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Abstract

relationship score (DRS).

defining drug-drug relationships.

similarities, such as pharmacological effects.

Background: Drugs that bind to common targets likely exert similar activities. In this target-centric view, the
inclusion of richer target information may better represent the relationships between drugs and their activities.
Under this assumption, we expanded the “common binding rule” assumption of QSAR to create a new drug-drug

Method: Our method uses various chemical features to encode drug target information into the drug-drug
relationship information. Specifically, drug pairs were transformed into numerical vectors containing the basal drug
properties and their differences. After that, machine learning techniques such as data cleaning, dimension
reduction, and ensemble classifier were used to prioritize drug pairs bound to a common target. In other words,
the estimation of the drug-drug relationship is restated as a large-scale classification problem, which provides the
framework for using state-of-the-art machine learning techniques with thousands of chemical features for newly

Conclusions: Various aspects of the presented score were examined to determine its reliability and usefulness: the
abundance of common domains for the predicted drug pairs, c.a. 80% coverage for known targets, successful
identifications of unknown targets, and a meaningful correlation with another cutting-edge method for analyzing
drug similarities. The most significant strength of our method is that the DRS can be used to describe phenotypic

Introduction

Recently, many studies have examined the quantitative
structure-activity relationship (QSAR) between drugs, as
researchers seek to characterize chemical compounds in
terms of their activities. Thus far, the studies have
adopted a mathematical procedure which transforms
chemical properties into numeric features, the so-called
“molecular descriptor.” Until now, many thousands of
descriptors have been devised and have proven to be
useful for predicting a variety of drug activities, such as
drug-likeness [1], pharmacokinetic parameters [2], acute
toxicity [3], multi-modal binding propensity [4], and
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many other physicochemical properties [5] (e.g. log P).
Furthermore, descriptors have also been used to infer
the drug-drug relationship, which expands the applic-
ability to virtual screening [6,7], chemical library con-
struction [8], drug clustering [9] and classification
[10-12].

The wide availability of chemical information (descrip-
tors) is based on an implicit assumption that drugs that
bind to the same target likely exert similar activities. In
line with this thinking, the theory of “neighborhood
behavior” [13] has long asserted that structurally similar
drugs likely bind to a common therapeutic target.
Therefore, it can be said that drug target information is
the most direct evidence for inferring a drug’s activity.
In this target-centric view, the inclusion of richer target
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information may better represent the relationships
between drugs and their activities. However, drug-drug
relationships have typically been calculated using chemi-
cal structural information [14-16]. That is, a chemical
structure is converted into numerical features represent-
ing various chemical properties [17], and the structural
features are then used to define the drug-drug relation-
ship by determining which features are the same and
which are different. However, the weak point of this
method is that it cannot consider many structurally
unrelated drugs bound to a common target [18,19].

In this study, we present a new drug-drug relationship
score (DRS) which aims to encode both the drug target
information and the global structural similarity. The
“common binding rule” assumption of QSAR studies was
used and expanded to posit the existence of common
rules governing drug-target interaction which could be
learned from large-scale drug-target interaction data.

Specifically, more than 2,000 descriptors were used to
transform drug pairs into numerical vectors. The estima-
tion of drug-drug relationships was thus restated in a
classification framework that prioritizes drug pairs with a
common target. This procedure was based on the
assumption that drugs sharing a target are much more
similar than drugs that are only alike in terms of struc-
ture. To improve the reliability of the score, data clean-
ing, iterative under-sampling, and the ensemble approach
were combined with a Random Forest classifier.

The classification performance was validated using
both an internal and external test set. In addition, the
reliability and usefulness of the DRS were examined in
terms of the abundance of common domains for the pre-
dicted drug pairs, c.a. 80% coverage for known targets,
successful examples for unknown target identifications,
and meaningful correlation with another cutting-edge
technique. Significantly, the DRS showed better perfor-
mance for describing similarity in pharmacological effects
[8], perhaps due to the encoded target information.

Results and discussion
Generating drug-drug relationship score
To derive the DRS, a drug pair vector was constructed by
averaging and subtracting paired drug features in descrip-
tor space (Figure 1). All drug pairs were classified into two
groups: positive drug pairs (which shared at least one
common target) and negative drug pairs (which did not
share any targets). After that, machine learning techniques
were adopted to prioritize drug pairs bound to a common
target (see the Methods section for the detailed proce-
dures). Conceptually, this procedure implemented the
assumption that drugs with common targets might have
more similar actions than structurally similar drugs.

