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Abstract

Background: Type 2 diabetes mellitus (T2DM) is a complex systemic disease, with significant disorders of
metabolism. The liver, a central energy metabolic organ, plays a critical role in the development of diabetes.
Although gene expression levels are able to be measured via microarray since 1996, it is difficult to evaluate the
contributions of one altered gene expression to a specific disease. One of the reasons is that a whole network
picture responsible for a specific phase of diabetes is missing, while a single gene has to be put into a network
picture to evaluate its importance. In the aim of identifying significant transcriptional regulatory networks in the
liver contributing to diabetes, we have performed comprehensive active regulatory network survey by network
screening in 4 weeks (w), 8-12 w, and 18-20 w Goto-Kakizaki (GK) rat liver microarray data.

Results: We identify active regulatory networks in GK rat by network screening in the following procedure. First,
the regulatory networks are compiled by using the known binary relationships between the transcriptional factors
and their regulated genes and the biological classification scheme, and second, the consistency of each regulatory
network with the microarray data measured in GK rat is estimated to detect the active networks under the
corresponding conditions. The comprehensive survey of the consistency between the networks and the measured
data by the network screening approach in the case of non-insulin dependent diabetes in the GK rat reveals: 1.
More pathways are active during inter-middle stage diabetes; 2. Inflammation, hypoxia, increased apoptosis,
decreased proliferation, and altered metabolism are characteristics and display as early as 4weeks in GK strain; 3.
Diabetes progression accompanies insults and compensations; 4. Nuclear receptors work in concert to maintain
normal glycemic robustness system.

Conclusion: Notably this is the first comprehensive network screening study of non-insulin dependent diabetes in
the GK rat based on high throughput data of the liver. Several important pathways have been revealed playing
critical roles in the diabetes progression. Our findings also implicate that network screening is able to help us
understand complex disease such as diabetes, and demonstrate the power of network systems biology approach
to elucidate the essential mechanisms which would escape conventional single gene-based analysis.
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Background
The globe figure of people with diabetics is increasing
rapidly [1]. The diabetes epidemic worldwide is due to
an interaction between environment and genetic risk
factors [2]. The modern environment causes diabetes in
many ways, such as stress, increased availability of
unhealthy food, and decreased physical activities [3].
Our body system is a robustness system to keep our
blood glucose within normal ranges with various pertur-
bations. However, in genetically susceptible individuals,
long term unfavorable environmental factors will affect
epigenetics, thereafter gene expressions, and eventually
lead to diabetes. T2DM is chronic with nature history
lasting for more than twenty years, which has been
divided into five stages: latent stage, transition stage,
impaired glucose tolerance stage (IGT), impaired fasting
glucose stage (IFT), and overt stage [4]. IGT and IFT
stages are called prediabetes. During the first 4 stages,
the sub-health status is still able to return to normals.
Once reached stage 5, overt stage, T2DM is diagnosed.
The systems of diabetes are also robust: even with food
restriction, increased physical activity, and multidrug
therapies, diseases are usually impossible to return back
to normals [5].
In order to detailed study diabetes, several animal

models have been developed. Goto-Kakizaki (GK) rat, a
spontaneous non insulin dependent diabetes model with
a heterogeneous background, is recognized as one of the
best model for human T2DM. The colony was first pro-
duced in Japan by selective repeated inbreeding nondia-
betic Wistar-Kyoto (WKY) rats with minor glucose
intolerance [6]. The diabetic state became spontaneous
and stable after 30 generations. The characteristics of
GK subcolonies are slightly different. However the
important hallmarks are the same, including inherent
decreased beta cell mass, moderate hyperglycemia, insu-
lin resistance, and a non-obese phenotype [7]. At
embryonic day 16, beta cell mass of GK rats is only 50%
of that in normal WKY controls. GK fetuses show
decreased insulin levels and decreased beta cell mass.
Before 2 weeks of age, GK babies show normal blood
glucose, but decreased insulin levels. Basal hyperglyce-
mia has been detected at 3-4 weeks. GK rats show
unstable blood glucose levels between 6-12 weeks and
hyperglycemia became consistent in GK rats older than
18 weeks of age. Although it exhibits similar metabolic
disorders to the human diabetes, GK is non obese with-
out hyperlipidemia at the beginning. Thus it only repre-
sents a subset of human T2DM.
T2DM is a systemic metabolic disease. The two major

characters are insulin resistance and beta cells fail to
compensate. Liver plays a key role in not only energy
metabolism but also insulin resistance, thus liver gene
expression changes play a role in the progression of

diabetes. Now most scientists agree that the risk of
developing T2DM is low with only single gene mutation
[8]. Environmental factors act on predisposing indivi-
duals, changing their DNA modification and mRNA
expression to certain levels until the system is not able
to return to normals. Microarray technology makes it
easy and accurate to measure significantly changed gene
expressions [9,10]. However, to understand the real
meaningful hints from the information ocean and to
elucidate the connections between changed biological
molecules and diseases seem quite challenge.
It has been recognized that a complex disease cannot

