Li et al. BMC Systems Biology 2011, 5(Suppl 1):S5

http://www.biomedcentral.com/1752-0509/5/51/S5 BMC

Systems Biology

REPORT Open Access

DBAC: A simple prediction method for protein
binding hot spots based on burial levels and
deeply buried atomic contacts

Zhenhua Li', Limsoon Wong?, Jinyan Li"*

From The 4th International Conference on Computational Systems Biology (ISB 2010)
Suzhou, P. R. China. 9-11 September 2010

Abstract

Background: A protein binding hot spot is a cluster of residues in the interface that are energetically important
for the binding of the protein with its interaction partner. Identifying protein binding hot spots can give useful
information to protein engineering and drug design, and can also deepen our understanding of protein-protein
interaction. These residues are usually buried inside the interface with very low solvent accessible surface area
(SASA). Thus SASA is widely used as an outstanding feature in hot spot prediction by many computational
methods. However, SASA is not capable of distinguishing slightly buried residues, of which most are non hot spots,
and deeply buried ones that are usually inside a hot spot.

Results: We propose a new descriptor called “burial level” for characterizing residues, atoms and atomic contacts.
Specifically, burial level captures the depth the residues are buried. We identify different kinds of deeply buried
atomic contacts (DBAC) at different burial levels that are directly broken in alanine substitution. We use their
numbers as input for SYM to classify between hot spot or non hot spot residues. We achieve F measure of 0.6237
under the leave-one-out cross-validation on a data set containing 258 mutations. This performance is better than
other computational methods.

Conclusions: Our results show that hot spot residues tend to be deeply buried in the interface, not just having a
low SASA value. This indicates that a high burial level is not only a necessary but also a more sufficient condition

than a low SASA for a residue to be a hot spot residue. We find that those deeply buried atoms become
increasingly more important when their burial levels rise up. This work also confirms the contribution of deeply
buried interfacial atomic contacts to the energy of protein binding hot spot.

Background

Protein-protein interactions are dominated by hydrogen
bonds, salt bridges and hydrophobic contacts across the
interface [1,2]. These local interactions have to be desol-
vated, densely packed, and hence deeply buried to make
contribution to the binding free energy [3-6]. This is
why the energetically important hot spot residues in the
interface tend to cluster into local regions with low sol-
vent accessible surface area (SASA) values [7,8].
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Identifying these energetically important residues,
which can offer useful information to protein engineer-
ing and better understanding of protein-protein interac-
tion [9], is usually done by site-directed alanine
mutagenesis. This experimental method mutates the tar-
get residue into alanine which only has a C® heavy atom
on its side-chain [10,11]. A residue whose mutation
results in a large binding free energy change (2.0 kcal/
mol, for example) is defined as a hot spot residue [12].

Many feature-based [13-17] energy-based [18-23] and
even feature-and-energy-combined [24,25] computa-
tional approaches have been proposed to address the
hot spot prediction problem. Almost all of these
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feature-based methods use SASA information of the
residue as a critical feature in the prediction. A low
SASA is necessary for a residue to be a hot spot residue;
however, it is not sufficient, as a large number of non
hot spot residues also have low SASA values. Therefore,
SASA is not effective for distinguishing between slightly
buried residues—a large part of which are non hot spot
residues—and deeply buried residues that are very likely
to be hot spot residues.

In this work, we introduce a new descriptor for pro-
tein atoms and residues. It is named “burial level”. In
the definition of burial level, the buried immobilized
water molecules are treated as an integral part of the
protein complex. We show that our definition of residue
burial level is nicely correlated to AAG. A high burial
level is not only in general necessary for hot spot resi-
dues but also more sufficient for them in comparison to
SASA. In other words, most hot spot residues tend to
have high burial level while most non hot spot residues
are exposed or just slightly buried. We also define the
burial level of atomic contacts and we determine the
number of three types of buried interfacial atomic con-
tacts at different burial level that are directly broken
when the residue is substituted by alanine. The number
of those deeply buried atomic contacts together with the
burial level of the residue itself are further fed into SVM
as features to classify interfacial residues into hot spot
residues or non hot spot residues. We name this SVM-
based model DBAC since the features used are mainly
based on the Deeply Buried Atomic Contacts. By apply-
ing our method to a data set of 258 mutations, we
achieve an F measure of 0.6237 under the hot spot defi-
nition of AAG > 2.0 kcal/mol, which is better than other
computational methods. We also conduct a detailed
analysis of the features used in this work; and we find
that hot spot residues tend to have significantly more
deeply buried atomic contacts than non hot spot
residues.