To estimate the classification proficiency, we per-
formed internal cross-validation, using out-of-bag (OOB)
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Figure 1 Construction of drug pair vector and the classification model
using Random Forest are shown. For example, two drugs, D1 and D2,
are represented by n principal components, and the resulting M (basal
chemical properties) and E (chemical property differences) vectors are
used to represent the drug pairs. The classification model classifies the
positive drug pairs that share a target (red) from the negative drug
pairs that do not share a target (blue).

samples, and external validation, using an independent
test set. As a baseline method, 2D structural similarity
measures based on the different fingerprints of the drugs
were calculated and compared with the DRS. That is, the
drug pairs were sorted by the Tanimoto coefficient and
checked to see if they shared the same target. The perfor-
mance is represented by the sensitivity-specificity plot in
Figure 2. The results of internal cross-validation showed
that the DRS outperformed the 2D similarity measures in
retrieving common-target drugs (Figure 2a). When the
score threshold was set to zero, the sensitivity and the
specificity reached about 0.8 and 0.8, respectively. In
addition, the results of external validation also showed a
similar trend, even though the performance was a little
bit lower than the internal cross-validation (Figure 2b).

These results suggest that the DRS contains more use-
ful target information than traditional similarity mea-
sures, and the classification model seems to be unbiased
by the huge amounts of negative data. In addition, true
positives (correctly predicted drug pairs) covered many
structurally-unrelated drug pairs (Additional file 1),
implying that the DRS could capture the important spa-
tial features of structurally-unrelated drug-pairs. On the
other hand, the performances of the five structural simi-
larity measures were virtually identical, although Pub-
Chem fingerprint showed the best performance.

Predicted drug pairs seem to be promising: high domain-
matching ratio

In the classification framework, drug pairs that do not
share any known common targets were considered as
negative data. However, it is possible that the drugs’
shared common targets might be unknown because of
insufficient knowledge about drug-target interaction.
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Figure 2 Specificity and sensitivity plot of (a) internal cross-
validation using OOB samples and (b) external validation using an
independent test set generated from 50 drugs excluded at the
training step. The other drug similarity measures are compared with
the drug-drug relationship score (DRS).

Therefore, using the DRS to mine unknown drug-drug
relationships could be very interesting work. Indeed,
new similarities between drugs were used to reposition
the marketed drugs by revealing unknown drug-drug
relationship [20,21]. From this view point, drug pairs
predicted as positives might have a better chance of
sharing a common target than negative drug pairs.

To estimate the hypothesis, the PFAM domains [22] of
the targets of the negative drugs were investigated to see
if the drug pairs had a target of the same domain (Figure
3a). It was assumed that drug targets of the same
domains likely bind to the same drug because of their
structural and sequential homology. For example, the
structural similarity between DB02270 and DB00884 was
very low (Tanimoto coefficient based on PubChem fin-
gerprint: 0.15) in spite of a high DRS (0.77, when the
range was adjusted from O to 1 as the structural similar-
ity). The maximum target identity between possible tar-
get pairs was also relatively low (sequence identity: 23%).
However, the overall target structures, especially ligand
binding pockets, were very similar (Coo RMSD 2.56A for
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Figure 3 (a) PFAM domain matching ratio for the negative drug
pairs is shown according to the drug-drug relationship score. (b)
Example target structures of DB02270 (blue stick) and DB00884
(green stick) are shown as gray (1RQI) and orange (1YV5),
respectively. Their RMSD value is 2.56A, probably due to the

common polyprenyl synthetase domain.

PDB id 1YV5 and 1RQI) because they shared the same
PFAM domain: polyprenyl synthetase (PF00348). Indeed,
the binding modes of the drugs appeared very similar to
one another (Figure 3b). In addition, many drug pairs
with potential similar binding pockets could be discov-
ered by the domain matching information.

Specifically, the proportion of negative drug pairs that
shared common PFAM domains was investigated
according to the DRS. Note that negative drug pairs are
those without any common targets. The results showed
that a higher DRS represented a higher domain-match-
ing ratio. For example, more than 50% of drug pairs had
common target domains when the DRS was set to 0.5,
which was significantly higher than the random (less
than 1%). Accordingly, the result of the domain match-
ing ratio suggests that DRS might be useful for finding
unknown drug-drug relationships.