be fully understood by merely analyzing individual genes
or biomolecules. It is interactions or networks of those
components that are ultimately responsible for malfunc-
tions of the system. Therefore, instead of picking up sin-
gle interesting gene, we are using network screening to
analyze the active networks or pathways based on the
high throughput data, a promising approach to investi-
gate associations between biological molecules and phe-
notypes. A knowledge-based network is constructed first
by extracting as many relationships identified by experi-
mental studies as possible and then superimposing them
to microarray data. Recently, we proposes a method [11]
to estimate the consistency of a given network with the
measured data: i) the network is quantified into a log-
likelihood from the measured data, based on the Gaus-
sian network, and ii) the probability of the likelihood
corresponding to the measured data, named the graph
consistency probability (GCP), is estimated based on the
generalized extreme value distribution. In this paper, we
survey the active regulatory networks in GK and WKY
rats liver in a comprehensive manner by network
screening. The microarray data measured previously for
five liver samples of both groups at each of 5 time
points [12] are analyzed by the standard statistical tech-
niques and the network screening. The analyses reveal
the expression signatures different between GK and
WKY rats and the network signatures that are com-
posed of the networks well consistent between the net-
work structure and the graph structure. As a result, we
present the candidates of active regulatory networks,
which including new and reasonable networks, as well
as the networks previously reported as to be essential to
diabetes. Furthermore, we discuss merits and pitfalls of
the present approach for surveying the active regulatory
networks for a special disease.

Materials and Methods
• Network Screening
Overview
The candidates of active regulatory networks are
detected by network screening in the following manner.
First, the regulatory network sets are generated by
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combining the binary relationships between transcrip-
tional factors (TFs) and their regulating genes, which
are compiled in TRANSFAC database [13], and the
functional gene sets defined in the Molecular Signatures
Database (MSigDB) [14]. Then, we calculate the graph
consistency probability (GCP) [11], which expresses the
consistency of a given network structure with the moni-
tored expression data of the constituent genes in this
study, for each of the network structures obtained at the
first step. In addition, in each reference network, the
enrichment probability of the genes with the significant
differences between GK and WKY rats (expression sig-
nature) is further tested. For this purpose, the expres-
sion signature is determined using the Student’s t-test
(for a false discovery rate [FDR] < 5% in expression
between GK and WKY rats). The number of genes
included in the expression signature is tested for each
network, based on the hyper-geometric probability.
Thus, we refine the candidates of active regulatory net-
works, in terms of both the network structure by GCP
and the extent of gene expression by enrichment prob-
ability. The significance of both thresholds is set to 0.05.
The details of the reference network and the GCP are
described, below.
Reference network set construction
In the present study, the GCP is estimated for the
ensemble of reference networks, to extract the candidate
activated networks in GK and WKY rats. The reference
networks are constructed using the binary relationships
between transcriptional factors and their regulating
genes and the classification scheme for gene function.
As for the reference networks, the orthologous genes in
rat corresponding all genes in the human binary rela-
tionships from TRANSFAC database [13] are first inves-
tigated, and then the binary relationships in rat that are
composed of the orthologous genes to human are con-
structed. Based on the binary relationships, transcrip-
tional networks are constructed, according to the
functional gene sets previously defined in the Molecular
Signatures Database (MSigDB) [14]. In each gene set,
the regulated genes in the binary relationships are
searched, and if at least one gene is found in the gene
set, then the corresponding binary relationships are
regarded as a regulatory network characterized by the
gene set. The set of constructed networks is used as the
reference network for network screening. In present
study, the reference network is composed of 1,470 regu-
latory networks that are constructed from 2,371 tran-
scriptional factor-regulated gene relationships.
Graph Consistency Probability
Network analysis is based on the procedure for estimat-
ing the consistency of a network structure (directed
acyclic graph) with the measured data for the constitu-
ent variables in the graph [11]. First, the joint density

function for a given network (reference network) is
recursively factorized into conditional density functions
according to the parent-descent relationship in the
graph [15]. Suppose a causal graph is a directed acyclic
graph (DAG), G(Vi, Ej), where Vi is a vertex (i=1, 2, …,
nv) and Ej is an edge (j=1, 2, …, ne) in the graph. The
DAG can be factorized into subgraphs according to the
parent-descent relationships [15]. Then, the joint density
function f(Xi), corresponding to Vi for the graph G, can
be factorized into the conditional density functions
according to the graph, as follows:
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the parents of Vi in the graph.
Second, the causal graph meets the measured data

based on the Gaussian graphical model (GN: Gaussian
Network) [16]. On the assumption that the probability
variable Xi is subjected to a multiple normal distribution,
each conditional function in equation (1) is obtained by
linear regression for the measured data of the constituent
nodes (molecules) measured at m points, i.e.,

f X pa X x xi i
i i

ik ij jk

j

n

k

m i

| { } exp( ) = − −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

==
∑∑1

2

1

22 2
1

2

1ps s
b

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, (2)

where xik is the measured value of Xi, at the k-th point,
and ni is the number of variables corresponding to the
parents of Vi. Thus, the joint density function in equation
(1) is expressed by the regression for the measured data
in equation (2). Finally, the logarithm of the likelihood of
the equation (2) is calculated for the measured data as
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Thus, the GN allows us to quantify a given network
into the corresponding numerical value from the mea-
sured data, according to the network form. Note that
the calculation of likelihood itself requires no assump-
tions on the relationships between variables. Indeed, the
likelihood can be calculated in the case of non-linear
regressions, such as spline regression.
Finally, the probability of the log-likelihood for the

network structure (graph consistency probability; GCP)
is estimated by the distribution of log-likelihoods for
many networks generated under the condition that the
generated networks shared the same numbers of nodes
and edges as those of the given network. In previous
paper, we assume that the generated networks follow
the extreme value distribution [17]. In this paper, we
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generate Nr networks under the same condition, and the
GCP is simply defined as

GCP
N

N
s

r

= , (4)

where Nr is total number of generated networks, and
Ns is the number of networks with larger log-likelihoods
than log-likelihood of tested network. In the present
study, Nr is set to 2,000. The significance GCP of the
given network is set at 0.05 in this analysis.
Enrichment Probability
The network signature is additionally evaluated by the
number of constituent genes included in the expression
signature. The enrichment probability of the genes in
the expression signature for each network is estimated
based on the hyper-geometric probability. When the
network is composed of k genes, and l genes are
detected in the expression signature, then the probabil-
ity is obtained by
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where M and N are total number of genes in the
expression signature, and total number of genes in the
reference networks, respectively.

