be unimodal. For
such scenarios, either multiple expansions or MCMC
offer attractive solutions to marginalisation. For compar-
ison we have included results from Nested Sampling
[14,35] as a means to perform the integration and com-
pute the evidence. Nested Sampling is a variant of
MCMC that employs a likelihood based sorting of sam-
ple points to efficiently guide the search strategy of the
posterior distribution [14,35].

When the model ratio, H,/H,,,1, becomes greater than
1, the simpler model, H,, is favoured over H,,; [33].
Adding more background functions than are justified by
the data (based on the posterior model ratio) may lead
to a lower probability for the frequency and in some
cases possibly a location shift.

This model development approach used for the back-
ground functions above can also be used to decide on
the number of underlying frequencies in the data. The
model ratios of a time series containing one frequency
(case A) and a time series containing two (case B) are
presented in Table 1, analysed with both a one- and
two-frequency model. The results show, as expected, a
preference for the one-frequency model in case A, and
for the two-frequency model in case B.

We point out that the proposed method stops once
the current best model has been found but is not guar-
anteed to find the global maximum from a predefined
set of models. The procedure is thus part of model
development rather than model selection. If the set of
hypotheses are known in advance then the posterior
ratios over the full set should be used to find the best
model.

Testing

We first show the power of the BSA approach on test
cases using simulated data. In these tests, we sought to
recover known input parameters from the simulated
data, to validate the BSA approach. We employed sines
and cosines as model functions (y; in equation (3)). For
comparison, Discrete Fourier Transforms were com-
puted using Fast Fourier Transforms (FFT) [36]. In the

Table 1 Model ratios for number of frequencies in the
data

Case N, Models Model ratio
A 1 Hiw/Hoe 66936
B 2 Hiw/Hoe 0
B 2 Hoo/H30 686
Case A has only one frequency, N, = 1, and case B has two, N, = 2. The

model ratio of a model including one frequency, H,,, and a model with two,
H,,,, is well above 1 for case A, showing that the simpler model should be
chosen. For case B, the first ratio is close to 0, showing that the more
complex model with two frequencies is far more likely. Values below 10® are
listed as 0. The second ratio is above 1, preferring the model with two
frequencies to the one with three.
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test cases, we varied key parameters such as noise levels,
trace length, sampling intervals, amplitudes, frequencies,
background trends and shape of oscillations.

Representative cases of noise levels and background
trends are shown in Table 2, including FFT results on
the same data set. A key observation is that the Bayesian
approach extracts the correct answer from the data with
high precision. BSA also computes the signal-to-noise
ratios which is a useful indication of how much of the
data cannot be accounted for in the model. Further-
more, the amplitudes do not impact the BSA results
since they are integrated out.

BSA has a clear advantage over FFT when the data is
non-uniformly sampled. FFT requires uniform sampling,
whilst BSA is less stringent and delivers the correct
result with higher precision. Bretthorst also noted that
non-uniformly sampled data removes aliases from the
frequency domain, another significant advantage [15].
Five further distinct cases emerged from the tests in
which BSA delivers superior results to FFT: time series
which have background trends, few data points, high
noise levels, multiple frequencies, and non-harmonic
oscillations.

Background trends

Additional file 1, Figure S1, is an example of a time ser-
ies with a strong background trend. In Table 3, the
model ratios for different background functions are
shown. The ratio is initially well below 1, but the ratio
of models with expansion orders of two and three
Legendre polynomials is above 1. Thus, background
functions of Legendre polynomials to expansion order
two is more likely, and should be used in the estimation
of w.

Examples 8-10 in Table 2 also include trends, and with-
out pre-processing FFT cannot pick out the correct fre-
quency. In contrast, BSA includes background functions
in the model signal and delivers the desired result.
Including background functions, however, results in
over-estimation of the signal-to-noise ratio.

Short time series

Additional file 2, Figure S2, shows the results from ana-
lysing a short time series. The FFT power spectrum is
very broad (Additional file 2B, Figure S2B), which
comes as no surprise given the FFT dependence on the
number of data points. BSA estimates the correct fre-
quency sharply, but the maximum probability drops
compared to longer time series (Additional file 2C, Fig-
ure S2C). This demonstrates the higher uncertainty
associated with fewer time points.