Methods

Data set

Our data set is collected by retrieving the experimental
alanine mutagenesis data from the alanine scanning
energetics database (ASEdb) [26] and other previously
published works [27-31]. We require that: the 3D struc-
ture of the wild-type protein complex is solved by X-ray
crystallography and is reported in PDB [32], and the
associated solvent information is also included in the
PDB file. We do not consider protein-ligand interaction
or protein-peptide interaction in this work; thus those
interactions without an extended interface are excluded.
The reason is that the interfaces of protein-ligand inter-
actions are small and most interfacial residues are
exposed in the solvent to a certain degree; thus the
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burial levels of the atoms are mostly very low and imply
little information. The structural similarity of the com-
plexes are tested by the CE algorithm [33]. If the two
chains of the two complexes have a significant similarity,
their binding interfaces are further examined to ensure
that there is no redundancy in the data set. Further-
more, only mutations in the interface are considered.
We used another version of this data set in our previous
work [34], where the requirement that the mutations
have to be in the interface was not applied.

Our data set in this work consists of 258 mutations
distributed in 13 protein complexes. Hot spot residues
are usually defined by setting AAG > 1.0 kcal/mol or
AAG = 2.0 kcal/mol. We prefer the second choice, as
only a higher AAG threshold can reflect the direct influ-
ence of the mutation. That is, the interfacial atomic con-
tacts that are directly broken by the mutation are taken
into consideration with more weights. Under the AAG >
2.0 threshold, there are 50 hot spot residues and 208
non hot spot residues in our data set. Some researchers
even suggested that a residue should have a AAG higher
than 4.0 kcal/mol so as to have a strong impact on the
binding of the two proteins [9]. In practice, a lower
value has to be considered in order to get enough data
for statistical analysis [9].

The data set is available at http://155.69.2.25:8080/
DBAC data.

Feature generation
Burial level for an atom, residue or an atomic contact
Our definition of burial level is based on atomic contact
graph. The atomic contact graph of a protein complex
is an undirected graph with heavy atoms as nodes and
atomic contacts as edges. The atoms in this graph are
labeled as exposed or buried according to its SASA. If
the SASA of an atom is not less than 10.0A 2, it is
exposed, otherwise it is buried. SASA is calculated by
the NACCESS software based on the Lee-Richards algo-
rithm [35]. All the exposed water molecules, which we
consider as a part of the bulk solvent, are removed,
while the buried water molecules are kept as a part of
the complex. Thus the oxygen atoms of the buried
water molecules are a part of the atomic contact graph.
The atomic contact is defined by a distance threshold
and the Voronoi diagram. Voronoi diagram decomposes
the 3D space into cells by assigning every point in the
space to its nearest neighboring input site. Here in this
work, the input sites are the positions of the atoms in
the complex structure. If two atoms’ Voronoi cells are
adjacent to each other, they are somehow “sheltering”
each other. We define the atomic contact by adding an
extra distance requirement to Voronoi diagram. Two
atoms are considered to be in contact if they have a dis-
tance less than their Van der Waals radius plus the
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diameter of a water molecule (2.75 A) and they share a
Voronoi facet. We actually used the Delaunay diagram
that is dual to Voronoi diagram. Two facet-sharing Vor-
onoi cells correspond to two connected points in the
Delaunay diagram. The Delaunay diagram is calculated
by using the qdelaunay program in ghull [36]. This dis-
tance threshold, 2.75 A, is based on a water-free idea
and it has been used in [37].

In an atomic contact graph, the burial level of an atom
is defined as the length of the shortest path from this
atom to its nearest exposed atom. For example, the bur-
ial level of exposed atoms is 0 and the burial level of
their immediate buried neighbors is 1. We calculate the
burial levels by adding a pseudo node, which represents
bulk solvent, to the atomic contact graph. This node is
connected to all of the exposed nodes directly. Then the
burial level of any atom equals to the length of the
shortest path from this atom to the pseudo node minus
1. This is exactly the single-source-shortest-path pro-
blem and it can be solved using Dijkstra’s algorithm
[38].

The reason for using a Voronoi-diagram-combined
definition of atomic contact is as follows. If only dis-
tance information is used, there will be many false
atomic contacts in the atomic contact graph whose two
atoms cannot contact with each other at all (as they do
not share Voronoi facet thus they are spatially blocked
by other atoms), and the atomic contact graph will be a
trivial discretization of the Euclidean distance between
atoms, and the atom burial level will only depend on
the distance of the atom to the surface of the complex,
especially when a large distance threshold (2.75 A) is
used. Adding Voronoi diagram to the definition makes
the burial level depend also on the organization of the
atoms inside. Intuitively, the burial level of atoms in a
protein complex depends on the size of the protein
complex. In general, the larger the protein complex is,
the more deeply buried atoms there are. Burial level also
depends on the shape of the interacting proteins. For
example, globular proteins and protein complexes gen-
erally have more deeply buried atomic contacts than
those with other shapes.