• Microarray Data
Microarray dataset is cited from the National Center for
Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/projects/
geo/) database (GSE 13271). The data are composed of
31,099 probes measured by using Affymetrix Microarray
Suite 5.0 (Affymetrix), which are reduced into 14,506
genes, for 5 samples of male Goto-Kakizaki (GK) spon-
taneously diabetic rats and WKY rats at each of 5 time
points (4, 8, 12, 16, and 20 weeks of age). Hyperglycemia
begins to show at 4 weeks of age and stabilize after 16
weeks in GK, thus we divided data into three functional
groups: 4w, 8-12w, and 16-20w.

Results
• Activated pathways revealed by network screening and
their functions
We estimate active regulatory networks among the refer-
ence regulatory network set that is generated by the com-
bination of the binary regulatory relationships in
TRANSFAC database and the functional gene sets defined
in the Molecular Signatures Database (MSigDB). In addi-
tion, in each reference network, the enrichment probabil-
ity of the genes with the significant differences between
GK and WKY rats is further tested. Finally, we identify a
total of 20 and 19 differentially activating transcriptional
regulatory networks in GK and WKY rats, respectively.
Table 1 presents detailed significant networks information

Table 1 Identified active regulatory networks in three stages in GK and WKY rats individually. The thresholds of
significant pathways in different stages are set to be 0.05.

GK WKY

4 w HSC_LATEPROGENITORS_ADULT HASLINGER_B_CLL_MUTATED
NGUYEN_KERATO_UP
P21_P53_MIDDLE_DN
UVB_NHEK1_C2
VEGFPATHWAY
VEGF_HUVEC_30MIN_UP
YAGI_AML_PROG_ASSOC
ZHAN_MM_CD138_CD1_VS_REST

8-12 w ATRIA_UP
GLYCEROPHOSPHOLIPID_METABOLISM
GOLUB_ALL_VS_AML_UP
HOHENKIRK_MONOCYTE_DEND_UP
HSC_LATEPROGENITORS_ADULT
INTEGRINPATHWAY
INTEGRIN_MEDIATED_CELL_ADHESION_KEGG
LINDSTEDT_DEND_8H_VS_48H_DN
LONGEVITYPATHWAY
MEF2DPATHWAY
P35ALZHEIMERSPATHWAY
RCC_NL_UP
VHL_NORMAL_UP

ALKPATHWAY
BRENTANI_PROTEIN_MODIFICATION
CELL_DEATH
HCC_SURVIVAL_GOOD_VS_POOR_UP
HSC_LATEPROGENITORS_SHARED
ICF_UP
NI2_LUNG_DN
PARK_RARALPHA_MOD
SCHURINGA_STAT5A_UP
TGFBPATHWAY

16-20 w ASTON_OLIGODENDROGLIA_MYELINATION_SUBSET
BRCA_BRCA1_NEG
LEI_HOXC8_DN
TESTIS_EXPRESSED_GENES
TSADAC_RKOEXP_UP
VEGFPATHWAY

NUCLEAR_RECEPTORS
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separated by ages and strains. There are fewer pathways
activating at 4w and 16-20w in GK rats which are at the
beginning and the steady state of diabetes. While during
8-12w, more pathways are significantly activated, which
indicates a dynamic process involving dysfunctions and
compensations in the development of diabetes, as showed
outside blood glucose fluctuations. There are more active
pathways in the 4w and 8-12w than those in the 16-20w
in WKY, which may be due to body growth and develop-
ment. It is worth pointing out that many activating path-
ways in WKY are diminished in GK rats at 4w, suggesting
that those pathways in the liver important to keep glucose
metabolism homeostasis are dysfunction at very early
stages of diseases.
Apart from the view of differentially activated net-

works along the time points, the networks in the GK
and WKY strains can be classified into 4 functional
categories in Table 2, which are metabolism, immune,
transcription, and signal transduction. Note that some
activated pathways share their functions. In that case,
they are listed under several functional groups as long
as the condition met. Then, we combine the activated

networks belonging to the same functional category, if
any constituent genes of transcriptional factor (TF) and
its regulated gene share each other in the networks.
Thus TF-gene expression networks for each functional
category are created (Figures 1, 2, 3, 4), where the
appearance of sub-networks depending on time points is
distinguished by colored nodes and edges. Interestingly,
significantly activated networks in GK and WKY strains
are very different even in the same functional category.
We will describe the details of the activated networks in
4 functional categories, below.

• Metabolism
Metabolic TF regulatory network in WKY rats reveals
increased expression of several genes are important to
keep metabolic homeostasis, e.g. bone gamma-carboxy-
glutamic acid-containing protein (BGLAP), Hepatocyte
nuclear factor 4 alpha (HNF4A) and Lipoprotein lipase
(LPL) (Figure 1A). In addition to its role in bone-build-
ing, BGLAP, also known as Osteocalcin, acts as a hor-
mone on metabolic regulation. BGLAP stimulates
pancreatic beta cells releasing more insulin and

Table 2 Active regulatory networks classification according to their functions.

