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Abstract

unprecedent opportunities for drug target identification.

and guide experimental design of drug discovery.

Background: Efficient identification of drug targets is one of major challenges for drug discovery and drug
development. Traditional approaches to drug target identification include literature search-based target
prioritization and in vitro binding assays which are both time-consuming and labor intensive. Computational
integration of different knowledge sources is a more effective alternative. Wealth of omics data generated from
genomic, proteomic and metabolomic techniques changes the way researchers view drug targets and provides

Results: In this paper, we develop a method based on flux balance analysis (FBA) of metabolic networks to
identify potential drug targets. This method consists of two linear programming (LP) models, which first finds the
steady optimal fluxes of reactions and the mass flows of metabolites in the pathologic state and then determines
the fluxes and mass flows in the medication state with the minimal side effect caused by the medication. Drug
targets are identified by comparing the fluxes of reactions in both states and examining the change of reaction
fluxes. We give an illustrative example to show that the drug target identification problem can be solved
effectively by our method, then apply it to a hyperuricemia-related purine metabolic pathway. Known drug targets
for hyperuricemia are correctly identified by our two-stage FBA method, and the side effects of these targets are
also taken into account. A number of other promising drug targets are found to be both effective and safe.

Conclusions: Our method is an efficient procedure for drug target identification through flux balance analysis of
large-scale metabolic networks. It can generate testable predictions, provide insights into drug action mechanisms

Background

Drug target is a key molecule involved in a particular
metabolic or signaling pathway that is specific to a dis-
ease condition or the survival of a microbial pathogen
[1,2]. Identification and validation of drug target is the
essential first step in new drug discovery and develop-
ment. Drugs can be designed to modify the functioning
of the pathway in the diseased state by inhibiting a key
molecule, or to enhance the normal pathway by promot-
ing specific molecules that may have been affected in
the diseased state. For the diseases caused by microbial
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pathogen, drugs usually are designed to inhibit the
essential components of the pathogen to disrupt its sur-
vival. In all the cases, drugs should be designed in such
a way as not to affect any other important molecules,
since modification of non-disease-causing molecules
may lead to undesirable side effects [3].

In pharmaceutics, drugs generally fail in the clinic for
two reasons: they either do not work or are proved to
be unsafe [1]. For example, if components other than
disease-causing compounds are affected by a drug, toxi-
city or side effect will arise; on the other hand, if dis-
ease-causing compounds are not inhibited by a drug,
then lack of efficacy will arise. Both of these problems
have been attributed to sloppy early target discovery and
are among the main challenges in developing new
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drugs. Traditional drug development approaches focused
more on the efficacy of drugs than their toxicity, which
does not meet the increasing demand of public health
on new drug development. On the other hand, recent
drug research in post-genomic era stresses on the iden-
tification of specific biological targets such as enzymes
or proteins for drugs, which can be manipulated to pro-
duce the desired effect of curing a disease with mini-
mum disruptive side effects [1,4]. With the complete
sequencing of human and bacterial genomes and the
subsequent accumulation of genomic, proteomic, and
metabolomic data, systems biology approaches or net-
work-based analyses hold great promise for identifying
drug targets by utilizing biological networks, such as
gene regulatory networks, metabolic networks and pro-
tein interaction networks [5-16]. Among these methods,
one class is to identify drug targets by analyzing the
topological feature of protein interaction networks or
metabolic networks [6,8,9,17]. For example, Guimera et
al. proposed a module-based approach to characterize
the roles of enzymes according to the modular structure
of metabolic networks, which is promising for identifica-
tion of drug targets [6]. Hormozdiari et al. proposed
sparest cut strategies to identify potential multiple-drug
targets in pathogenic protein-protein interaction net-
works with goal of disrupting known essential pathways
or complexes in pathogens [8]. In addition, flux balance
analysis (FBA) of genome-scale metabolic networks is
another important class of methods for drug target iden-
tification. Usually methods in this category aim to pre-
dict essential enzymes which are critical to the survival
and growth of pathogens [15,18-21]. Raman et al. con-
structed a comprehensive model of mycolic acid synth-
esis metabolic pathway in the pathogen Mycobacterium
tuberculosis and used FBA to do in silico systematic
gene deletions which identify proteins essential for this
pathway and lead to identification of anti-tubercular
drug targets [18]. Plasmodium falciparum is the primary
agent of the best-known tropical disease malaria. Plata
et al. reconstructed a genome-scale metabolic network
of P. falciparum and did FBA for simulating gene dele-
tion [20]. Their model reproduced the phenotypes of
experimental gene knockouts and drug inhibition assays
with high accuracy and identified 40 essential genes as
enzymatic drug targets. Recently, a few studies have
been done on prediction of drug-target interaction by
integration of chemical, genomic and pharmacological
data[11-13,22]. In short, wealth of various types of
omics data are changing the way researchers view drug
targets and provides unprecedent opportunities for drug
target identification.