New target identification by drug-drug relationship score
The newly predicted positive drug pairs (i.e. false posi-
tives in terms of classification) were used to identify
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potential targets. The target identification scheme based
on the maximum DRS transferred the information on
drug-drug relationships to the drug targets (See Meth-
ods). This scheme was successful for about 80% of the
known drug targets (Additional file 2). To estimate the
target-finding capability for unknowns, the recently dis-
covered drug-target interactions by Keiser et al. [20]
were used as a test set. Note that drugs whose discov-
ered targets were not annotated in the DrugBank data-
base were used in this study [23]. This process was
similar to finding new targets of known drugs. The
tested drugs were DMT (DB01488), Motilium
(DB01184), Xenazine (DB04844), Prantal (DB00729),
Paxil (DB00715), Prozac (DB00472), and Rescriptor
(DB00705), and their known targets are listed in Table
1, along with their DRS values and ranks. In addition,
the target scores from the false positive drug pairs
(those with a high DRS value but no common target)
were separated from those of the known positive drug
pairs (which shared a common target). Thus, this
separation (Table 1) was designed to determine whether
the new target predictions were meaningful.

For most drugs, the target prediction scheme employing
the DRS worked well, even for the new targets discov-
ered by Keiser. For example, alpha-1 type adrenergic,
the target of Motilium, could be found in the fourth
rank (with a score that was tied with the first rank). In
addition, other targets such as potassium channel (K+)
and serotonin receptor 2A (5HT-2A) were successfully
discovered, even though they were not included in the
DrugBank database and were thus not in the training
set. As expected, the positive drug pairs seemed to be
helpful for predicting new targets (e.g. a1l of Motilium,
02 of Xenazine and 8 of prantal) by annotation transfer
based on the shared target. Interestingly, the newly dis-
covered targets (bold) and those targets not annotated
in the DrugBank (underlined) could also be discovered
by the new DRS predictions.

As another case study, we tried to find the off-targets
of celecoxib (DB00482), which has been known to show
unexpected nanomolar inhibition to carbonic anhydrase
2 [24,25], an effect which was not annotated in the
DrugBank database. As expected, the known targets of
celecoxib appeared in the predicted target list based on
positive drug pairs, but carbonic anhydrase 2 could be
found only from the newly predicted drug pairs (score
0.826, first rank). In addition, recent studies have shown
that celecoxib blocks human cardiac voltage-gated
potassium channels (Kv), which accounts for the drug’s
known cardiovascular side effects [26,27]. Indeed, the
target predictions of celecoxib resulted in a high score
for the potassium channels, such as potassium voltage-
gated channel subfamily C member 4 (0.505), potassium
voltage-gated channel subfamily KQT member 1 (0.451),

Page 4 of 8

and potassium voltage-gated channel subfamily E mem-
ber 1 (0.451). Note that the range of the DRS is from -1
to 1.

Correlation with another drug similarity score

Campillos et al. calculated the target-sharing probabil-
ities of drugs based on the similarity of side effects and
chemical structure [21]. Because both the target-sharing
probability and the DRS prioritized drug pairs with
common targets, we compared the two methods for
each drug group. In the previous study [21], drug pairs
with at least 25% probability of sharing a protein target
were selected and divided into five groups: the first
group (G1) was drug pairs known to share targets (true
positives in our study); the second (G2) was drug pairs
with similar structures or targets; the third (G3) was
drug pairs without known human targets; the fourth
(G4) was drug pairs from the same therapeutic category;
and the last (G5) was drug pairs predicted only by the
side effect similarities.

Pearson’s product-moment correlation coefficient was
used to test the significance of the correlation between
the two methods. Because the G1 group was drug pairs
that shared a target and were included in the training
set, the score by our method should obviously be high.
On the other hand, all of the drug pairs in other groups
were new predictions, so the significant correlations
between the two scores seemed to be meaningful. Speci-
fically, the correlation coefficients in G2, G4, and G5
were 0.688 (p-value 1.74e-07), 0.724 (2.85e-05), and
0.396 (2.41e-05), respectively (Additional file 3). Note
that the G3 group was not considered because of the
insufficient number (eight) of drug-pairs in the group.
Accordingly, the two scores are largely correlated to
each other even though they use different information.