GK WKY

Metabolism HSC_LATEPROGENITORS_ADULT
ATRIA_UP
GLYCEROPHOSPHOLIPID_METABOLISM
GOLUB_ALL_VS_AML_UP
HOHENKIRK_MONOCYTE_DEND_UP
HSC_LATEPROGENITORS_ADULT
LONGEVITYPATHWAY
VHL_NORMAL_UP

HASLINGER_B_CLL_MUTATED
VEGF_HUVEC_30MIN_UP
YAGI_AML_PROG_ASSOC
ZHAN_MM_CD138_CD1_VS_REST

Immune HSC_LATEPROGENITORS_ADULT
LINDSTEDT_DEND_8H_VS_48H_DN
LEI_HOXC8_DN
TESTIS_EXPRESSED_GENES
TSADAC_RKOEXP_UP

NGUYEN_KERATO_UP
ICF_UP

Transcription HSC_LATEPROGENITORS_ADULT
ATRIA_UP
GOLUB_ALL_VS_AML_UP
HOHENKIRK_MONOCYTE_DEND_UP
HSC_LATEPROGENITORS_ADULT
MEF2DPATHWAY
P35ALZHEIMERSPATHWAY

VEGFPATHWAY
HCC_SURVIVAL_GOOD_VS_POOR_UP
HSC_LATEPROGENITORS_SHARED
SCHURINGA_STAT5A_UP
NUCLEAR_RECEPTORS
CELL_DEATH
NI2_LUNG_DN
PARK_RARALPHA_MOD
NUCLEAR_RECEPTORS
TGFBPATHWAY

Signaling Transduction INTEGRINPATHWAY
INTEGRIN_MEDIATED_CELL_ADHESION_KEGG
MEF2DPATHWAY
P35ALZHEIMERSPATHWAY
RCC_NL_UP
VHL_NORMAL_UP
ASTON_OLIGODENDROGLIA_MYELINATION_ SUBSET
BRCA_BRCA1_NEG
LEI_HOXC8_DN
TESTIS_EXPRESSED_GENES
TSADAC_RKOEXP_UP
VEGFPATHWAY
HSC_LATEPROGENITORS_ADULT

P21_P53_MIDDLE_DN
UVB_NHEK1_C2
ALKPATHWAY
BRENTANI_PROTEIN_MODIFICATION
CELL_DEATH
NI2_LUNG_DN
PARK_RARALPHA_MOD
TGFBPATHWAY
NUCLEAR_RECEPTORS
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increases insulin sensitivity via enhancing adipocytes
adiponectin secretion [18]. HNF4A plays a key role in
liver development. Mutations in this gene have been
associated with maturity-onset non-insulin-dependent
diabetes of the young (MODY) [19]. Our analysis

indicates that reduced HNF4A expression may also
favor T2DM development in GK rats. LPL is an enzyme
that hydrolyzes triglyceride in lipoproteins such as very
low-density lipoproteins (VLDL) and reforms high-den-
sity lipoproteins (HDL). Lipoprotein lipase deficiency

4 weeks
8 12 weeks
4 & 8 12 weeks
4 & 16 20 weeks
8 12 & 16 20 weeks
4 & 8 12 & 16 20 weeks

A

B

Figure 1 Combined networks in the metabolic functional category. TF-gene expression graphs in WKY and GK strains are displayed in subfigure
A and B, respectively. TF and regulated genes are shown in diamonds and circles, respectively. Selected molecules as the examples to explain in
this paper are shown in bigger font. The appearance of each sub-network at time points is distinguished by colored nodes and edges in the
following ways: 4w, gray; 4w and 8w-12w, yellow; 4w and 16w-20w, purple; 4w, 8w-12w, and 16w-20w, red; 8w-12w, right blue; 8w-12w and
16w-20w, blue; and 16w-20w, green.
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8 12 weeks
16 20 weeks
4 & 8 12 weeks
8 12 & 16 20 weeks
4 & 8 12 & 16 20 weeks

Figure 2 Combined networks in the immune functional category in GK rat. The appearance of each sub-network at time points is distinguished
by the same way as Figure 1. Many proinflammatory related pathways active comparing GK to WKY rats. There are two hubs CYBB and ATF2
that play important role in immune damages observed in GK.

8 12 weeks
4 & 8 12 weeks
8 12 & 16 20 weeks
4 & 8 12 & 16 20 weeks

Figure 3 Combined networks in the transcription functional category in GK rat. The appearance of each sub-network at time points is
distinguished by the same way as Figure 1. This graph highlights genes causing apoptosis and neurodegenerative disorders, such as Alzheimer’s
disease.
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leads to elevated levels of triglycerides in the blood-
stream. Increment of LPL activity leads to decreased tri-
glycerides levels, elevated HDL levels, a significant fall in
fasting glucose and glycohemoglobin, and delayed com-
plication occurrence [20]. Interestingly, like HNF4A,
LPL is also suggested to be a diabetes susceptibility gene
by human studies [21].
Metabolic networks in GK rats are more complicated