Note that the calculation of burial level requires infor-
mation on buried water molecules. In our previous work
[34], we have systematically analyzed the contribution of
water molecules to the calculation of burial level as well
as to protein binding hot spots.

Figure 1 shows a burial level pattern inside a growth
hormone and growth hormone receptor complex. As
seen from the figure, atom burial level is indeed a good
indicator to describe the extent to which an atom is
buried inside a protein or a protein complex. It is clear
that the burial level of any two neighboring atoms can
have a difference of at most 1. Because the complex is
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Figure 1 Cross-section of a growth hormone and growth
hormone receptor complex Cross-section of a growth hormone
and growth hormone receptor complex [PDB:1A22] showing the
burial level pattern. A layer of atoms in the front are shown as
spheres while those at the back are shown as sticks. The colors
from green to red indicate the burial level of atoms from 0 to 4.
The largest burial level is 4 here. The largest burial level of atom
within a protein/protein complex depends on its size, shape and
the nearby atoms’ organization.

not perfectly globular, burial level 2 is “thicker” with
more atoms.

The burial level of a residue is the average value of the
burial levels of all atoms in the residue. For an atomic
contact, if the burial levels of the two atoms are the
same, the burial level of the atomic contact is taken as
the burial level of the two atoms, otherwise it is defined
as the smaller one of the two burial levels. The differ-
ence of the burial levels of two contacting atoms is at
most one.

There are some existing concepts that are related to
burial level. In [39-43], the authors defined their concept
of depth of an atom as the Euclidean distance to the
closest exposed atom or to the closest surface water
molecule. There are even some sequence-based methods
[44-46] that are capable of predicting its value. This
definition is only based on the Euclidean distance and
hence it cannot capture the contacts between atoms or
the organization of the atoms. And the calculation of
the shortest distance contains an exhaustive search
among all exposed atoms or surface water molecules for
every buried atom, while our graph-based concept of
burial level can be easily calculated by transferring the
calculation into a single-source-shortest-path problem.
Directly broken atomic contact, atomic contact types and
features
When a residue is mutated into alanine, some interfacial
atomic contact are directly broken because of the
removal of certain atoms; Some other interfacial atomic
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contacts may also be broken or distorted due to the
conformational change in the local region [31]. Given a
residue, we consider its directly broken interfacial
atomic contacts, namely those contacts formed by an
atom other than C, N, O, C* or C (these atoms are the
remainder after a residue is mutated into alanine) and
any contact partner from the other chain, even its back-
bone atoms. For example, for a serine in a complex, the
atomic contact between its O and a C* of any residue
from the interacting partner is a directly broken atomic
contact of this serine, while the contact between its C°
and whatever atom from the interacting partner is not.
We classify the atomic contacts into three types. If a
contact is between a positively charged atom and a
negatively charged atom, which usually corresponds to a
salt bridge, it is called a Type-I contact. If a contact is
between a hydrogen bond donor and a hydrogen bond
acceptor, which usually is a hydrogen bond, it is classi-
fied as Type-II contact. Contacts that are neither Type-I
nor Type-II are classified as Type-III. Here, the defini-
tions for positively charged atoms, negatively charged
atoms, hydrogen bond donors and hydrogen bond
acceptors are as given in [8]. We do not further divide
the Type-III contacts into subtypes such as other polar
contact, hydrophobic contact and so on because they
are all not as specific as Type-I and -II contacts. Note
that the definitions for Type-I and Type-II contacts are
not exactly the same as salt bridges and hydrogen bonds
in terms of geometrical requirements, yet they can be
still very important [47].