Pharmacological effect similarity by drug-drug
relationship score

How much does the DRS represent the actions of
drugs? To answer this question, the DRS was used to
estimate the similarity of pharmaceutical effects between
drugs. For this, the Anatomical Therapeutic Chemical
(ATC) system was adapted (http://www.whocc.no/atc/).
The ATC system divides drugs into different groups
according to the organ or system on which they act, as
well as their therapeutic and chemical characteristics.
Reflecting the hierarchical structure of the ATC system,
the terms of the 2" and 3™ ATC level were considered
to see if the DRS correlated with the pharmacological
effect similarity. Specifically, the drug pairs used in the
external validation set (i.e. unseen data) were sorted by
different drug similarity measures, and the number of
drugs with matching ATC was plotted according to that
score (Figure 4). We found that the correlation between
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Table 1 Drug target prediction examples by the DRS
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Drug Name Known Score (frequency for score ties) from the  Rank Score (frequency for score ties) from the newly predicted Rank
Targets positive drug-pairs drug-pairs (not sharing a target)
DMT 5-HT7 0.858(10) 40 0426 75
(DB01488) 5-HT1B 0.858(14) 39 0.778(4) 3
5-HT5A NA NA NA NA
5-HT6 0.858(6) 42 NA NA
5-HT1D 0.858(16) 38 0.778(4) 3
5-HT1A 0910 17 0.529(2) 45
cl 0.772 52 NA NA
5-HT2A 0.942(63) 1 NA NA
5-HT2C 0.942(32) 3 0376 99
5-HT2B 0.882 32 0.778(2) 5
K+ 0.939 [Potassium H2] 16 0.655 [Potassium D2,D3,KQT2,A1] 28
hERG NA NA  NA NA
D2 0.961(63) 1 NA NA
Motilium @ 0917 22 NA NA
(DB01184)
ol alA 0.961(26) 4 a 1B 0.700(1) 18
o 1B 0.961(20) 7 alA 0694 20
5(HT2A) 0.961(41) 2 0.752 10
VMAT2 0.878 1 NA NA
Xenazine o2 a2A 0.807 14 a2A 0.706 4
(DB04844)
a2B 0.758 15 a2B 0.650 37
Prantal o 0975 21 0.830 49
(DB00729) m 0.986 1 NA NA
M1 0.954(71) 1 NA NA
M2 0.954(58) 2 NA NA
M3 0.954(53) 3 NA NA
B1- 0918 [B1 adrenergic receptor] 31 0.635 [B1 adrenergic receptor] 24
Paxil DAT 0.951(24) 10 0.775 4
(DB00715)
NET 0.951(45) 6 NA NA
5-HTT 0.951(42) 7 NA NA
al alA 0951(41) 8 alA 0.687 15
1B 0939 12 a 1B 0.545 60
Prozac SHTT 0.992(42) 2 NA NA
(DB00472) NET 0.992(32) 4 0.861 3
B1- 0.988 [B1 adrenergic receptor] 18 0699 [B1 adrenergic receptor] 106
CA NA NA  CA2, 0.280 357
H1 0.992(25) 5 0.776 86
5-HT2C 0.991(35) 14 NA NA
5-HT2A 0.992(63) 1 NA NA
M1 0.992(23) 6 0.735(8) 89
Rescriptor H4 NA NA 0259 47
(DB00705) HIVRT NA NA NA NA
*Gag-Pol 0.847 1 NA NA
PTGS2 0923 1 NA NA
PDPK1 0.746 21 NA NA
CA2 NA NA 0824 1
Kv 0.505 [Kv subfamily C member 4] 177 0451 [Kv subfamily KQT member 1] 47
0451 [Kv subfamily E member 1] 48

Bold: new prediction by Keiser, under bar: known interaction in DrugBank, *: annotated in DrugBank but not in the study by Keiser, Abbreviations: 5HT, 5-
hydroxytryptamine; 5-HTT, serotonin transporter; K+, potassium channel; hERG, human Ehter-a-go-go related gene channel; D1-4, Dopamine 1-4; a1-2, o
adrenergics; VMAT2, vesicular monoamine transporter 2; 3, 3-opioid receptor, M1-3, muscarinics; B 1-, adrenertic agonist; DAT, dopamine transporter; NET,

noradrenaline transporter; CA, carbonic anhydrase, H1-4, histaminergics; HIVRT, HIV-1 reverse transcriptase; Gag-Pol, Gag-Pol polyprotein; PTGS2, Prostaglandin G/
H synthase 2; PDPK1, 3-phosphoinositide-dependent protein kinase 1; Kv, voltage-gated potassium channels
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the DRS and ATC terms was greater than that of drugs
with typical structural similarities. The trend did not
change when only negative drug pairs (without a shared
target) were considered (Additional file 4).