High noise levels

BSA is also successful at handling high levels of noise, as
highlighted in Examples 1-6 in Table 2. The frequency
estimates are correctly reproduced by the FFT. In these
simple test scenarios, the BSA posterior probability
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Table 2 BSA and FFT results from simulated harmonic data with noise and background trends

No. (2] eq (%) e, (%) b WOFFT OFFr WBSA OBsa WBSA—NS OBsA-NS s-n

1 05 1 - - 049 0.06 0.5 0 05 0.0002 70
2 0.5 10 - - 049 0.20 0.5 0.0002 0.5 0.0004 6.5
3 0.5 40 - - 049 0.54 0.5 0.0005 05 0.0011 19
4 0.5 10 10 - 0.49 027 0.5 0 0.5 0.0003 42
5 05 10 40 - 0.49 057 0.5 0.0002 05 0.0007 22
6 05 100 40 - 049 0.89 0.5 0.0006 05 0.0020 0.7
7 03,05 10 10 - 0.29, 0.51 0.14 03,05 0.0003 0.34 0.0832 1
8 0.5 10 - -t 0 0.15 0.5 0.0002 0.5 0.0002 110
9 0.5 10 - - 0 0.19 0.5 0.0002 0.5 0.0002 90
10 05 10 - -+ 0.02 024 0.5 0.0003 05 0.0002 35

Each time series was generated with a sine function of angular frequency, o, of 0.5 rad/s with a level of noise in amplitude, e, and phase, e,. In some time series
a background trend (b) was included, and in case number 7 an additional sine function of 0.3 rad/s is present. The resulting function was sampled 200 times at
an interval of 1 s. Results from FFT are presented in the form of the angular frequency with the highest power, Cz)FFT and the estimated standard deviation,
Orrr- The Bayesian frequency estimate at the maximum posterior point is denoted by C?)BSA and its standard deviation by ogss. For comparison, the expectation
value of w and its standard deviation computed using BSA and Nested Sampling (BSA-NS) are denoted by wpgsa—Ns and Ogsans. Values of o below 10 are
listed as 0. The estimated signal-to-noise ratio (s-n) from the Bayesian analysis is given in the last column. The BSA and BSA-NS approaches deliver the same
results, apart from the case of multiple frequencies in a 1D search of w (case No. 7), which for BSA-NS leads an intermediate estimate between the frequencies

with a higher standard deviation.

distribution estimates the frequency with a significantly
higher precision than the FFT. Whereas the estimated
uncertainty of parameter expectation values is a built-in
aspect of any probabilistic treatment such as BSA, FFT
has no inherent mechanism for assessing the accuracy
of the results. The FFT output is summarised by the
average, wpry, and the standard deviation, Orr7, over the
transformed data set. We show that different noise
levels influence the orrr more than the ogsa (Figure 1).
Multiple frequencies

Example 7 in Table 2 has two frequencies present in the
data. Both BSA and FFT show these two peaks in the
resulting plots. Although BSA can be used in this man-
ner with a one-dimensional ® to scan through frequency
space and estimate the number of frequencies in the
data and their location, if more than one frequency is
present, the model should be extended to reflect this.
Without this extension the integration procedure

Table 3 Automated model development

Models Model ratio
Hoge /Hh ¢ 1.9459¢-06
Hae /Har 1.0256e-167
Hae /Hse 6225
Ha /Har 566.3
Hag /Hse 501.8
Hse /Her 99.2

Posterior probability ratios of models including a different a number of
background functions, ¢, in the analysis of the time series in Additional file 1,
Figure S1. The first two ratios favour the more complex model (ratio below 1).
The ratio between models with two and three background functions, Hy- /Hs
is above 1 thus favouring the simpler model. The analysis would then
normally automatically stop at two background functions, but for
demonstration we include more functions here. The ratio stays above 1
thereby building a chain of decisions that always prefer the simpler model.

around a single point is not well suited, so we employed
Nested Sampling to compute the marginalisation in
these cases. For the extension approach, when the pos-
terior probability over @ = {w;} reveals two strong fre-
quencies, then a better model would be ® = {®w;, w,}.
For example, Additional file 3, Figure S3, shows BSA
and FFT results for a test case that includes higher har-
monics which give rise to multiple peaks in the log P
plot. If more than one peak in the resulting posterior
probability emerges, then the model can be extended
further. One peak in the posterior probability over the
number of modelled frequencies signifies that the cor-
rect number of frequencies has been captured.

