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Abstract

Background: Although mass spectrometry based proteomics demonstrates an exciting promise in complex
diseases diagnosis, it remains an important research field rather than an applicable clinical routine for its diagnostic
accuracy and data reproducibility. Relatively less investigation has been done yet in attaining high-performance
proteomic pattern classification compared with the amount of endeavours in enhancing data reproducibility.

Methods: In this study, we present a novel machine learning approach to achieve a clinical level disease diagnosis
for mass spectral data. We propose multi-resolution independent component analysis, a novel feature selection
algorithm to tackle the large dimensionality of mass spectra, by following our local and global feature selection
framework. We also develop high-performance classifiers by embedding multi-resolution independent component
analysis in linear discriminant analysis and support vector machines.

Results: Our multi-resolution independent component based support vector machines not only achieve clinical
level classification accuracy, but also overcome the weakness in traditional peak-selection based biomarker
discovery. In addition to rigorous theoretical analysis, we demonstrate our method'’s superiority by comparing it
with nine state-of-the-art classification and regression algorithms on six heterogeneous mass spectral profiles.

Conclusions: Our work not only suggests an alternative direction from machine learning to accelerate mass
spectral proteomic technologies into a clinical routine by treating an input profile as a ‘profile-biomarker’, but also
has positive impacts on large scale ‘omics’ data mining. Related source codes and data sets can be found at:
https://sites.google.com/site/heyaumbioinformatics/home/proteomics

Background

With recent surges in proteomics, mass spectral proteo-
mic pattern diagnostics has become a highly promising
way of diagnosing, predicting, and monitoring cancers
or other advanced diseases for its cost-effectiveness and
efficiency [1]. Recent studies not only demonstrate that
proteomic profiling can detect the anonymous protein
peaks differently expressed between cancer patients and
healthy subjects, but also show the absence or presence
of disease can be discovered through proteomic pattern
classification. However, this novel technology remains
an important research field rather than a clinical routine
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because of the unresolved problems in data reproduci-
bility and classification. The data reproducibility issue
refers to that no two independent studies have been
found to produce same proteomic patterns. On the
other hand, the data classification issue refers to that
the classification accuracy obtained from mass spectral
data is inadequate to attain a clinical level (e.g., 99.5%)
in most studies. Although impressive sensitivities and
specificities were reported in some case studies, their
classification methods have no guarantee to extend to
other mass spectral data to maintain a same level
performance.

Many methods and protocols are proposed and being
developed to enhance mass spectral data reproducibility
from biological and technological aspects. They include
employing peptide profiling to replace proteomics
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profiling to get extremely high resolution data, improv-
ing experimental designs to avoid mingles between bio-
logical and technological variables, and developing more
robust preprocessing algorithms [2-5]. However, mass
spectral data reproducibility enhancement seems to be
facing a built-in challenge from the technology itself [6],
i.e., almost any small, even tiny changes in the part of
proteome will be amplified to rather large even huge dif-
ferences in mass spectra, no matter whether the sources
of the changes are from biological factors or experimen-
tal conditions. The sensitive signal amplification
mechanism somewhat limits the potential of these
reproducibility enhancement techniques and presents
difficulties in achieving reproducible and consistent
diagnosis.

On the other hand, rather fewer studies have been
invested in improving mass spectral proteomic pattern
classification than those of enhancing data reproduci-
bility. To attain high disease diagnostic accuracy, many
studies focus on identifying biomarkers from mass
spectral profiles, which are generally a small set of pro-
tein expression peaks at selected m/z (mass/charge)
ratios, through different machine learning approaches
(e.g., peak selection), [7,8]. These studies are definitely
important and interesting. However, they bear the fol-
lowing limitations. (1) The biomarker selection proces-
sing is generally individual data oriented case study.
There is no guarantee to generalize it to other profiles.
(2) The biomarkers obtained from these studies by nat-
ure are not reproducible because of the irreproducibil-
ity of their source data. In other words, the identified
mass spectral biomarkers may lose their reusability and
predictability, even if they can achieve exceptional sen-
sitivity and specificity in classification. It is highly
likely that another totally different set of biomarkers
would be identified if the same type of mass spectra
were generated from another set of cancer patients
and healthy individuals under the same experimental
conditions. (3) The sensitivity and specificity levels
from the biomarkers’ classification are still inadequate
to qualify this young technology as a robust clinical
routine.