In this work, we use deeply buried atomic contacts
whose burial level is not less than 2. We refer to atomic
contacts at burial level 0 as exposed atomic contacts
and those at burial level 1 as slightly buried atomic con-
tacts. Let C(j, j) denote the number of Type-i directly-
broken interfacial atomic contacts at burial level j of a
residue. Then our model uses 6 features to describe a
residue: C(I, > 2), C(II, 2), C(II, = 3), C(II, 2), C(II, >
3), plus the burial level of the residue. An SVM model
based on this feature set is named DBAC (Deeply Bur-
ied Atomic Contacts). For comparison, we have also
built another model named AC (Atomic Contacts)
based on another feature set comprising C(Z, 0), C(Z, 1),
C(I, = 2), C11, 0), C(1I, 1), C(11, 2), C(11, = 3), C(1, 0), C
(111, 1), C(I1, 2), C(III, = 3), and the burial level of the
residue. The maximum value of burial level depends on
the size of the protein complexes, the size of the inter-
faces as well as the shape of the complex and the orga-
nization of the atoms. In general, very few contacts have
burial level larger than 3, so we do not distinguish
further burial levels larger than 3. For Type-I contact,
there are very few cases that have burial level larger
than 2, thus we do not use C(/, > 3) as a feature but
merge it with C(J, 2) into C(I, > 2).
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SVM training-testing protocol
Support Vector Machines (SVMs) are widely used in
many classification and regression problems. They have
also been adopted in hot spots prediction problems
[15,17,24] with various feature sets and training-testing
protocols. In this work, we use the LIBSVM software
[48], which is a tool for SVM model training and testing
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
We use the radial basis function (RBF) as the kernel.
We do not conduct feature selection because our
method is straightforward, and the number of features is
not large. However, we evaluate performance on two
different feature sets: the deeply buried atomic contacts
only (by DBAC) and all the atomic contacts (by AC).
The latter feature set is evaluated just for comparison.
The performance is evaluated under leave-one-out
cross-validation. To avoid over fitting, we have strictly
followed a nested-loop cross-validation procedure.
There are 258 mutations in our data set, each time one
mutation is taken as the test data and the remaining
257 mutations are used to train the model. The two
parameters, namely cost and gamma, are optimized on
the training data by a grid search. The grid search evalu-
ates the performance, F measure, of SVMs with different
parameter values on the training data using 5-fold cross-
validation, and the parameter values with the best per-
formance are chosen to build a training model on the
training data. This training model is then applied to the
test data, that is, the mutation held out in advance. This
procedure is repeated 258 times until every mutation in
the data set is tested.

Metrics in performance evaluation and statistical analysis
Performance is measured by sensitivity, precision, speci-
ficity, accuracy and F measure (F1). These measures are

defined asfollows: sensitivity = L, precision = _mw ,
TP + EN TP + FP
TP + TN TP + IN
accumcy =, accumcy =,
TP + FP + TN + FN TP + FP + TN + FN
2 X sensitivity X precision
and Fl= tyxp , where TP, FP, TN

sensitivity + precision
and FN are the number of true positives, false positives,
true negatives and false negatives, respectively. A better
classifier should predict hot spot residues with less false
positives and less false negatives; thus the F measure,
which combines sensitivity and specificity, is used to
indicate the overall performance.

We also test the significance of the difference in AAG
values of predicted hot spot and non hot spot residues.
A classifier divides the mutations in the data set into
two groups: computational hot spot residues and com-
putational non hot spot residues. The significance of the
AAG value difference in these two groups are tested by
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Mann-Whitney test [49]. The result of a classifier with
higher F1 value can be less significant when its false
positives have very low AAG values (near 0 kcal/mol or
even negative) and the false negatives have high AAG
values.

We also examine the value distribution of individual
features in hot spot and non hot spot residues. The sig-
nificance of the difference in the two classes is also
tested by Mann-Whitney test.

Results and Discussion

Performance of hot spot residue prediction

As introduced, 5 new features are derived from those
deeply buried interfacial atomic contacts which are
directly broken by alanine substitution. The feature
values of a residue are then fed into SVM together with
the overall residue burial level to predict whether this
residue is a hot spot residue or not. The performance
under leave-one-out cross-validation is shown in the
second row of Table 1. We achieve an F measure of
0.6237, when AAG = 2.0 is used as the threshold to
define hot spot residues. The precision of our method is
higher than the recall, which means that there are fewer
false positives than false negatives. A reason for this is
that our model emphasizes the contribution of directly
broken atomic contacts. The contacts that are broken or
newly formed by the conformational change during the
mutation are hard to define quantitatively. The AAG of
some hot spot residues, whose mutation results in a
large conformational change, cannot be fully explained
by its directly broken atomic contacts. This is reflected
in the lower sensitivity value. The non hot spot residues,
whose AAG is low, tend to have fewer deeply buried
directly broken atomic contacts, leading to a smaller
number of false positives and hence a higher precision.
We have also evaluated the performance of using the
AC feature set containing 12 features, which take
exposed and slightly buried atomic contacts into consid-
eration as well. As shown in the third row of Table 1,
the performance is not improved even though extra
exposed and slightly buried atomic contacts are added
to the feature set. Rather, the F measure is driven down
to 0.4 and the statistical significance is reduced a lot as
well. The reason is presented later.