As another example, Additional file 4, Figure S4,
shows the result of a two-frequency search. The BSA
posterior probability distribution is now two-dimen-
sional with a peak at the two correct frequencies (Addi-
tional file 4C, Figure S4C). The FFT results are also
shown (Additional file 4B, Figure S4B).

Additional file 5A, Figure S5A, shows a time series with
a high noise level and two very close frequencies of 0.498
and 0.505 rad/s. FFT cannot distinguish them and shows
only one peak (Additional file 5B, Figure S5B). BSA
breaks the resolution and precision limitations inherent
to FFT by introducing a continuous probability distribu-
tion instead of the fixed number of points and can there-
fore sample the posterior more finely in areas of high
probability. This approach gives rise to a high-resolution
probability plot in which two distinct frequencies emerge
(Additional file 5D, Figure S5D). The peaks have a larger
variance at this local level, but the qualitative information
of two underlying frequencies is revealed.

To develop BSA further, we used windowing of the
time series to compute the posterior probability
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Figure 1 Effects of noise on precision. The effect of noise on & for FFT (A) and BSA (B). The time series were simulated from d(t) = sin(wt) + ¢
with @ = 0.5 rad/s and sampled with 3 s intervals to give 100 points. The noise level, e, varies between 0 and 100%. Although the qualitative
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distribution of @ at each time point. We call this BSA
Local (BSAL). The robustness and negligible peak
broadening of BSA with fewer time points allows for
this windowing to proceed without the introduction of
artefacts due to truncation. This local BSA captures
changes in frequency, as shown in Figure 2B and Figure
3B. The BSAL was compared to Short-Time Fourier
Transform (STFT)(Figure 2D and Figure 3D), which is a
windowed Fourier Transform, and to wavelets (Figure
2C and Figure 3C). For the wavelet power spectrum a

Morlet mother wavelet was used [37]. The advantages of
BSAL are that it remains within the same BSA frame-
work, has high accuracy, and does not require pre-pro-
cessing of the data.

Non-harmonic oscillations

BSA results for oscillations with a non-harmonic shape
are superior to the FFT. It highlights an essential differ-
ence in the two methods since biological data is often
repetitive, but with a wide range of oscillatory patterns.
To demonstrate this further, Figure 4A shows a time
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Figure 2 Frequency changing over time. A: A time series with a changing frequency, simulated from d(t) = sin(—0.0lwltf)e*
with @; = 0.25 rad/s. B: The posterior probability distribution for the estimated frequency using a local BSA, BSAL, with a window size of 20. The
distribution is so narrow that it resembles a sharp line in the plot. C: The wavelet power spectrum using a Morlet mother wavelet [37], with a
lower cut-off at @ = 0.1 rad/s in the spectrum. The wavelet reproduces the correct result but with a broad distribution of frequencies. D: The
STFT result with a window size of 50, and an overlap of 40, is similar to the wavelet results.
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results gives the correct answer but with high variance.

Figure 3 One sharp frequency change. A: A time series with a sharp change in frequency half way through the observed time frame,
simulated from d(t) = sin(wt) with @, = 0.2 rad/s and w, = 04 rad/s. B: The posterior probability distribution for the estimated frequency using a
local BSA, BSAL, with a window size of 10, which is one third of the number of data points in a period of the first frequency. Nevertheless, the
resulting distribution is so narrow that it resembles a sharp line. C: The wavelet power spectrum using a Morlet mother wavelet [37], with a
lower cut-off at @ = 0.1 rad/s in the spectrum. D: The STFT power spectrum, window size of 100 and overlap of 5. Both the wavelet and STFT
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series simulated from an ordinary differential equation
(ODE) model of cellular calcium (Ca*") signals [38].
Such time series presents two potential problems: the
time series is chaotic and thus not perfectly periodic,
and the signal shape is non-harmonic. The calculation
of interspike intervals (ISI) of the time series show that
multiple intervals are present (Figure 4D). The highest
peak of the FFT plot (Figure 4B) suggests that the entire
time series is one period, while BSA suggests a strong
angular frequency around 1.2 rad/s (Figure 4C). The
BSA suggestion is similar to the second FFT peak.