How could we accelerate mass spectral proteomics to
become a clinical routine in complex disease diagnosis
while the studies on data reproducibility enhancement
are still underway? We address this challenge from a
machine-learning viewpoint by developing a high-perfor-
mance mass spectral pattern recognition algorithm in
this study. Although data reproducibility plays a very
important role in mass spectral proteomics, the essential
factor to determine whether this exciting technology can
fully explore its potential, to a large degree, may rely on
the levels of sensitivity and specificity from mass spec-
tral pattern classification.
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If there exists a novel pattern recognition algorithm
able to attain a 99.5% level accuracy in mass spectra
classification for an input proteomic profile, then the
profile can be viewed as a profile biomarker in disease
diagnosis. This is because the high-accuracy diagnostic
results would be reproducible for all input profiles by
taking advantage of the novel classification technique.
Under such a situation, the data reproducibility probably
may not be a major concern to prevent reproducible
biomarker discovery because the profile biomarker is
able to “reproduce itself” by attaining clinical level
diagnosis.

The high or even huge dimensionality of mass spectral
data presents a challenge for high-performance proteo-
mic pattern classification, especially for most traditional
classification algorithms that were developed under the
assumption that input data with a small or medium
dimensionality. A mass spectral profile can be repre-
sented as a p x n matrix after preprocessing, where a
row represents the ion-intensities of a set of observa-
tions (samples) at a mass charge ratio (m/z), which is
similar to a gene in microarray data, and a column
represents the ion-intensities of a single sample across a
set of m/z ratios. Unlike traditional data (e.g., financial
data), the number of variables in a mass spectral profile
is much greater than the number of observations, i.e.,
n>>p. In addition, only a small portion of testing points
(m/z ratios) among the thousands of them have mean-
ingful contribution to data variations or demonstrate
biological relevance in disease detection. Furthermore,
mass spectral data by nature are not-noise free due to
the non-linearity in proteomic profiling. Preprocessing
techniques are unable to remove some built-in systema-
tic noise completely. The information redundancy,
noise, and high-data dimensionalities in mass spectral
data not only make some traditional classification meth-
ods (e.g., Fisher discriminant analysis) lose discrimina-
tive power, but also present an urgent challenge in
computational proteomics.

Local features and global features

Many feature selection methods are employed to
decrease dimensionalities, remove noise, and extract
meaningful features before mass spectra classification.
These methods can be categorized as input-space fea-
ture selection and subspace feature selection. The input-
space feature selection reduces the dimensionality of
data by selecting a subset of features to conduct a
hypothesis testing or create a model under some selec-
tion criteria in the same space as input data (e.g., t-test).
On the other hand, the subspace feature selection, also
called transform-based feature selection, reduces data
dimensionality by transforming data into a low-dimen-
sional subspace induced by a linear or nonlinear
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transformation. The subspace feature selection methods
are probably the most used data reduction techniques in
proteomics for their popularity and efficiency. They
include principal component analysis (PCA) [9], inde-
pendent component analysis (ICA) [10,11], nonnegative
matrix factorization (NMF) [12], and their different
extensions [13,14]. We mainly focus on the subspace
feature selection methods in this study.

These algorithms, however, are generally good at
selecting global features rather than local features. The
global and local features consist of high frequency and
low frequency features (signals) respectively. For exam-
ple, a testing point (an m/z ratio) with several excep-
tionally high peaks on cancer samples, which are seldom
found at most testing points, can be viewed as a local
feature. On the other hand, a testing point whose
expression value plot curve is similar to those of other
testing points is a global feature. As different frequency
signals capturing different data behaviour, the global
and local features interpret the global and local beha-
viour of data, and contribute to the global and local
characteristics of data respectively. Since there is no
robust screening mechanism available to distinguish the
two types of features in most subspace feature selection
methods, the global features may demonstrate ‘obvious’
advantages over the local features in the feature selec-
tion. That is, the low frequency signals have less likeli-
hood to contribute to the inferred low-dimensional data,
which usually are the linear combinations of all input
variables, than the high frequency signals. For example,
the positive and negative weights in the linear combina-
tion to calculate each principal component in PCA are
likely to partially cancel each other. However, it causes
that the weights representing contributions from local
features are more likely to be cancelled out because of
their frequencies. As such, unlike the global features, the
local features are hard to extract for most subspace fea-
ture-selection algorithms. Finally, the low dimensional
data inferred from the transform-based feature selection
may miss some local data-characteristics described by
the local features. In other words, the global features
dominate the feature selection and these algorithms
demonstrate a global feature selection mechanism.