For pathogenic diseases, drugs are designed to act on
the pathogen directly, and drug targets are those
enzymes crucial for the survival and growth of the
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pathogen, which can be identified by FBA-based growth
simulation or sparse cut strategies [8,18,20]. The patho-
genic diseases are cured by inhibiting essential enzymes
(drug targets) using drugs. For nonpathogenic diseases,
drugs act on human enzymes and adjust the reactions
catalyzed by these enzymes to make metabolism normal
and cure the diseases caused by metabolic disorders
[7,14]. Although many methods have been developed for
drug target identification, most of them do not consider
the factor of side effects, which may be the main reason
why only modest results have been obtained so far.
Recently, a new drug target identification model based
on metabolic networks has been proposed by Sridhar et
al. [23,24], in which a set of enzymes (drug targets) is to
be found to inhibit disease-causing compounds through
drugs’ action on these enzymes and meanwhile reduce
the side effects caused to non-disease-causing com-
pounds as much as possible. In other words, inhibition
of the identified drug targets will stop the production of
a given set of disease-causing compounds, and mean-
while eliminate a minimum number of non-disease-
causing compounds. In their models, the side effect of a
drug is defined as the number of non-disease-causing
compounds eliminated while drugs inhibit the disease-
causing compounds. They presented a scalable heuristic
iterative algorithm as well as a branch-and-bound exact
algorithm for solving the formulated drug target identifi-
cation problem [23,24]. Song et al. developed a double
iterative optimization algorithm for the same problem
[25]. Li et al. further formulated this metabolic network-
based drug target identification model as an integer lin-
ear programming (ILP) which ensures that optimal solu-
tions can be exactly and efficiently obtained without any
heuristic manipulation [26]. Instead of using flux bal-
ance analysis, the drug target discovery model in this
class is based on the logic biochemical relationships
between reactions, enzymes and compounds: a reaction
is inhibited if and only if at least one of its reactant
metabolites is inhibited, and a product metabolite is
inhibited if and only if all reactions producing this meta-
bolite are inhibited [27]. Aiming at minimizing the side
effects of drug targets, this model does not need to
determine biological objective functions for optimizing
flux distribution.