than those in WKY rats (Figure 1B). Besides the reduced
expression of three genes described in the previous
paragraph in diabetic GK rats, some pathways identified
by network screening further contribute to metabolism
disorders. Several signal transducers and activators of
transcription (STATs) are found in GK TF regulatory
metabolic network. Diabetic GK rats are reported to
have higher levels of Cytokines [12]. Cytokines induce
activation of janus kinase (JAK)-STAT pathway leading
to expression of various suppressors of cytokine signal-
ing (SOCS) (not shown in the figure). Checking original
microarray data we found that expression of SOCS2 and
STAT5 but not SOCS3 is decreased in GK rats.
Decreased expression of SOCS2 leads to enlarged inter-
nal organs, which consists with the description in the
original paper that liver weight as a percentage of total
body weight is significantly larger in GK [12,22,23].
Insulin directly stimulates SOCS2 and STAT5 expres-
sion, and the decreased SOCS2 and STAT5 levels are
due to insulin deficiency or resistance. Beta cell mass

after birth is only half in GK compared to WKY rats.
The higher plasma insulin levels in GK measured via
Millipore RI-13K rat insulin RIA kit may be due to
cross reaction with elevated proinsulin. At later stage,
insulin resistance also occurs. IGF-1 (insulinlike growth
factor-1) has a function similar to insulin, and it can
also improve blood sugar profiles in type 2 diabetics.
IGF-1 deficiency mice were very insulin insensitive,
while administration of IGF-1 shows the insulin resis-
tance improvement [24]. IGF-1 levels are increased at
4w, but significantly decreased, thereafter. While IGF1
receptor (IGF1R) is exclusively down-regulated,
decreased IGF1R signaling pathway may partially explain
the insulin resistance after 8 weeks of age in GK rats.
We also observed some compensative pathways activa-

tion in GK to fight against insulin resistance. For
instance, insulin receptor substrate 2 (IRS2) is up-regu-
lated and SOCS1 is down-regulated at 8-12w. Cytokine-
induced SOCS-1 interacts with the phosphorylated insu-
lin receptor and promotes ubiquitination (Ub) and
degradation of IR-IRS complex, thereby preventing insu-
lin signaling pathways [25]. Decreased SOCS-1 is corre-
lated to insulin sensitivity. However, compensations fail
to stop development of diabetes.

• Immune
Many proinflammatory pathways are activating in GK
compared to WKY rats (Figure 2). From the TF-

8 12 weeks
16 20 weeks
4 & 8 12 weeks
8 12 & 16 20 weeks
4 & 8 12 & 16 20 weeks

Figure 4 Combined networks in the signal transduction functional category of GK rats. The appearance of each sub-network at time points is
distinguished by the same way as Fig. 1. Activation of hypoxia and coagulation related pathways is the key difference between GK and WKY
strains.
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regulatory gene expression networks in GK rats, two
hubs which play important role in immune damages are
displayed.
Cytochrome b-245, beta polypeptide (CYBB) is a gene

encoding gp91(phox) protein, a phagocyte NADPH oxi-
dase. The protein is also known as P91-PHOX and
NOX2. Reactive oxygen species (ROS) produced by
NOX2 are able to kill phagocytized bacteria. Because of
its highly reactive nature, CYBB has been considered
harmful mediators of inflammation [26]. NF-KB and
interferon-gamma further increase CYBB expression.
Prolonged highly CYBB expression enhanced production
of reactive oxygen species, which are critical sources
mediating neurovascular damage. Significantly overex-
pressed CYBB in GK stain is a critical contributor to the
microvascular complications associated with diabetes.
Activating transcription factor 3 (ATF3) is a stress-

inducible gene and encodes ATF3 transcription factors.
ATF3 expression has been reported up-regulated in
insulitis and type 1 or type 2 diabetics. Induction of
ATF3 is mediated by proinflammatory factors, such as
nitric oxide and NF-�B. Importantly, the induction of
ATF3 leads cell apoptosis, while signals without ATF3
up-regulation do not cause cell damage [27]. Increased
gene expression of ATF3 in GK rats are related to
increased immune response and apoptosis.
Besides these two hubs, about 20 immune related

genes are changed in GK strain. Some are up-regulated,
such as high affinity immunoglobulin gamma Fc recep-
tor I (FCGR1A). Some are down-regulated, such as cell
surface associated (MUC1), which protects the body
from infection by binding to pathogens. In sum, inflam-
mation is significantly increased in diabetic Gk rats.

• Transcription
Pathways analysis reveals that WKY transcriptional net-
work is a balanced and well-controlled system. Several
pathways (VEGFPATHWAY, HCC_SURVIVAL_
GOOD_VS_POOR_UP, HSC_LATEPROGENITORS_-
SHARED, SCHURINGA_ STAT5A_UP) are involved in
cell replication, good survival and self renewal. Others,
including P21-P53_Middle_DN, UBV_NHEK1_C2, and
TGFBPATHWAY, emphasize anticancer and cell cycle
checkpoints regulation (Table 2).
In GK rats, two out of 7 pathways are related to apop-

tosis (Table 2 and Figure 3). Caspase 1 (CASP1), which
has been shown to induce cell apoptosis, is overex-
pressed. Transforming growth factor alpha (TGFA),
which stimulates neural cell proliferation, is inhibited.
Interestingly, diabetes activates several genes involving
in neurodegenerative disorders. Alzheimer’s disease
shares many commons with T2DM, so that some scien-
tists proposed to call Alzheimer’s disease “type 3 dia-
betes” or “diabetes of the brain.” Calpain small subunit

1 (CAPNS1), a highly-conserved cysteine protease,
which have been implicated in neurodegenerative pro-
cesses after oxidative stress stimulation, is more active
in GK. Casein kinase I isoform alpha (CSNK1A1), also
called CK1a, is associated with phosphorylate tau and
amyloid formation [28]. Reduction in CK1a expression
induces Tau phosphorylation inhibition. The expression
of CK1a gene is much higher in GK.