Although difficult to extract out, the local features are
probably the key to attaining a high-performance mass
spectral pattern classification for its subtle data beha-
viour capturing, especially because many mass spectral
samples share very similar global characteristics but dif-
ferent local characteristics. For example, it’s easy to dis-
tinguish a 10-years old, five-feet girl Jean between a 25-
year old six-feet male Mike, because they have different
global features. However, it is not easy to distinguish
Mike with his twin brother Peter because they share
almost same global characteristics: height, weight, hair
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color, etc. Nevertheless, some careful people can still
detect them because Peter has a mole near his mouth
but Mike does not, i.e., the mole here works as the local
feature to facilitate such detection. For another example,
some benign tumor samples may display very similar
global characteristics but quite different local character-
istics with malignant tumor samples. To attain a high-
accuracy diagnosis, it is must to capture the local data
characteristics to distinguish these samples sharing the
similar global characteristics from each other. It may be
particularly important in mass spectral proteomics
because some sub-type samples may demonstrate very
similar ‘global patterns’ under the same profiling
technology.

Reasons for the global feature selection mechanism

A major reason for the global feature selection mechan-
ism displayed in these algorithms is that there is no
screening technique available to separate two types of
features in feature selection. In other words, PCA, ICA,
NMEF, and their variants all belong to a single-resolution
feature selection method, where all features are indistin-
guishably analyzed in a single-resolution despite the nat-
ure of their frequencies. Such an indistinguishable
treatment causes the most-often data entries to have a
high likelihood to dominate feature selection and the
less-often data entries may lose opportunities. In other
words, the global features are more likely to be selected
than the local features and prevents effective local data-
characteristics capturing. As such, the low dimensional
data inferred from these methods (e.g., the projection
data onto the three principal components in PCA) may
probably only demonstrate the global data characteris-
tics. Obviously, the mass spectral samples with similar
global characteristics but different local characteristics
will not be recognized in the following classification.
Moreover, the global feature selection mechanism may
bring redundant global features in the following classifi-
cation because almost only the features that interpreting
global characteristics are involved in training the corre-
sponding learning machine (e.g., SVM). The redundant
global features will unavoidably decrease the generaliza-
tion of the learning machine and increase the risk of
misclassifications or over-fitting. Finally, the learning
machines integrated with the global feature selection
algorithms will display instabilities in classifications, i.e.,
they may perform well on some data but fail badly on
the others due to different contributions of the global
features to the classification.

To avoid the global feature selection mechanism, it is
desirable to distinguish features (e.g., sort) according to
their frequencies by building some screening techniques
to separate two types of features in the feature selection.
In this study, we conduct multi-resolution data analysis
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via a discrete wavelet transform (DWT) [15] to separate
features according to their frequencies. The discrete
wavelet transform (DWT) hierarchically organizes data
in a multi-resolution way by low and high pass filters.
The low (high)-pass filters only pass low (high)-fre-
quency signals but attenuate signals with frequencies
higher (lower) than a cutoff frequency. As such, the
DWT coefficients at the coarse level capture the global
features of the input data and the coefficients at the fine
levels capture the local features of the data, i.e., the low
frequency and high frequency signals are represented by
the coefficients in the coarse and fine resolutions
respectively. Obviously, we can overcome the global fea-
ture selection mechanism after such a multi-resolution
feature separation by selectively extracting local features
and filtering redundant global features.

In this study, we present a novel multi-resolution
independent component analysis (MICA) algorithm
for effective feature selections for mass spectral data.
Unlike the traditional feature selection methods, it
suppresses redundant global features and extracts
local features to capture gross and subtle data charac-
teristics via multi-resolution data analysis. Then, we
propose a multi-resolution independent component
analysis based support vector machines (MICA-SVM)
to achieve a high-performance proteomic pattern clas-
sification. In addition to rigorous machine learning
analysis, we demonstrate the proposed classifier’s
superiority by comparing it with nine state-of-the-art
peers on six heterogeneous profiles generated from
different profiling technologies and processed by dif-
ferent preprocessing algorithms. The exceptional clas-
sification performance (~99.5% average classification
ratios) and excellent stability suggest this algorithm a
great potential to facilitate mass spectral proteomics
into a clinical routine, even if data reproducibility is
not guaranteed.