The drug target identification model mentioned above
is qualitative and explores properties of metabolic net-
works from a topological view. However, although the
definition of damage in such a model reflects side effects
to some extent, it is still too coarse and cannot capture
the quantitative relationships among reactions, metabo-
lites and enzymes. In the process of metabolism, the
mass flows of metabolites and the fluxes of reactions
satisfy balance relationships. If disease-causing com-
pounds are completely inhibited by manipulating drug
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targets, some non-disease-causing compounds may also
be eliminated, which may change the concentration or
mass flow of some other non-disease-causing com-
pounds. If the changed concentration or mass flow of
these non-disease-causing compounds is out of a healthy
range, some symptoms of side effects will appear. In
fact, although the accumulation of disease-causing com-
pounds in a sophisticated metabolic system may result
in diseases, it is not reasonable to inhibit them comple-
tely. We only need to adjust their concentration or mass
flow to a healthy range by certain medication strategies.
For example, the healthy range of normal empty blood
sugar concentration of a person is [0, 6.11] mmol/L. If
his empty blood sugar concentration is larger than 7.0
mmol/L, then he may be diagnosed to be a diabetes
patient. To cure diabetes, we need to reduce their
empty blood sugar concentration to a healthy range.
Sridhar et al.’s qualitative drug target identification
model cannot handle this case. In [7], Vera et al. pro-
posed a method called optimization program for drug
discovery (OPDD) to identify enzyme targets in enzymo-
pathies by integration of metabolic models and biomedi-
cal data. An existing S-system model and literature
information about the human hyperuricemia were used
to detect single-enzyme targets and two-enzyme targets.
This method needs to solve a large number of optimiza-
tion programs and select the most feasible solution by
additional criteria. Furthermore, side effects are not
taken into account. In this paper, we propose a method
to identify drug target based on flux balance analysis
(FBA), in which we consider a quantitative and more
reasonable definition of damage to reflect side effects of
drug action, that is, the deviation of the mass flow of
non-disease-causing metabolites from their health range.
Our method consists of two linear programming mod-
els: one is to find the optimal fluxes of reactions and the
mass flows of metabolites in the pathologic state, and
the other is to determine the fluxes and mass flows in
the medication state with the minimal side effect caused
by the medication. Then drug targets are identified by
comparing the fluxes of reactions in both states and
checking the reactions whose fluxes are changed. An
illustrative example is given to show that the drug target
identification problem can be solved effectively by our
method. We also apply our method to a hyperuricemia-
related purine metabolic pathway. Known drug targets
for hyperuricemia are correctly identified by our two-
stage FBA method, and the side effects of these targets
are also taken into account. A number of other promis-
ing drug targets are found to be both effective and safe.

Methods
Metabolism, which comprises the complete set of bio-
chemical reactions in a living cell, is one of the most
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complex cellular processes. Metabolic networks connect
biochemical reactions via substrate and product sub-
stances called metabolites. In a metabolic network,
enzymes catalyze reactions which take substrates and
produce metabolites. Such processes constitute the
whole metabolism system of a living organism. However,
the malfunctions of some enzymes may lead to produc-
tion of excessive concentration or mass flow of certain
compounds in a sophisticated metabolic system, and
thereby may result in diseases [28]. Such compounds
are generally considered as disease-causing compounds
because they are directly relevant to the diseases. The
remaining compounds in the metabolic system are all
considered as non-disease-causing compounds. On the
other hand, those enzymes are considered as drug tar-
gets, if manipulating them by drugs the concentration
or mass flow of disease-causing compounds can be
adjusted to a healthy range. Hence, the drug target iden-
tification problem is to identify such an enzyme set that
can be manipulated by drugs to adjust the mass flow of
all disease-causing compounds to a healthy range, and
meanwhile reduce the gap between the mass flow of
non-disease-causing compounds after medication and
their healthy range as much as possible. The sum of
gaps between the mass flow of all non-disease-causing
compounds and their healthy state range is defined as
the side effects (of the drug targets).

Metabolic network representation
A metabolic network is generally a biochemical network,
in which chemical compounds and metabolites are
represented by nodes and reactions catalyzed by one or
several certain enzymes are denoted by directed edges.
In order to make drug target identification easily under-
stood, we use another graphical representation of meta-
bolic networks [29], in which a metabolic network is
built up of substrates that are connected to one another
not through single links, but through physical entities
denoting reactions (enzymes). A metabolic network in
this type of representation is a directed bipartite graph
and has two types of nodes. One type represents chemi-
cal reactions and the other metabolites. A directed edge
from a reaction to a metabolite means that the metabo-
lite is a product of the reaction. A directed edge from a
metabolite to a reaction represents that the metabolite
is a reactant of the reaction. A reversible reaction is
considered as two separate reactions corresponding to
forward and backward reactions. This representation
allows us conveniently to express the relations between
substrates, reactions and products by the topology of
metabolic networks.