• Signal transduction
The key difference in signal transduction category is
activation of hypoxia and coagulation related pathways
in GK rats (Table 2 and Figure 4). Coagulation factor
XIII A chain (F13A1) is the last zymogen activating in
the blood coagulation cascade, which stabilize clots [29].
In GK rats, F13A1 gene expression levels are signifi-
cantly elevated which enhance thrombosis. Macrophages
expressing high affinity immunoglobulin gamma Fc
receptor I (FcgRIa) also display coagulation function via
binding platelets and initiate thrombosis. [30]. Tissue
plasminogen activator (PLAT) breakdowns blood clots.
GK rats present significantly higher PLAT expression
levels, which may explain hemolysis and thrombosis co-
existing in diabetics. Dr. Auwerx reported in diabetics,
PLAT and plasminogen activator (PA) inhibitor are both
activated [31]. The elevated levels of PA-inhibitor activ-
ity abolish PLAT activity inducing a reduced fibrinolytic
capacity.
RCC_NL_UP and VHL_NORMAL_UP are two net-

works involved in hypoxia. The von Hippel-Lindau
tumor suppressor -hypoxia-inducible factor (VHL-HIF)
pathways are key players in tumor hypoxia survival.
Many genes involved in such pathways include inter-
feron regulation factor 1(IRF 1), GTPase HRas (HRAS),
and VHL, are negatively expressed in GK strain. T2DM
shows increased incidence and delayed recovery from
hypoxia. Reduced hypoxia network activity potentially
plays a pivotal role in this phenomenon.

• Dynamic changes of regulatory networks
In order to understand the dynamical changes of regula-
tory networks in the development of diabetes, we drew
the active networks at each time segments (Figures 5, 6,
7). Among the genes in the networks, some can be seen
in more than one time segment, which are considered
to be more important than others, and are distinguished
by the colored nodes and edges according to their
appearance in which time segments. Furthermore, the
information on the expression degree is also important
in comparison with GK and WKY, and is indicated in
the node form in each network.
At the beginning of hyperglycemia, TF regulatory net-

work in 4w GK displays 12 genes differently expressed
between GK and WKY (Figure 5). Those genes can be
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4 & 8 12 weeks
4 & 8 12 & 16 20 weeks

Figure 5 TF-regulatory network in 4w GK. In total, 12 genes were found to be differently expressed between GK and WKY. The nodes are
colored by the same way as Figure 1. The node form depends on the expression degree between GK and WKY: bold node means genes that
are overexpressed comparing GK to WKY, while dash-line node means genes which expression levels are lower in GK than that in WKY. At the
beginning of hyperglycemia, inflammation, bile metabolism dysfunction, decreased proliferation and increased apotosis already show in GK rats
liver at 4 weeks of age.

8 12 weeks
4 & 8 12 weeks
8 12 & 16 20 weeks
4 & 8 12 & 16 20 weeks

Figure 6 TF regulatory network in 8-12w diabetic GK strain. The node color and form are drawn by the same way as Figures 1 and 5,
respectively. Pathways making the chaos directing to the diabetes and networks compensate are both active.
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16 20 weeks
4 & 16 20 weeks
8 12 & 16 20 weeks
4 & 8 12 & 16 20 weeks

A

B

Figure 7 TF-regulatory gene expression networks in 16-20w WKY (A) and GK (B). The node color and form are drawn by the same way as
Figures 1 and 5, respectively. Nuclear receptors play important role maintaining the non-diabetic stage in WKY strain. In GK rats, some
compensational pathways still exist. However, genes involved in insulin resistance, hypertension and apoptosis are able to cause diabetes
progression.
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divided into 4 functional groups: immune, metabolism,
proliferation and apotosis.
F13A1, CYBB, FCGR1A, HCK, CTSS are involved in

inflammation and their expression levels are exclusively
increased in GK at 4 weeks of age. Previously we have
talked about overexpression of CYBB and FCGR1A
inducing inflammation. Although F13A1 is related to
thrombosis, it is also been recognized as an inflamma-
tion-related gene. Tyrosine-protein kinase (HCK) is an
enzyme predominantly expressed in hemopoietic cell
types. Overexpression of HCK contributes to inflamma-
tion by promoting neutrophil migration and degranula-
tion as well as couple the Fc receptor to the activation
of the respiratory burst [32]. Cathepsin S (CTSS)
encodes a lysosomal protease that participates in macro-
phage activation by the degradation of antigens to pep-
tides for presentation [33].
Metabolism group includes higher expression of