Table 1 Performance of our method (DBAC) in
comparison with using all atomic contact (AC) and
Robetta

Method Sensitivity Precision Specificity Accuracy F1 p-value

DBAC 058 06744 09327 08643 06237 3.0280x10°"?
AC 032 05333 09327 08140 04 1.2849%10™
Robetta 044 03667 08173 07442 04 53817x107°
FoldX 05 04630  0.8606 07907 04808 6.2451x107""
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The reason we use leave-one-out cross-validation is
that we have a small data set and, moreover, there are
only a small number of positive samples (hot spot resi-
dues). To test the robustness of our method, we evalu-
ate performance using leave-n-out cross-validation
under the same training-testing procedure. We find that
when 7 is not large (< 7), the performance change is not
significant, sometimes better (F1=0.6304, n=5) and
sometimes worse (F1=0.5934. n=3) than that by using
leave-one-out. Anyway, as shown later, no matter how
large # is, our performance is always better than Robetta
and FoldX. For example, the performance of our
method by 5-fold (leave-51-out) cross-validation is
0.5870 in F measure. This indicates that our method is
robust.

We compare our method with three energy-based
methods, Robetta [19,21], FoldX [20,50] and EGAD [22].
Robetta is an online service. It can be used to predict
the AAG value of interfacial residues by computational
alanine scanning based on an energetic function. It can
thus be applied to hot spot prediction. Actually, it is a
widely recognized gold standard for benchmark compar-
ison in the field. Its performance on our data set is
shown in the forth row of Table 1. Our performance is
remarkably better than that of Robetta in terms of both
F1 and p-value.

FoldX is also available online. It is able to predict the
change in both protein stability and affinity. Its energy
function contains different sources of contributions such
as van der Waals interactions, hydrogen bonds and even
water-bridged interactions. We calculated the AAG of
mutations in our data set by using FoldX version 3.0
beta 4 with default parameters. From the fifth row of
Table 1, although FoldX shows a better performance
than Robetta, probably due to the fact that it is being
updated, our method still achieves a better performance
than that by FoldX.

EDAG contains a group of energy functions for pro-
tein design and it has a module to predict the change in
binding free energy after a mutation. We compare our
method with EGAD based on the data that is common
between our data set and those reported in their paper
[22], namely 166 mutations (34 hot spot residues and
132 non hot spot residues). As shown in Table 2, our
method’s performance is significantly better than that of
EGAD. In fact, EGAD tends to underestimate the AAG
values—especially for the barnase-barstar complex
[PDB:1BRS] in which there are many hot spot residues

Table 2 Comparison of our method with EGAD

Method Sensitivity Precision Specificity Accuracy F1 p-value
DBAC 05294 0.6923  0.939%4 08554 06 3.1412x10°8
EGAD 03235 0.5 09167 07952 03929 1.3693x107*
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—thus many hot spot residues are misclassified as non
hot spot, resulting in poor sensitivity.

These energy-based method are complicated and
time-consuming. The energy functions usually contain
many terms that represent different kinds of energies.
Both binding and folding of proteins can affect the bind-
ing free energy between two proteins. But binding and
folding are very complicated processes whose details are
difficult to capture. When a residue is mutated into ala-
nine, the new structure of the mutated protein and the
mutated protein complex must be predicted to get the
values of all energy terms of the mutated structure,
which is also very difficult. Thus the AAG are hard to
be accurately estimated even by these complicated
energy functions. From Tables 1 and 2, the performance
of these energy-based methods are not very good yet.

We also compare our method with another machine
learning method, MINERVA [15], which uses SVM as
well and is based on a larger feature set containing var-
ious aspects of information of target residue such as
weighted atomic packing density, relative surface area
burial, weighted hydrophobicity and so on.

MINERVA has good performance in terms of F1 value
in comparison with other previous machine-learning
methods. Because its source codes and software are not
available, we compare the performance on data that are
common between the MINERVA paper and our data
set. This common data set contains 178 mutations with
36 hot spot residues and 142 non hot spot residues. It
can be seen from Table 3 that MINERVA does not out-
perform our method in terms of F measure or p-value.
Moreover, the reported performance of MINERVA may
be biased upwards by an overfitting effect because
MINERVA uses 12 features selected from a total of 54
basing on the whole data set. MINERVA had also been
tested on an independent data set derived from BID
[51], where the importance of a residue is labeled as
“strong”, “intermediate”, “weak” or “insignificant”. In
that test, MINERVA treated a residue as a hot spot resi-
due only when its label is “strong”. We also test our
model (trained on our data set, 258 mutations) on a
subset of this independent data set containing 111
mutations whose PDB files have associated solvent
information. The performance of our model in terms of
F1 on this data set is 52%, which is same as that of
MINERVA. Note that the label of a residue is not per-
fectly correlated to its AAG, which is an inconsistency
between the training data and the test data; however, it