Suppose that there are m metabolites {C;, Cs, ...,C,,}
and 7 reactions {R;, R,, ..., R,} in a metabolic network.
S = [sijlmxn and T = [t} ;],4xm are the stoichiometric
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coefficient matrices of reactions. The kth column of
matrix S denotes the coefficients of reactants in reaction
Ry, while the kth row of matrix T denotes the coeffi-
cients of metabolites produced by reaction R;. We can
obtain the kth column of matrix S and the kth row of
matrix 7 from the chemical equation of reaction Ry .
Conversely, the chemical equation of reaction R, can be
deduced from the kth column of matrix S and the kth
row of matrix 7. For example, the chemical equation of
reaction Ry is

2C; + 3C,—>Cs+ 2C,

Then sjp =2, 854 =3,854,=04%1,2and 5 =1,

tk,6 =2, tk,/' = 0,] # 5,6

After formulating a metabolic network into a bipartite

digraph as described above, our method for drug target
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identification, called as two-stage FBA method, is
formulated into two linear programming models. The
general scheme is shown in Figure 1, which we will
introduce step by step in the following subsections.

Determining pathologic metabolite mass flows and
reaction fluxes

Kinetic modeling of large-scale metabolic networks is
often impossible due to lack of specific enzyme rate
data. A simple and useful alternative for analysis of
metabolic capabilities of cellular systems is flux balance
analysis (FBA) [30]. FBA ignores metabolite mass flow,
enzyme activity and transient dynamics and focuses on
stoichiometry of metabolic reactions, mass balance and
steady state, which makes it able to analyze large-scale
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Figure 1 General scheme of the two-stage flux balance analysis (FBA) method for drug target identification. Given a metabolic pathway
related to a disease (a), our two-stage FBA method first calculates optimal fluxes of reactions and mass flows of metabolites in the pathologic
state (b). Then, assuming some medication strategy can adjust the abnormal level of the disease-causing compound (the node marked in
yellow), the two-stage FBA method determines the fluxes of reactions and the mass flows of metabolites with minimum side effects in the
medication state (b). Different colors of the edges in (b) represent different fluxes. By comparing the reaction fluxes in the pathologic state and
medication state (c), a sub-network is constructed and potential drug targets (the node marked in red) are identified (d).
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metabolic systems in complex organisms [27]. In FBA
models, the concentration change of each species over
time follows mass balance and can be defined in terms
of the flux (reaction rate) and stoichiometry of each
reaction in which the species participates. The transient
mass balance can be further simplified to only consider
the steady state, which leads to S - v = 0, where v = (v,
Vo, ... )T denotes the flux vector of the reactions in
the stoichiometric matrix S = -S + T”. In metabolic sys-
tems, the feasible region in the steady-state flux space
may be too large to be meaningful. FBA overcomes this
by adding biologically meaningful objectives into the
model, such as maximization of growth rate, maximiza-
tion of ATP production, and minimization of nutrient
uptake. These objectives can be represented by a linear
combination of reaction fluxes of interest, which results
in a linear programming model:

max ¢’ v (1)

st.S-v=0()

Vmin S V S Viax (3)

where c in the objective function (1) is a vector of
weights for the fluxes v, (2) is the set of mass balance
constraints, and (3) is the set of enzymatic capacity
constraints. FBA has been widely used for in silico
phenotype prediction. For more methodological details
of FBA, one can refer to [31,32].

Given a metabolic network in the pathologic state, we
delete the reactions that cannot take place because its
catalyzing enzyme is inhibited in the disease state.
Although the metabolic network is in the pathologic
state, it still can produce as much biomass or energy
(e.g. ATP) as possible so as to maintain tissue growth.
So we can determine the flux of each reaction and the
mass flow of each metabolite in the pathologic state by
a FBA optimization model. Let v; denote the flux of
reaction R;, x; denote the mass flow of metabolite C;
that is, the mass flow of metabolite C; produced (or
consumed) by all the reactions it involves in the meta-
bolic network. We use the following linear programming
model to determine the mass flows of metabolites and
the fluxes of reactions in the pathologic state:

n m

j=1 i=1
n n
s.t. Z sV = 2 tyv;  for metabolite C; (5)
j=1 j=1
n
X = Z SijVj for metabolite C; (6)

=

n
x; = z Liv; for metabolite C; (7)
j=1
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O<vi<sUj=12,..,n(8)

O0<w; <q;;=12,..,m(9)

The objective function denotes the maximization of
mass flows of certain metabolites. For example, if we
want to maximize the mass flows of metabolites in the
biomass reaction, we can set Cpiomass,; = 1 and Cj ;= 0,
j # biomass. Eq. (5) is the mass balance constraint of
each intermediate metabolite. Constraint (6) defines
that the mass flow of each metabolite is equal to the
weighted sum of the fluxes of all reactions (if any) that
consume this metabolite. Similarly, constraint (7) guar-
antees that the mass flow of each metabolite is equal
to the weighted sum of the fluxes of all reactions (if
any) that produce this metabolite. Constraints (14) and
(15) represent the capacity limits of reaction flux and
metabolite mass flow in the pathologic state, where UJ;
and g; are the upper bounds of variables v; and x;
respectively.