Conclusions

Chemical similarity has frequently been used to estimate
relationships between drugs. For example, in the drug
discovery process, the chemical library can be scanned
with a query drug to find those compounds which bind
to the same target as the query. This drug/target activity
view point led us to develop a new target-centric drug-
drug relationship score (DRS) under the assumption
that drugs that bind with a common target have other
common factors. Indeed, the DRS was shown to be clo-
sely related to similarities in pharmacological effects.

In our method, to represent drug pairs with their tar-
get information, the estimation of drug-drug relation-
ships was restated as a large-scale classification problem
that distinguished drug pairs with a common target. In
addition, the classification model was improved through
data cleaning, iterative under-sampling, and an ensemble
approach in combination with a Random Forest classi-
fier. The usefulness of the DRS was demonstrated with
internal and external validations, as well as a high
domain matching ratio for the new predictions, success-
ful identifications of unknown targets, and a meaningful
correlation with another cutting-edge method for study-
ing drug-similarity.

2nd ATC 3rd ATC

ATC matching drugs

— DRS
ExtFP1024
FP1024

—— GraphFP1024
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0 10 20 30 40 50 0 10 20 30 40 50
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Figure 4 Average numbers of ATC-matching drugs are plotted
according to the drug ranks by the DRS. The other drug similarity
measures are compared with the DRS. On the left, only exact
matches up to 2" ATC terms are considered, whereas on the right,
matches up to 3@ ATC terms are considered.
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Methods

Drug-target interaction data

Drug structure and data on target and drug-target inter-
action were retrieved from the DrugBank database (April
2011) [28]. After erroneous drugs were removed during
the descriptor calculation by PaDEL [29], the number of
remaining drugs and drug-target interactions were 5,858
and 14,490, respectively. The simple network properties
of the relationship are shown in Additional file 5. See the
previous work by Yildirim et al. for detailed network
properties of the drug-target network [30].

Drug representation by molecular descriptor

Molecular descriptors (descriptors) are a result of stan-
dardized numerical calculations, and logical, mathemati-
cal interpretations of chemical information. To
characterize drugs, descriptors were calculated using
PaDEL software [29]. Specifically, PaDEL descriptors
(801), PubChemFP (PubChem fingerprint, 881), ESta-
teFP (E-State fragments, 79), MACCSFP (MACCS keys,
166) and SubFPC (SMART patterns for functional
group classification, 307) fingerprints were calculated for
each drug. In this procedure, descriptors that generated
calculating errors or gave almost the same values for
more than 90% of drugs were removed. As a result,
89,354 target-sharing drug pairs were selected as posi-
tives, and represented in descriptor space. The drugs
were then projected into the largest 162 principal com-
ponents (PCs), which cumulatively explained 90% of the
variance. The purpose of considering the major principal
components was to eliminate noise and remove redun-
dant information derived from inter-correlations
between descriptors.

Construction of the drug pair vector

A feature vector representing a drug pair was con-
structed from the PC-based drug representation (Figure
1). The drug pair vector consisted of an M and an E
vector, where the M vector (constructed by averaging
PCs between drugs) represents the basal chemical prop-
erties and the E vector (obtained by calculating the
squared-errors of PCs) represents the chemical property
differences. Accordingly, the drug pair vector repre-
sented the basal chemical properties and their
differences.

Generation of the drug-drug relationship score from
classification model

Another problem of tackling the classification was the
proliferation of negative samples as compared to the
positive samples, which raised the question of imbal-
ance. When all the samples were used, the number of
negative samples was about 200 times larger than the
positive samples. Thus, the negatives should be under-
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sampled, because machine learning techniques usually
seek to minimize total prediction errors, so the classifi-
cation for the imbalanced data tends to be biased
towards larger samples.