Table 3 Comparison of our method with MINERVA
Method  Sensitivity Precision Specificity Accuracy F1
DBAC 0.5833 0.7 0.9366 08652 06364 24011x107°
MINERVA 0.5 0.6667 09366 08483 0571 1.3731x1077

p-value
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Table 4 Statistical analysis on the features.
Feature  RBL* o Cun ()
pvalue 50897 x 107 02008  0.8204 0.0050
Feature  C(I, 0) i,y 2 cl, = 3)
pvalue 00013 04133 12419 x 10° 35031 x 10°
Feature  C(ll, 0) cany o 2) am, = 3)
pvalue 00034 00945  1.9061 x 107° 11621 x 107

The features in the feature set DBAC are emphasized in italics
*residue burial level

still can indicate the contribution of a residue to
binding.

Feature analysis

We test the significance of the difference of the values
of a feature in the hot spot and non hot spot residues.
The p-values are reported in Table 4. It is clear that the
DBAC features have very low p-values, indicating that
their values are significantly different between the two
classes. The p-value of C(I,> 2) is not as low as that of
other DBAC features, because there are fewer residues
that have salt bridges. The numbers of slightly buried
atomic contacts are not as significant as those of the
deeply buried ones. Thus our feature set can indeed
reflect the contrast between hot spot residues and non
hot spot residues, and the idea of excluding slightly bur-
ied and exposed atomic contacts and using only deeply
buried atomic contacts is statistically reasonable.

We show in Table 5 the performance of our method
after one feature is removed under the same training-
testing protocol described in Methods. It seems that the
removal of residue burial level, C(Z, > 2), C(II, 2) or C(II,
> 3) has little impact on performance. A reason is that
the features we are using are somehow correlated with
each other. In general, when an interfacial residue is
deeply buried with high residue burial level, it has sev-
eral deeply buried atomic contacts with the other side.
On the other hand, the removal of C(IIl, 2) or C(III, >
3) reduces performance a lot. The reason is that there
are often many Type-III atomic contacts in hot spot
residues, as Type-III atomic contacts is not as specific as
Types I or II. This suggests that we can further divide
Type-III atomic contacts into subtypes. We have actu-
ally tried dividing Type-III contacts into other polar-
polar contacts and hydrophobic contacts; and it turns
out that the performance change is not much and
hydrophobic contacts become the new dominant one.
However, this does not mean residue burial level, C(J, >

Table 5 Performances of our method after one feature is
removed

Feature Removed RBL C(l, = 2)
F1 06 06067

cql, 2 Cl, = 3)
06237 06

cqr, 2y Cdi, = 3)
04828 03947
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2), C(1I, 2) and C(II, = 3) do not contribute to the per-
formance because all the six features have significantly
different values in hot spot and non hot spot residues.
In fact, we can achieve an F measure of 0.5 with only
the residue burial level.

Another interesting observation from Table 5 is that
the performance after the removal of C(ZI, 2) (or C(III,
2) ) is better than that after the removal of C(II, > 3) (or
C(I1, = 3)), although the difference between hot spot
and non hot spot residues in C(Z, 2) or C(I, 2) is more
significant (as shown in Table 4) and the number of
residues that have Type-II or Type-III atomic contacts
at burial level > 3 is lower (as shown in Figure 3). As
we have already shown that the performance with fea-
ture set AC is worse than that with DBAC, the observa-
tion here further indicates that the atomic contact at
deeper burial level (> 3) is more important in hot spot
prediction. This again confirms that burial level plays a
very important role.

Residue burial level

Residue burial level is a very important feature for pre-
dicting hot spot residues. Its p-value shows a very signifi-
cant difference between hot spot residues and non hot
spot residues, as can be seen in Table 4. Here, we explain
that residue burial level is more sufficient than SASA in
hot spot prediction. Bogan and Thorn [7] found that hot
spot residues tend to have low SASA values. Based on
this observation, they suggested the existence of a ring of
energetically less important residues that are responsible
of protecting the hot spot. Generally, a low SASA value is
a necessary condition for a residue to become a hot spot
residue. Thus, it is usually used someway for hot spot
prediction. For example, the HotSprint database [13]
defines computational hot spots as those conserved
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residues that have large SASA change (ASASA) in
complex formation and low SASA in the complex.
However, a low SASA value is not a sufficient condition
for a hot spot. As observed in Figure 2(a), in our data set,
hot spot residues tend to have low SASA values with
more than 80% of hot spot residues having SASA less
than 30 A% But non hot spot residues also follow such a
tendency (55%), albeit in a less remarkable yet observable
way. We have tried to incorporate SASA into our model,
by adding it to the feature set. The performance drops a
lot, only 0.3188 by F measure.