This highlights the differences between frequencies in
the data and spike intervals. ISI are a common way of
characterizing spike data, however, multiple ISI need
not correspond to multiple frequencies in the data. Of
the four strong ISI shown here, both BSA and FFT iden-
tify only one of these as a regular period.

Summary

After extensive test cases we find that BSA delivers
superior results in cases where the FFT assumptions are
too constraining, most notably in the five cases above.
BSA is a flexible method allowing the underlying
hypothesis to be changed depending on the focus of the
analysis, and to directly compare the validity of different
hypotheses. It can handle non-uniformly sampled data

and has no need for pre-processing procedures. The
price of these superior results comes at a computational
cost that ranged from tens to hundreds of seconds for
the examples shown here.

Calcium spiking data

The first biological data set comes from intracellular sig-
nalling in plant-microbe interactions. Symbiotic bacteria
induce calcium oscillations, called Ca®* spiking, in
legume root cells (for a review, see [39]). These are
non-stationary and often noisy time series, causing pro-
blems in identifying periodicity. One hypothesis for sig-
nal transduction in this system is via frequency
encoding [40], so concluding whether there is underly-
ing periodicity, and at what frequency, is of great
interest.

The Ca®* spiking has background trends present due
to fluorescence bleaching and cell movements, which
are assumed to be unrelated to the underlying signal in
the cell. Therefore, accounting for the background func-
tions plays a key role in the analysis. Example time ser-
ies are shown in Figure 5A. Nine spiking cells from the
model legume Medicago truncatula were analysed for
an underlying period. The data is obtained by microin-
jecting a root hair cell with the calcium indicator dyes
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oscillations in animal cells [38].

40 60 80 100 120 140 160 180
Tins

about 100 s (C), while MTM (B) and FFT (D) deliver a broad spectrum.

Figure 5 Example results of data from calcium spiking. A: Time series of Ca®"
response to a bacterial signal molecule. The data is a relative ratio of the fluorescence of the Ca®*
showing changes in concentration, [Ca**]. The measurements are taken with 5 s intervals. BSA identifies one strong frequency at a period, T, of
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Oregon Green (responds to Ca®*) and Texas Red (non-
responsive), and exposing the plant to the bacterial sig-
nal molecule that induces the oscillations. The data is a
ratio of the fluorescence from the two dyes, showing
changes in Ca®" concentrations. The data has been pub-
lished in [41].

The FFT of the Ca®" data results in a very broad peri-
odogram, due to multiple frequencies and high noise
levels (Figure 5D). Also, the spiking produces a non-har-
monic signal, which might be another problem for the
FFT. For comparison, we also present results from the
multitaper method (MTM). The MTM is a non-para-
metric method of spectral analysis that uses tapers to
minimize the variance in the power estimate, and is tar-
geted at short and noisy time series [42]. The MTM
results were very similar to the FFT (Figure 5B). These
periodograms do not address the question of interest: Is
there a key period in the Ca®* signal? In the BSA analy-
sis (Figure 5C), the Ca* spiking data used the Legendre
background functions to an expansion order of 1-2,
depending on the individual trace. Nested Sampling was
used to compute the evidences. Frequencies with high
probabilities were picked out, but varied in the interval
of approximately 50-120 s (Table 4). However, the
strongest periods were in the interval of 75-100 s. If per-
iodicity plays a role in the signal transduction of this
system, then the key period should be in this interval.
The signal-to-noise ratios were relatively high, between
100-200, possibly as a consequence of including several
background functions.