Determining medication metabolite mass flows and
reaction fluxes

In the pathologic state, the mass flows of some meta-
bolites are out of healthy ranges which directly result
in the disease symptoms. For example, if the healthy
range of the jth metabolite’s mass flow is [a; ,b)], it
means that x; should satisfy a; < x; < b; . If x; >b; or x;
<a;, some fluxes of biochemical reactions should be
adjusted by using drugs so that x; € [a;, b;]. At this
time, the metabolite C; is the disease-causing com-
pound, other metabolites are non-disease-causing com-
pounds, and the biochemical reactions whose fluxes
are to be enzymatically adjusted by using drugs are
viewed as drug targets. In this adjustment process, the
mass flows of some other non-disease-causing com-
pounds may change to be out of their health ranges,
which we define as the side effects of the drugs. A
good drug should be potent and have minimal side
effects. Aiming to minimize the side effects, we can
find the mass flows of metabolites and the fluxes of
reactions in the medication state by using the follow-
ing linear programming model:

rninz‘(d;r +d;)

ieN

n n
s.t. Zsijvj = Ztﬁuj for metabolite C; (11)
j=1 j=1

(10)

for methaolite C; (12)

for metabolite C; (13)
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0<v<sUj=12,..,n(14)
a; < x; < b, ie P(15)

a;<x;+d; —df <b;, ie N (14)

where N is the set of non-disease-causing com-
pounds and P is the set of disease-causing compounds,
a; bsare respectively the healthy lower and upper
bounds of the mass flow of the target compound C;
and d;, di* are variables representing the deviation of
the mass flow of C; from its healthy range. Constraint
(11) is only for intermediate metabolites. Constraint
(12) is for intermediate metabolites and those metabo-
lites that are only consumed (not produced) in the sys-
tem. Constraint (13) is for intermediate metabolites
and those metabolites that are only produced (not
consumed) in the system.

Identifying drug targets and drug dose for diseases

After we obtain the flux vector of reactions v’ in the
pathologic state and the flux vector of reactions v' in
the medication state, by comparing v? and v!, we can
easily find the reactions whose flux has been changed by
medication. We construct a sub-metabolic network by
using all these reactions whose fluxes have been chan-
ged by medication along with their reactants and pro-
ducts. All the compounds with zero in-degree are then
deleted, that is, delete all the compounds which is not a
product of any reaction in this subnetwork. These com-
pounds come into the metabolism process from the out-
side of the system. In the sub-metabolic network
consisting of changed reactions and their related com-
pounds, all the reactions that have no reactants are
identified. These reactions (equivalently, enzymes cata-
lyzing these reactions are actually the boundary or
source of the system and determined as drug targets.
This indicates that manipulating the concentration of
enzymes that catalyze these reactions by drugs can
adjust the reaction fluxes so that the mass flows of dis-
ease-causing compounds are changed back to the
healthy ranges following the paths in the sub-metabolic
network. This alignment strategy for finding drug tar-
gets is reasonable. For example, Chu and Chen con-
structed protein-protein interaction networks involved
in the apoptosis of cancerous and normal cells to deter-
mine cancer-perturbed protein-protein interactions
which allows identification of potential apoptosis drug
targets for anti-cancer drugs [33].

In [34], it has been indicated that the flux of a reac-
tion is correlated with the concentration level of the
enzymes catalyzing this reaction. The concentration of
enzymes can be controlled by drugs, so drug dose can
be determined according to the flux change of reactions
between the pathologic and medication states. Primary
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experimental methods can also determine the suitable
dose to cure the disease.