UGDH, ABCB4, and SOAT1 genes in GK. UDP-glucose
6-dehydrogenase (UGDH) converting UDP-glucose to
UDP-glucuronate is significantly increased in DM. The
enhanced expression of UGDH is due to excess glucose
load. Multidrug resistance protein 3 is a protein that
encoded by ABCB4 gene, which transports phospholi-
pids from hepatocytes into bile. Overexpression is asso-
ciated with progressive familial intrahepatic cholestasis
type 3. Sterol O-acyltransferase 1 (SOAT1), also known
as acyl-Coenzyme A: cholesterol acyltransferase, forms
cholesterol esters from cholesterol located in the endo-
plasmic reticulum. ABCB4 and SOAT1 are reported
coexpressed in gallbladder tissue and participate in bile
metabolism [34]. Overexpression of SOAT1 functions to
atherosclerosis and accumulates cholesterol in the gall-
bladder mucosa. Recent studies show that bile metabo-
lism is in close contact with occurrence of T2DM.
Disturbed bile metabolism has been reported in animal
and human diabetes. Bile acid–binding resin prevents
and treats diabetes. Diabetes remission after bariatric
surgeries is also suggested to be related to changed bile
acid metabolism.
Analyzing genes in proliferation and apoptosis groups

reveal decreased replication. The proliferation functional
group includes reduced expression of HPSE, PBK and
POLD. Heparanase (HPSE) plays an important role in
metastasis and angiogenesis. Lymphokine-activated killer
T-cell-originated protein kinase (PBK) encodes a mitotic
kinase related to mitogen-activated protein kinase kinase
(MAPKK) family. DNA polymerase delta catalytic subu-
nit (POLD1) is a DNA polymerase involves in DNA
repair synthesis after damage. The apoptosis group
including CASP1. Overexpressing CASP1 at 4w GK
strain causes increased apoptosis.
The TF regulatory network contributing to initial

hyperglycemia at 4w continues to be active in 8-12w

diabetic GK strain. In this middle term diabetes, net-
works making the chaos directing to the diabetes and
networks compensate are both active (Figure 6). A good
example is the increased expression level of Cathepsin
D (CTSD). Animal and human data suggest that CTSD
selectively degrades macrophage inflammatory proteins
and is possibly used by tumor to escape antitumoral
immune response. Higher expression of CTSD may be
secondary to the increased inflammation in diabetics.
However, CTSD will enhance receptor-mediated insulin
degradation in vivo, thus inducing insulin resistance
[35]. The insulting and compensating battle slowly pro-
gress diabetes to next stage.
At stable hyperglycemia stage, fewer networks are acti-

vated compared to middle term stage. However, the
insult factors expressed in this stage make diabetes a
robust system and unable to return to normals.

• Important networks keep normal or diabetes robustness
Hyperglycemia is consistent in 16-20w GK rat. Thus we
believe that genes expressed at this stage in WKY and
GK rats are important to keep a steady normal or dis-
ease phase.
The first compelling result is the importance of

nuclear receptors to maintain the non-diabetic robust-
ness after analyzing TF-regulatory network in the 16-
20w WKY (Figure 7A). Nuclear receptors directly bind
to DNA, thereby controlling essential biology functions,
such as development, homeostasis, and metabolism.
HNF4A, NR3C1, ESR1, AR, PPARG, NR1D1 all belong
to nuclear receptor family. HNF4A belongs to nuclear
receptor subfamily 2. NR3C1, ESR1 and AR are mem-
bers of subfamily 3, while PPARG and NR1D1 are
included in subfamily 1. They work in concert to
defense the disturbance outside. Disease states such as
diabetes may be induced by the opposite activities of
these receptors. Hepatocyte nuclear factor 4 alpha
(HNF4A) has been described previously in metabolism
section. It directly regulates genes involved in glucose
transport and glycolysis. Estrogen receptor alpha (ESR1)
and androgen receptor (AR) are activated by the sex
hormone estrogen and androgen, respectively. Numer-
ous data suggest that estrogen improves glucose meta-
bolism and plasma lipids in T2DM [36]. AR deficiency
plays key roles in the development of insulin and leptin
resistance, which explains increased diabetes incidence
in elder male [37]. The glucocorticoid receptor, also
known as NR3C1 (nuclear receptor subfamily 3, group
C, member 1) is expressed in almost every cell control-
ling the development, metabolism, especially immune
response. NR3C1 decreases inflammation. Peroxisome
proliferator–activated receptor-g (PPARG) regulates
fatty acid storage and glucose metabolism, thus improve
insulin sensitivity without increased insulin secretion.
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Many insulin sensitizing drugs are PPARG agonists [38].
N subfamily 1, group D, member 1 (NR1D1) also
known as Rev-ErbA activates histone deacetylation,
thereby regulating gene expression. Publications indicate
that SNPs in these nuclear receptors associate with obe-
sity and/or diabetes. Our data suggest that decreased
expression of HNF4A, NR3C1, ESR1, AR, PPARG and
NR1D1 overexpression contribute to T2DM.
In GK rats, some compensational pathways still exist,

for example a NO synthesis pathway is up-regulated.
Three genes nitric oxide synthase 3 (NOS3), arginino-
succinate synthetase (ASS1), and NAD(P)H: quinone
oxidoreductase (NQ01) related to this pathway are over-
expressed. It is well-known that NO decreases blood
pressure and promotes vascular actions of insulin.
NOS3 catalyzes arginine, oxygen and NADPH to NO
and citrulline. ASS1 and NQ01contribute to this meta-
bolism cycle. Many cytokines increase NO regeneration
several folds. Increased NO synthesis pathway indicates
an inflammation environment in the liver in GK rats.
Because reduced cell NO action has been reported in
diabetes, the beneficial effects of increased NO produc-
tion is uncertain. Data analyze reveal increased insulin
resistance, hypertension and apoptosis are important to
push diabetes to next stage (Figure 7B). Protein kinase
C alpha (PRKCA) is mostly expressed in hepatocytes
promoting glycogenolysis and gluconeogenesis. Activa-
tion of PRKCA mediates serine/threonine phosphoryla-
tion of the insulin receptor resulting in decreased active
form of insulin receptor, inducing insulin resistance
[39]. Angiotensin I converting enzyme 2 (ACE2) is an
exopeptidase that catalyses angiotensin peptides and has
opposite effects on RAS axis. Thus decreased expression
levels of ACE2 accelerate the pathologic process such as
hypertension, inflammation, fibrosis and inflammation.
Gap junction alpha-1(GJA1) also known as connexin-43,
is a component of gap junctions providing a route for
cell to cell communication via diffusion materials.
Decreased GJA1 expression particularly in hyperglyce-
mia accelerates apoptosis.