Circadian data

The second biological data set shows gene expression of
so-called clock genes. Many processes in plants follow a
circadian rhythm (for reviews see e.g. [43] or [44]). A
number of genes in Arabidopsis thaliana have been
shown to regulate circadian rhythms, and time series of

Table 4 BSA on calcium data

Cell BSA Period * o (s) BSA-NS Period + o (s)
1 974 £ 0.23 973 £0.15
2 809 + 0.63 752 £ 10.1
3 746 £ 0.19 746 £ 0.85
4 1238 £ 0.16 1242 + 1.18
5 889 £ 0.22 1239 = 0.61
6 746 £ 0.21 113.7 £ 16.16
7 1219 £ 022 146.1 = 21.53
8 744 £ 092 752 £ 269
9 482+ 03 64.5 + 1394

Analysed calcium oscillations in M. truncatula root hair cells in response to
bacterial symbionts. The BSA shows strong underlying signals in the data, but
the cell-to-cell variability is high. BSA and the BSA-NS disagree when there are
multiple peaks present, as can be seen by the large standard deviation, o, of
the BSA-NS average period estimate.
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RNA levels show how these clock genes are expressed
in cycles [45]. Time series with only a couple of cycles
are common in biology and provide another suitable
test case.

For these circadian rhythms, we chose to analyse RT-
PCR data from four clock genes in two genotypes of A.
thaliana. The plants are either wild type, FRLFLC, or
mutants, fiiflc, of the genes FRI and FLC. The RNA was
extracted from seedlings, and each time series is an
average of two biological replicates. An example of the
RNA levels of a clock gene is shown in Figure 6A. The
data has been published in [45]. FFT on the RNA levels
of these clock genes did not give any clear periods,
either having only a vague peak or none at all (Figure
6D). This is caused by the FFT’s dependence on the
length of the time series, which in this case was only 1-
2 cycles. The MTM method had more of a peak in the
20-25 h period, but still lacking in precision (Figure 6B).
BSA on the other hand provides a clear peak close to 23
h (Figure 6C), consistently for all eight time series
(Table 5). Nested Sampling was used to compute the
evidences. The assigned probabilities are relatively low,
but the signal-to-noise ratios were between 2-4, and
similar probabilities were obtained using simulated data
with few data points and high noise levels. The period
peaks are very stable over all the time series, and sug-
gests a probable period which is unaffected by the muta-
tions (fri;flc). This is in agreement with the original
conclusions of the experiment [45].

Conclusions

Bayesian inference offers a powerful way of analysing
biological time series. Despite the undisputed value of
Fourier theory, there are cases when the necessary
requirements for its optimality for time series analysis
are not met. This is a consequence of the underlying
assumptions of a Fourier Transform, causing it to work
optimally only for uniformly sampled, long, stationary,
harmonic signals that have either no or white noise. In
biology these requirements are rarely fulfilled, requiring
pre-processing of the data, such as noise reduction and
detrending techniques, with the risk of convoluting the
signal and losing valuable information.

By placing the problem of frequency extraction in the
framework of Bayesian inference, the known and well-
documented problems of Fourier analysis can be over-
come. This approach also breaks the resolution and pre-
cision limitations inherent to the FFT by introducing a
continuous probability distribution instead of the fixed
number of points maintained by the discrete Fourier
Transform. As we demonstrated here, BSA coupled with
automated model development can give superior results
to the FFT when faced with short, noisy time series,
non-stationarity and non-harmonic signals. The
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Figure 6 Example results of data from a clock gene’s RNA levels. A: RNA levels of a clock gene, TOCT, in a friflc background of A. thaliana
seedlings. The data points have 2 h intervals and consist of two averaged biological replicates. The values are normalised to the average of the
housekeeping gene ACTIN2 in wild type. BSA gives a clear result with a period, T, close to 23 h (C), while MTM (B) and FFT (D) struggle with the
short time series and give no clear result. )

suggested automated model development worked well in
our hands but must be used with caution in practice as
the approach is not guaranteed to find a global opti-
mum in model space. Alternate models should be
explored and compared using posterior probability ratios
or approximations thereof. We found Nested Sampling
[14] to provide a powerful means of estimating evi-
dences for cases in which a single peak could not be
identified. Other MCMC techniques such as simulated
annealing running in parameter exploration mode or