Results

In this section, we use an illustrative simulated
metabolic network and a real human metabolic pathway
to test the effectiveness of our method in detecting
potential drug targets. The algorithm is coded by Python
script and the LP models are solved by GLPK linear
programming/MIP solver GLPSOL.

An illustrative simulated metabolic network
Figure 2(a) is a simulated metabolic network of 12
metabolites and 8 reactions, which can be expressed by
the following chemical reaction equations.

R1:2C1 + C2—-C5 + Cé

R2:4C3 —>3C6+C7

R3:3C2—>C8

R4:C4—2C8

R5:2C5 -3 C9

R6: 2C6—~C10 + 2C11

R7: C6 + 3C6—~2C11 + 3C12

R8:2C8 — 3 C12

We assume that metabolites C8, C9, C11, C12 are
involved in the biomass reaction. In the pathologic state,
the upper bounds of all reaction fluxes are taken as 10,
and the upper bounds of mass flow of all metabolites
are taken as infinity. Solving the pathologic linear
programming model, we can obtain the results
expressed in Figure 2(a), where the optimal mass flow
vector of metabolites is x° = (20, 40, 15, 5, 10, 21.25,
3.75, 20,15, 10, 22.5, 33.75) and the optimal flux vector
of reactions is v° = (10, 3.75,10,5, 5,10, 1.25,10), depicted
beside the corresponding nodes. Suppose that the
healthy ranges of metabolites C1-C8 are very high, the
healthy ranges of other metabolites are 10 < xco,%c10 »
xc11 < 15 and 0 < x¢c12 < 1, and the flux upper bound of
each reaction is U; = 10, j = 1,2, ... , 8. It is easy to see
that the disease-causing metabolites are C11 and C12,
whose mass flows are out of their health ranges. We can
further find the optimal fluxes of reactions and the mass
flows of metabolites in the medication state. The opti-
mal mass flow vector of metabolites is x' = (20, 10, 4, 0,
10, 13, 1, 0, 15, 6.33, 13.33, 1) and the optimal flux vec-
tor of reactions is v' = (10, 1, 0, 0, 5, 6.33, 0.33, 0), both
shown in Figure 2(b). The side effect is 3.667 since the
mass flow of metabolite C10 is 6.33, out of its healthy
range 10 < xcio < 15.

By comparing v° and v', we construct a sub-metabolic
network, shown in Figure 2(c). According to the method
described in the Methods section, potential drug targets
are the enzymes which catalyze R2, R3, R4 respectively.
If we adjust the fluxes of R2, R3, R4 respectively to be 1,
0, 0 by using drugs, then the mass flows of disease-
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Figure 2 A simulated metabolic network. (a) The fluxes of reactions and the mass flows of metabolites in the pathologic state. (b) The fluxes
of reactions and the mass flows of metabolites in the medication state. (c) The sub-metabolic network obtained by comparing the reaction
fluxes in the pathologic state and medication state. (d) The reactions R2, R3, and R4 corresponding to potential drug targets.

causing compounds will be in healthy ranges with side
effect 3.667. This result can also be obtained by the
pathologic model with the flux constraints of reaction
R2, R3, and R4 being 1,0,0 respectively. If the healthy
ranges of metabolite mass flows are modified to be 10 <
Xco, Xc12 < 15,5 < xc10 € 15, and 15 < xcqq < 20, then
the optimal drug targets are still R2, R3, R4, and the
side effect is 0, which means that the disease can be
cured by medication treatment on the enzymes catalyz-
ing R2, R3, and R4 without causing side effects.