• Advantages of network screening over single gene
based method
When comparing our results to the original study con-
ducted by Dr. Almon [12], network screening is clearly
superior to the single gene-based analysis. One good
example is to explain how liver insulin resistance (IR)
develops. IR is the major character of T2DM and also
present in GK rats after 8 weeks of age. In the original
study, authors notice higher expression of P85, thus sus-
pecting interaction of P85 with IRS leading to IR. How-
ever, we believe that the developing IR is a dynamic
process involving many steps. The first step could be
significantly decreased IGF-1R expression after 8 weeks

inducing IR in GK. After that, higher expression of
CTSD accelerates IR. Compensational pathways also
occur, which includes IRS2 overexpression at 8-12w in
GK. However as PKC overexpression plus decreased
expression of many nuclear factors such as PPARG at
16-20w, IR deteriorates and diabetes becomes un-
returnable. Our method is based on the networks and is
very different from the gene-based method of identifying
the differential expression.

Discussion and Conclusion
T2DM is a complex disease, which is usually not caused
by individual gene changes, thereby requiring systems
biology methods to understand their mechanisms. In
this work, we have performed comprehensive active reg-
ulatory network survey by network screening to the
published GK vs. WKY liver microarray data [12]. Avail-
able resources from MSigDB and TRANSFAC are com-
bined together to identify the significant pathways
responsive to the status of diabetes or normals. After
combining the networks according to features or time
points, we built functional or time series TF regulatory
network graphs. Analyzing the graphs reveals: 1. More
pathways are active during inter-middle stage diabetes;
2. Inflammation, hypoxia, increased apoptosis, decreased
proliferation, and altered metabolism are characteristics
in GK strain, and displayed as early as 4w. 3. Diabetes
progression accompanies insults and compensations. 4.
Nuclear receptors work in concert to maintain normal
glycemic robustness system.
Network-based analysis based on high throughput

data is a challenging issue, which is expected to help us
understand complex disease such as diabetes and further
elucidate the essential mechanisms of living organisms
which would escape conventional single gene-based ana-
lysis. In this paper, instead of picking up differently
expressed genes from high-throughput data, we use
known functional pathways to screen datasets and evalu-
ate significantly activated pathways. Then genes with no
annotated linkages to TF are overlooked and the avail-
able gene regulatory relationships are integrated to form
a comprehensive TF regulatory network, which cannot
be achieved by single gene based method. The network
shows a whole picture of activated TF regulated func-
tional gene sets under certain conditions and is much
easier to bring the biological insights to us.
To our knowledge, two conclusions have not been

reported before. The first one comes out from TF regu-
latory network at 4w GK. It is well-known that the
major cause of diabetes in GK rats is insulin secreting
beta cell dysfuction. Beta cell mass in GK is only half of
that in WKY after birth. To be surprised, we find that at
very early age liver already exhibits serious gene expres-
sion alternations involving in bile metabolism
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dysfunction, inflammation, increased apoptosis and
decreased proliferation, which greatly contribute to dia-
betes development. Another interesting finding is that
the 6 nuclear receptors working in concert to maintain
robustness of normal blood glucose. Although the rela-
tionships of those nuclear receptors with diabetes have
been investigated individually before, it is the first time
to report how they work together as a fine tune. Restor-
ing their network regulation may have important thera-
peutic potentials.
This is the first time to use network screening to

explain the role of liver in development of diabetes and
the underline mechanism. The results provide many
important rational information and insights into guiding
experiments design. It is worth pointing out that the
molecular relationships change dynamically, depending
on the conditions in a living cell, which suggests impli-
citly that all of the relationships in the knowledge-based
network do not always exist. Note that some methods
are proposed for identifying the active networks from
measured data [40]. Our method evaluates the networks
from only one set of data measured under one condition
to estimate the absolute consistency between network
structure and the data, while the other methods gener-
ally need the two sets of data to estimate their relative
difference by some criteria such as mutual information.
We combined various resources together to identify the
significant regulatory networks related to the develop-
ment stages of diabetes. The matching between net-
works and gene expression profiling was identified by
the evaluation of network screening. The active regula-
tory networks are the potential disease signatures from
the comparison of GK and WKY rats. The dynamics of
regulatory networks indicate the dysfunctional progres-
sion from the network perspective.
In conclusion, network screening is a superior

approach to analyze complex disease such as diabetes.
The conclusions drawn from this method are more
complete and systemic, which gives biologist better gui-
dance for further experiment design.
Actually, we are now extending this approach for

screening general biomolecular networks [9,10] with
both directed and undirected edges, and in future possi-
bly for studying the problem of networkomics (or
netomics) which covers all stable forms of biomolecular
networks [41] not only at different biological conditions
but also at different spatiotemporal situations.
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