Table 5 BSA on circadian data

Gene Genotype BSA Period + ¢ (h) BSA-NS Period + o (h)
TOC1 fri;flc 2275 %018 2258 = 043
TOC1 FRIFLC 2336 = 0.20 2326 = 042
CCA1 friflc 2358 £ 0.15 2367 + 094
CCAT FRIFLC 2398 £ 0.16 2423 £ 072

Gl fri;flc 2239+ 0.14 2254 + 086

Gl FRIFLC 2341 £ 0.16 2361 083

LHY fri;flc 2384 = 0.16 2382 = 154

LHY FRLFLC 2574 £ 0.19 2403 £ 1.23

The BSA results of RNA levels of four so-called clock-genes in A. thaliana,

measured in two different genotypes. The plants are either wild type, FRIFLC,

or mutants, friflc, of the genes FRI and FLC. All eight genotypes displayed
oscillations in RNA levels with a period of approximately 23 hours. Both BSA
methods identify similar periods.

standard Metropolis-Hastings algorithms offer attractive
alternatives [33].

BSA calculates signal-to-noise ratios, provides parameter
precision estimates, and can handle high noise levels as
well as background trends and therefore has no need for
pre-processing. More importantly, the Bayesian framework
offers flexibility in the underlying model and enables direct
comparison of hypotheses. The work presented here is a
merely a first step in this direction. We have employed
conservative priors (uniform, Jeffreys, Gaussian) that make
an analytical treatment tractable but in some cases more
information could warrant a different choice of prior that
might require substantial alternations to our approach to
handle the numerics of marginalisation.

There are many known examples in biology in which
oscillations play a key role and methods for their detec-
tion will be of value, especially in cases where subtle dif-
ferences are of importance and for short, noisy time
series. In the presented examples, we demonstrated the
improvements that can be gained from employing this
approach. Although in these cases, the biological con-
clusions would not have changed, one can envision sce-
narios in which a higher accuracy in frequency
detection may allow subtle changes to be detected,
which may otherwise have been swamped by noise and
less powerful techniques. We believe that the presented
methodology offers an attractive alternative to other
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Specify model functions, frequency domain
of interest and sampling interval

Read in time series

|

—_— Calculate posterior probability of model H
with n and n+1 background functions
If ratio <1
n=n+1
Calculate model ratio of the models Hn

and Hn+1; Hn / Hn+1

If ratio > 1
H, is preferred

Calculate frequency estimate with higher
accuracy in the area of high probability

|

Output results

Figure 7 BSA and automated background function determination. Flowchart of the automated model development procedure for BSA. We
point out that the proposed method for detecting the best number of background functions may give rise to local rather than global solutions
for complex background trends and/or poor choices of background basis functions.

approaches and will be a useful addition to the toolbox ~MATLAB®. The Octave code is freely available from the
of systems biologists. authors upon request.

Methods FT
All programming was done using Octave [46], which is The DFT was computed using the fft function in
freely available and compatible with the widely used  Octave. The results are presented in a power spectrum,
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to analyse which component carries the most power.
This is also know as a periodogram

S = 111 ZkN=1 |FFT(d)|? i.e. the squared absolute value of

the FFT of the data d, normalised over the number of
data points N [2]. For time series with strong trends,
detrending was done before the FFT, using the moving
average method [47].

There are a number of sophisticated FT methods
beyond the standard FFT, developed to avoid specific
problems. For example, we also present results from the
multitaper method (MTM), short-time Fourier Trans-
forms (STFT) and wavelet analysis. For the MTM, only
the MTM spectrum is presented, but it should be noted
that the Singular Spectrum Analysis - MultiTaper
Method (SSA-MTM) toolkit provides additional features
such as significance levels of the frequencies, relative to
the estimated noise levels [42]. The STFT power spec-
trums were computed with the specgram function in
Octave. The wavelet results were computed using soft-
ware provided by Dr. C. Torrence and Dr. G. Compo,
and is available online http://atoc.colorado.edu/research/
wavelets/. This wavelet software also provides additional
tools such as significance levels [37].