In contrast, as shown in Figure 2(b), hot spot residues
tend to have a high burial level, while non hot spot resi-
dues do not. More than 60% of hot spot residues have a
burial level no less than 2.0, whereas less than 20% of
non hot spot residues have such burial levels. Thus, we
conjecture that a high burial level is not only necessary
but also more sufficient than a low SASA value for a
hot spot residue.

Deeply buried atomic contacts

Type-I atomic contacts roughly correspond to salt
bridges. Some researchers believe that buried salt
bridges provide neutral or even negative contribution to
protein stability [52,53] because the desolvation of
charged groups requires more energy than the interac-
tion energy of the formation of the salt bridge [54]. But
in protein-protein interaction, it is found that interfacial
salt bridges are more buried than intra-chain salt
bridges, and the salt bridges are found favorable across
the interface [3]. Perhaps the two proteins are folded
independently with more charged residues exposed and
their conformation change during complex formation is
very restricted, thus the two proteins prefer to interact
in an electrostatic complementary manner.

100
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Figure 2 Distribution of the SASA values (a), and distribution of the residue burial levels (b), in the hot spot and non hot spot
residues. The two figures here show a comparison between the distribution of the values of two residue descriptors: SASA that is usually used
in hot spot prediction, and burial level that is proposed by us, in hot spot and non hot spot residues. In (a), the distribution of SASA is shown, in
which we can find that both the number of hot spots and the number of non hot spots go down as SASA gets larger. In (b), as the burial level
gets larger, the number of non hot spot residues drops while the number of hot spot residues goes up.
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Figure 3 Percentage of hot spot residues and non hot spot residues that have at least one Type-I (a), Type-Il (b) or Type-lll (c) directly
broken interfacial atomic contact at different burial level. The two figures here shows the percentage of hot spot residues and non hot
spot residues that have at least one Type-l (a), Type-ll (b) or Type-lll (c) directly broken interfacial atomic contact at different burial level. It can be
noted that the values for deeply buried atomic contacts are significantly different in hot spot and non hot spot residues.
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Percentages of hot spot residues and non hot spot
residues whose C(I, x) are larger than 0 are plotted in
Figure 3(a). Generally, hot spot residues tend to have
their salt bridges buried while non hot spot residues do
not. Two adjacent exposed oppositely charged groups
may not form stable salt bridges at all [4]; thus some
exposed Type-I contacts, most of which are possessed
by non hot spot residues, may not be stable salt bridges.

Hydrogen bonds play a key role in protein-protein
interaction [2]. Most interfacial hydrogen bonds are
extremely buried; and the more buried a hydrogen bond
donor/acceptor is, the more likely it is to form a hydro-
gen bond [3]. Thus, being buried is favorable for interfa-
cial hydrogen bonds. Figure 3(b) shows the percentages
of hot spot residues and non hot spot residues whose C
({1, x) are larger than 0. It can be seen that nearly 30%
of non hot spot residues have exposed Type-II atomic
contacts, but very few of them have deeply buried
hydrogen bonds. The case is totally different in hot spot
residues. There are more hot spot residues that have
deeply buried Type-II atomic contact while a few of
them have exposed ones. The number of residues that
have extremely buried (burial level> 3) atomic contacts
is limited by the size of the protein complexes.

Type-1II contacts contain all other kinds of contacts
that are neither salt bridges nor hydrogen bonds, includ-
ing hydrophobic contacts and other polar contacts.
Actually hydrophobic contacts are not specific contact
between atoms but are the packing of groups of hydro-
phobic side chains. The contribution of hydrophobic
contacts to bonding free energy is correlated with the
buried surface area [6]. Thus energetically important
hydrophobic contacts are those buried ones. Generally,
protein-protein interfaces are dominated by salt bridges,
hydrogen bonds and hydrophobic contacts; but some-
times other contacts also make contribution to the bind-
ing [3]. A hot spot is usually a densely packed region in
the interface, thus the number of buried contacts of a
hot spot residue tends to be large, which can be

reflected by deeply buried Type-III contacts. As shown
in Figure 3(c), more than 80% of hot spot residues have
Type-III contact at burial level 2 and only about 20%
non hot spot residues have Type-III contact at this bur-
ial level.