Detection of drug targets for human hyperuricemia

Hyperuricemia is an enzymopathy which is character-
ized by the abnormally high level of uric acid in the
blood. One of main causes of human hyperuricemia is
the increased production of uric acid that results from
high levels of purine in the diet and increased purine
metabolism. Foods high in the purine, adenine and
hypoxanthine are very potent in exacerbating hyperuri-
cemia [35]. From a metabolism view, the main cause of

this disease is a functional defect in the enzyme phos-
phoribosylpy-rophosphate (PRPP) synthetase that con-
trols the synthesis of purine. This defect provokes an
increase in its enzymatic activity and leads to an aug-
mentation of degradative metabolic fluxes yielding more
uric acid than usual [7,36,37]. The uric acid is stored in
the form of urate crystals in some tissues (e.g. joints)
and results in the symptoms of hyperuricemia such as
acute episodes of arthritic pain and nephropathy. Cur-
rently, there are two kinds of medications most often
used to treat hyperuricemia: xanthine oxidase inhibitors
and uricosurics. Xanthine oxidase inhibitors decrease
the production of uric acid by interfering with xanthine
oxidase. Allopurinol is one of specific inhibitors of
xanthine oxidase that can lead to a drastic reduction in
the concentrations of uric acid [38]. Uricosurics increase
the excretion of uric acid by reducing the reabsorption
of uric acid once the kidneys have filtered it out of the
blood. Other treatments of this disease include a symp-
tomatic treatment for joint pain and a restricted diet
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that precludes consumption of food with high concen-
trations of purine precursors [7].

Hyperuricemia has been widely investigated and its
functional mechanism and metabolic basis is well under-
stood, which makes it a good case study for drug target
identification. In this work, we examine whether our
method is able to detect enzymes which may be helpful
for adjusting the level of uric acid and act as potential
drug targets. Since hyperuricemia is closely related to
human purine metabolism, we construct a hyperurice-
mia metabolic pathway by referring to the Homo sapiens
purine metabolism in KEGG and the purine metabolic
model in [7]. Those reactions and metabolites that are
obviously irrelevant to the production of uric acid
(urate) are not included. The constructed hyperurice-
mia-related purine metabolic pathway has 23 reactions
and 35 compounds, with a number of enzymes catalyz-
ing the reactions. The chemical transformations of main
metabolites are shown in Figure 3. This network
includes the synthesis, recovery and degradation of pur-
ine nucleotides, and the regulation of the enzyme activ-
ity for metabolites, either substrates or products. The
complete lists of reactions, compounds and enzymes in
this pathway are in Additional file 1, Additional file 2,
and Additional file 3 respectively.

Since it is known that hyperuricemia is characterized
by the abnormally high level of uric acid, we simulate
the pathologic state of the metabolic pathway by maxi-
mizing the production of uric acid. All the reactions
have an identical upper bound of fluxes 10 except for
the reaction producing uric acid and the reaction
synthesizing purine. As described in Methods section,
the pathologic model has a mass balance constraint for
each nontrivial intermediate metabolite which is a linear
equation of reaction fluxes, and the mass flow of each
metabolite is the weighted sum of all fluxes of the reac-
tions producing (or consuming) it. The upper bounds of
reaction fluxes and the mass balance constraints
together determine the ranges of the mass flows of
metabolites, so here we do not set particular bounds for
metabolites. Solving this pathologic model for the hyper-
uricemia metabolic pathway, we find that the abnormal
level of uric acid obtained by the pathologic model is
20, and 16 reactions have non-zero fluxes, including the
reactions catalyzed by xanthine oxidase, phosphoribo-
sylpy-rophosphate synthetase, hypoxanthine phosphori-
bosyltransferase, IMP dehydrogenase, AMP deaminase,
adenine deaminase, 5’-nucleotidase, etc. The reaction
synthesizing PRPP has the highest flux, which is consis-
tent with the fact that functional defect in the enzyme
phosphoribosylpy-rophosphate (PRPP) synthetase causes
hyperuricemia.