BSA

A flowchart of the BSA code is shown in Figure 7. The
first step is to specify appropriate model and back-
ground functions. We employed sines and cosines as
model functions (y; in equation (3)), and Legendre poly-
nomials as background functions ({; in equation (4)).
Legendre functions are convenient as they form a basis
that can be scaled to be orthogonal over the time
domain and offer a level of detail that increases with
expansion order. The software, however, will attempt to
orthogonalise any given set of functions over the range
determined by the data by Cholesky decomposition, so
other functions can be employed.

The next step is to specify the frequency domain of
interest. This domain is then sampled with a chosen inter-
val, and the posterior probability is computed at each fre-
quency. Since the @ values are sampled over the frequency
domain of interest with a chosen interval, the most prob-
able frequency from this set may have a close neighbour
with even higher probability, but which fell between sam-
pling points. To avoid this, the Nelder-Mead optimisation
technique was used to find the maximum of equation (10)
[48]. Subsequently, the area surrounding this peak is finely
sampled, to achieve a better representation of the posterior
probability distribution of . The number of maxima
should be checked and if proceeding with a multimodal
distribution, an MCMC technique such as Nested Sam-
pling should be used instead of the described marginalisa-
tion method. The outputs from the BSA algorithm are the
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posterior probability distribution of @, a signal-to-noise
ratio distribution and a power spectrum.

Additional material

Additional File 1: Time series with background trend. Time series
including a background trend, simulated from d(t) = sin(wt) - 0.005¢ + e,
with @ = 0.5 rad/s, sampled with 1 s intervals to give 200 points. The
noise level, e, is 0.1 which corresponds to 10%.

Additional File 2: Short time series. A: A short time series simulated
from d(t) = sin(wt) + e, with @ = 0.5 rad/s, and sampled with 1 s
intervals to give 20 points. The noise level, e, is 0.1 which corresponds to
10%. B: FFT results. The y-axis is the spectral power, S. C: BSA result. P
denotes the posterior probability. The BSA estimate of e is correct, and
has considerably less spread than the FFT estimate.

Additional File 3: Higher harmonics. A: Time series with higher
harmonic frequencies, simulated from d(t) = sin(wt) + sinBwt) + sin(5wt),
with @ = 0.1 rad/s, sampled with 1 s intervals to give 200 points. B: FFT
results. D: log(Probability) plot of the BSA results. Both BSA and FFT show
three strong peaks in w. Depending on the length of the series, the
truncation, and sampling interval not all peaks will result in an equal
probability. C: Probability plot of the BSA results. In the current case, the
question of which single frequency is the most probable results in the
selection of the 3w frequency.

Additional File 4: Multiple frequencies. A: A time series containing
two distinct frequencies, simulated from d(t) = cos(m+t) + cos(w-t), with
w; =03 rad/s and w, = 0.5 rad/s, sampled with 1 s intervals to give 250
points. B: FFT results. The y-axis shows the spectral power, S. C: BSA
result. Each point in this plot has two frequencies, so only off-diagonal
elements correspond to two distinct frequencies and only if both are
present in the data will a high joint probability emerge. Both approaches
detect the correct frequencies.

Additional File 5: Multiple close frequencies with noise. A: A time
series containing two close frequencies, @, = 0498 rad/s and w, = 0.505
rad/s, simulated from d(t) = cos(w,t) + cos(w-t) + e, and sampled with 1
s intervals. The noise level, e, is 0.1, which corresponds to 10%. B: The
FFT result only shows one peak due to the sampling resolution that is
determined by the time domain data. In the y-axis, S stands for spectral
power. C: The BSA estimate using a two frequency model. Each point in
this plot has two frequencies, so only off-diagonal elements correspond
to two distinct frequencies and only if both are present will a high joint
probability emerge. D: Sampling in the area around the peak of high
probability show that two distinct frequencies emerge in strong off-
diagonal peaks.
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