To minimize the problem, only positive samples were
kept, whereas the iterative under-sampling procedure
was used to construct multiple negative sample sets.
First, the density of structure similarity between drugs
was obtained by calculating the PubChem structure
similarity for all negative drug pairs. After that, a num-
ber of negative drug pairs equivalent to the number of
positive drug pairs (89,236) was chosen, based on the
sampling probability (inversely proportional to the den-
sity of structural similarity). This procedure aimed to
select more diverse negative drug pairs, so as not to be
biased to specific drug groups. The above procedure
was repeated ten times to obtain ten negative sample
sets. Then, ten Random Forest classification models
were constructed respectively with the positive samples.
Finally, the classification scores for the ten classification
models were averaged, and the result was regarded as
the final drug-drug relationship score. This technique
aimed to give a higher score to common-target drug
pairs, and ranged from -1 to 1. Note that, to guarantee
an “unseen” test set, the score from a single classifier
was only used to estimate the classification performance,
whereas the average score from the ten classifiers was
applied to predict new drug targets.

In the study, Random Forest was used to construct the
classification models. Random Forest, developed by Leo
Breiman and Adele Cutler, is a collection of tree-based
classifiers which constructs trees depending on an inde-
pendent feature-sampling procedure [31]. Each tree is
built by sampling with a replacement, so that about
one-third of samples are left out. These OOB (out-of-
bag) samples are used to get an unbiased estimate of the
classification error. The voting results from an ensemble
of decision trees determine the most popular objective
class. The Random Forest classifier has been shown to
be relatively free from the over-fitting problem as com-
pared to other machine learning methods.

Validation of classification performance

Two approaches were used to estimate the classification
performance. The first of these was internal cross-vali-
dation using out-of-bag (OOB) samples from Random
Forest classifiers. Random Forest performs a type of
cross-validation in parallel with the training step by
using out-of-bag (OOB) error estimate. Specifically, the
samples that are left out (about one-third of samples)
after bootstrapping in the training step become OOB
samples. Because these OOB samples have not been
used in the tree construction, they can be used to esti-
mate test set errors (OOB error).
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In addition, external validation using an independent
test set was adopted to estimate the general prediction
error of the unseen data. Prior to the training proce-
dure, 50 drugs were randomly selected, and all drug-
pairs that included any of those 50 drugs were removed
from the training data. After the training procedure, the
resulting classifier was tested against the remaining drug
pairs. This procedure was used to generate a test set
consisting of unseen drug data, and to mimic the virtual
screening procedure scanning the most similar drug in
the chemical library. The performances of the internal
and external cross-validation were shown by a sensitiv-
ity-specificity plot. Sensitivity is defined as TP/(TP+EN)
and specificity is TN/(TN+FP), where TP is a true posi-
tive, FN is a false negative, TN is a true negative, and
FP is a false positive.

Drug structural similarity by various fingerprints

In the present study, 881-bit PubChem fingerprint with
the Tanimoto coefficient (ratio of intersection-bits to
union-bits) was regarded as a basic measure for chemi-
cal structural similarity. In addition, 1024-bit ExtFP
(Extends the Fingerprint with additional bits describing
ring features), 1024-bit FP (Fingerprint of length 1024
and search depth of 8), 1024-bit GraphFP (specialized
version of the Fingerprint which does not take bond
orders into account), and 4860-bit KRFP (presence of
chemical substructures) calculated from PaDEL software
were also used to compare the performance between
different fingerprints. To estimate the performance,
drug pairs were sorted by the Tanimoto coefficient
using different fingerprints to check if the two drugs
shared the same target (Figure 2).

Prediction of potential targets by the drug-drug
relationship score

We developed a drug target prediction scheme based on
the DRS. The target score for the query drug was
obtained by transferring the DRS between the query
drug and a drug in the database that binds to the same
target. When there were more than two database drugs
that bind to the target, the higher DRS (between the
query and database drugs) was assigned as the target
score. In addition, if the targets had the same score, the
one which was more frequently above the predefined
score (0.5) came first.

Additional material

Additional file 1: Drug structure similarity histogram for true positive
drug pairs (correctly predicted positive drug pairs).

Additional file 2: Average success rate for the (known) target
identification is shown according to the target rank. The target rank is by
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the target score and the success ratio represent that the score finds the
known targets within the corresponding rank (x-axis).

Additional file 3: Correlation between the DRS and the drug similarity
score from side effect (SE) information.

Additional file 4: Average numbers of ATC-matching negative drugs are
plotted according to the drug ranks by the DRS. All descriptions are the
same to Figure 2.

Additional file 5: Simple statistics about drug-target interactions are
shown.
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