Healthy level of uric acid should be much less than
that in hyperuricemia, so we assume that the healthy
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range of the mass flow of uric acid is 5 < xyqee < 10.
The health range for the mass flow of all other inter-
mediate metabolites is [0, 10]. To adjust the abnormal
level of the disease-causing metabolite uric acid, we
need to use some medication strategy, e.g. adjust the
flux of some reaction by manipulating its enzyme
activity. In our two-stage FBA method, such medica-
tion strategy is found by solving the medication model
which minimizes the side effects. The computational
result shows that 9 reactions have non-zero fluxes and
there exist medication strategies that can adjust the
level of uric acid to be normal (i.e. such that xy .t €
[5,10]) without causing side effects. To identify poten-
tial enzyme targets, we compare the fluxes of reactions
obtained by the pathologic model and the medication
model and find that the fluxes of 10 reactions are
lower in the medication state than in the pathologic
state. The enzymes catalyzing these reactions are
xanthine oxidase, phosphoribosylpy-rophosphate
synthetase, AMP deaminase, hypoxanthine phosphori-
bosyltransferase, adenine deaminase, IMP dehydrogen-
ase, 5’-nucleotidase, and purine nucleosidase. In
principle, adjusting the concentration of any of these
enzymes can achieve the production reduction of uric
acid and thus may act as potential drug targets.
Xanthine oxidase, AMP deaminase, and 5’-nucleotidase
are also identified as drug targets in [7]. According to
our strategy for identifying potential drug targets,
phosphoribosylpy-rophosphate synthetase, which is
located in the source part of the hyperuricemia meta-
bolic pathway and catalyzes the synthesis of PRPP, is a
good choice since manipulating its concentration will
naturally adjust the abnormally high fluxes of other
downstream reactions, which eventually reduce the
production of uric acid.

Discussion

Classic FBA models only contain reaction fluxes without
information of mass flows of metabolites. In this study,
we define the mass flow of a metabolite as the weighted
sum of the fluxes of all reactions that produce (or con-
sume) this metabolite and incorporate it into the FBA
model. Such an extended model allows us to track the
change of mass flow of metabolites in the pathologic
state and medication state. A similar metabolite-centric
approach has been developed for metabolic network
analysis and used in prediction of essential genes and
discovery of antibacterials [39-41]. Such metabolite-cen-
tric approaches are expected to have many important
applications as classic FBA models.

Our method finds the fluxes of reactions and the mass
flows of metabolites in the medication state with the
aim of minimizing side effects caused by medication.
Since the side effects are closely related to the given
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healthy ranges, the single objective may make the LP
model have multiple optimal solutions. A possible
extension worth exploring is to use multiple objectives,
such as minimizing side effects and maximizing biomass
flux. In addition, Shlomi et al. developed a method for
predicting metabolic disease biomarkers [42], which
determines healthy/disease exchange intervals by opti-
mizing the exchange reaction producing a boundary
metabolite without or with including the reaction cata-
lyzed by a dysfunctional enzyme. The boundary metabo-
lite is predicted to be a biomarker of the dysfunctional
reaction if the obtained disease exchange interval is
significantly different from the healthy exchange inter-
val. Similar ideas may be applied to drug target identifi-
cation, in which a boundary enzyme crucial for the
production of disease-causing compounds is predicted
to be a potential drug target.

In this study, in addition to a simulated network, we
also test our method on a true human purine metabolic
pathway, which has been widely studied in the context
of hyperuricemia. Enriched information is available
about drugs and potential targets for this disease in the
pathway. But complete quantitative information, such as
the healthy ranges of metabolite flows and reaction
fluxes in the pathologic state, still lacks. Matching the
assumptions of our model with a true target network
with complete quantitative information will be helpful
for better validation as well as estimation of sensitivity
and accuracy. However, so far there is no a database
depositing such networks with detailed clinical data,
though it is highly possible to have such data in hospi-
tals from a clinical perspective. We believe our model
and methods are practical once such data can be
accessed publicly.



Li et al. BMC Systems Biology 2011, 5(Suppl 1):511
http://www.biomedcentral.com/1752-0509/5/51/511

Conclusions

Efficiently identifying drug targets with minimal side
effects is one of major challenges in new drug develop-
ment. High-throughput omics data provide unprecedent
opportunities for drug target identification. Previous
models for identifying drug targets either are not quanti-
tative or do not consider side effects. In this paper, we
develop a quantitative method based on flux balance ana-
lysis (FBA) to identify drug targets in metabolic networks.
The method involves two linear programming (LP) mod-
els to find the steady optimal fluxes of reactions and the
mass flows of metabolites in both pathologic state and
medication state, meanwhile taking the side effects of
drug action into account. The computational results on
an illustrative simulated metabolic network and a hyper-
uricemia-related purine metabolic pathway show that the
drug target identification problem can be solved effec-
tively by the proposed two-stage FBA method.
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