Case study: three residues that are difficult to classify
Figure 4 shows the structure of two residues that are
difficult to classify. ARG-17 of BPTI shown in Figure 4
(a) is well buried in the interface of the complex with a
very low SASA of 8.0A2%, a small SASA value that is not
even enough to define an exposed atom. Arginines are
actually very likely to be hot spot residues [7,9], espe-
cially when they have such a low SASA. However, this
ARG-17 is a non hot spot residue, having a AAG of
only 0.5 kcal/mol. Its burial level is 1.55, which is not a
high value and, more importantly, almost all its atomic
contacts with bovine chymotrypsin are just slightly bur-
ied or even exposed. There are 4 Type-II contacts
shown in the figure, with 2 exposed and 2 slightly bur-
ied. It also has another 15 Type-III contacts, with 13
slightly buried, 1 exposed and 1 deeply buried. We suc-
cessfully classified this residue as a non hot spot residue.
Another example as shown in Figure 4(b) is TYR-29
of barstar. This residue is exposed with an SASA of
64.12 A% however, it is a hot spot residue with a AAG
of 3.4 kcal/mol. There are only two hot spot residues
that have SASA larger than 60A” in our data set. We
can still successfully identify it as a hot spot residue by
using its deeply buried atomic contacts. The side-chain
of tyrosine which contains an aromatic ring and a
hydroxyl group is capable of forming aromatic z-inter-
actions and hydrogen bonds [7]. As can be seen from
the figure, although TYR-29 of barstar is partially
exposed, its side-chain stretches into the complex and
forms many deeply buried atomic contacts. For the 4
Type-II interfacial atomic contacts shown in the figure,
3 are deeply buried and 1 is slightly buried. There are
another 8 deeply buried Type-III contacts, 7 of which
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Figure 4 Two residues that are difficult to classify in our data set. Two residues that are difficult to classify in our data set. In (a), ARG-17 of
BPTI (in yellow) in bovine chymotrypsin (in green)-BPTI complex [PDB:1CBW] is shown. This residue is a non hot spot residue (AAG=0.5 kcal/mol)
with an extremely low SASA (8.0 A%).In (b), TYR-29 of barstar (in yellow) in barnase (in green)-barstar complex [PDB:1BRS] is shown. This residue
is a hot spot residue (AAG=3.4 kcal/mol), but it has a large SASA (64.12 A?). These two residues have been correctly classified by our method.
The dashed lines in the figures are Type-Il atomic contacts (candidates of hydrogen bonds).

ARG-87 ASN=84

are made by the aromatic ring and 5 are atomic contacts
with HIS-102, an active site residue of barnase [55].

In Figure 5, we show another residue—ASP-435 of
ribonuclease inhibitor in ribonuclease inhibitor-angio-
genin complex—that is in a “wet” local environment,
although it is buried inside the interface and well
wrapped. It is a hot spot residue with a AAG of 3.5

HISSSS

Figure 5 A case that only our method works. ASP-435, a residue
of ribonuclease inhibitor (in yellow) in ribonuclease inhibitor-
angiogenin (in green) complex [PDB:1A4Y] that we have successfully
classified as a hot spot residue while Robetta, FoldX, EGAD and
MINERVA failed. This residue has several nearby water molecules (in
blue spheres), which may be the reason why other methods cannot
predict its type successfully. These water molecules are buried water
molecules are considered as part of the protein complex by our
method.

kcal/mol. As can be seen from the figure, this residue
has several nearby water molecules, which may be the
reason Robetta, FoldX, EGAD and MINERVA have
failed to classify it as a hot spot residue. We consider
buried water molecules as part of the protein complex;
thus, the buried water molecules shown in the figure
not only are buried but also are shelters of the nearby
residues. This residue has 3 Type-I, 1 Type-II and 11
Type-III deeply buried atomic contacts. If we do not
consider buried water molecules as part of the com-
plex, these atomic contacts will no longer be deeply
buried.

Conclusions

We have proposed a feature-based method to predict
protein-binding hot spots by using deeply buried interfa-
cial atomic contacts that are directly broken during ala-
nine substitution. The method is based on a graph
theoretical definition of burial level of residues, atoms
and atomic contacts. We achieved an F measure of
0.6237 when AAG > 2.0 is used as the threshold to
define hot spot residues. The burial level of a residue is
more intuitive than the concept of SASA. It is nicely
correlated with the AAG of a residue. We have shown
that a high residue burial level is in general necessary
for a residue to be a hot spot residue. Furthermore, it is
more sufficient than SASA, a frequently used feature in
existing hot spot prediction methods. Our results also
reveal that hot spot residues tend to have deeply buried
atomic contacts while non hot spots tend to have
exposed and slightly buried ones. This is consistent with
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previous studies that emphasize the energetic contribu-
tion of buried salt bridges, hydrogen bonds and hydro-
phobic contacts.
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