Methods

Multi-resolution independent component analysis
(MICA) is built from the discrete wavelet transforms
(DWT), principal component analysis (PCA), the first
loading vector based data reconstruction, inverse dis-
crete wavelet transforms (IDWT) induced meta-data
approximation, and independent component analysis
(ICA) based subspace spanning. The DWT decomposes
input data in a multi-resolution form by using a wavelet
and scaling function. Mathematically, it is equivalent to
multiplying input data by a set of orthogonal matrices
block by block. The coefficients at the coarse and fine
levels represent input data’s global and local features
respectively. Alternatively, ICA seeks to represent input
data as a linear combination of a set of statistically inde-
pendent components by minimizing their mutual
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information. Theoretically, it is equivalent to inverting
the central limit theorem (CLT) by searching maximally
non-normal projections of the original data distribution.
More detailed information about DWT, PCA, and ICA
can be found in [15,11].

Multi-resolution independent component analysis (MICA)
MICA seeks the low dimensional meta-sample (proto-
type) for each high-dimensional mass spectral sample in
the subspace generated by the statistically independent
components from a meta-profile of the input data. As
the same dimensional approximation of the original
high-dimensional data, the meta-profile keeps the most
important global features, drops the redundant global
features, and exacts almost all local features of the origi-
nal data. The meta-profile is computed by conducting
an inverse DWT for the updated coefficient matrices,
where the coarse level coefficients are selectively sup-
pressed by the first loading vector reconstruction to fil-
ter the redundant global features, and the fine level
coefficients are kept to extract the local features. It is
worth pointing out that the independent components in
MICA are calculated by conducting independent com-
ponent analysis for the meta-profile. Unlike the indepen-
dent components in the classic ICA that are mainly
retrieved from the global features, the independent com-
ponents calculated by MICA are statistically indepen-
dent signals that contain contributions from almost all
local features and the most important global features.
As such, the latter is more representative in revealing
the latent data structure than the former. Moreover,
MICA brings an automatic de-noising mechanism via its
redundant global feature suppressing. Since the coarse
level coefficients (e.g., the first level coefficients) in the
DWT generally contain “contributions” from noise, sup-
pressing the coarse level coefficients not only filters
unnecessary global features, but also removes the noise
automatically. The automatic de-noising prevents noise
from entering feature selection and the following classi-
fier training, which will contribute to the robust mass
spectral pattern classification. The MICA algorithm can
be described as following steps.

Algorithm 1 multi-resolution independent component
analysis (MICA)

1. Wavelet transforms. Given a protein expression
profile with p samples across »n m/z ratios
n>p, x,e R™, n>p, MICA conducts a L-level col-
umn-wise DWT for input data to obtain wavelet coeffi-
cients, which consist of total L detail coefficient
matrices: D;e RP", nj~n/2),j=1,2:-L, and an
approximation coefficient matrix
n; ~n/25 n, o /28, ie, T < DWT(X), where
T={D,,D,-D,, A}
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2. Redundant global feature suppressing and local
feature extraction. A level threshold 1<t <L -1 is
selected to suppress redundant global features and
maintain local features.

a.If1<j<rt

1). conduct principal component analysis for each
detail coefficient matrix D; to obtain its principal
component (PC) matrix U =[uy, uy---u,], u; € R
and corresponding score matrix
k=1,2-p. 5, e R"Y, k=1,2-p.

2). reconstruct and update the detail coefficient matrix
D; by using the first loading vector #,; in the PC matrix
as Dj «(1/ n]-)Dj(i)n’(T)Zl +u, xs], where (D),
is a n; x 1 vector with all entries being ‘I’s.

b). If j >t keep all detail coefficient matrices
D,;1,D;--D; intact.

3). Inverse discrete wavelet transforms. Conduct the
corresponding inverse discrete wavelet transforms using
the updated coefficient matrices
Twr ={D1,D,---D;,A;} to get the meta-profile of
X:X eRP", ie, X « IDWT(Tyyp).

4). Independent component analysis. Conduct the
classic independent component analysis for X to obtain
components and the mixing matrix: X' = AZ where
k<p<n zeRP" k<p<n.

5). Subspace decomposition. The meta-profile X is
the approximation of X by removing the redundant glo-
bal features and retaining almost all local features by
selecting features on behalf of their frequencies. It is
easy to decompose each sample in the subspace spanned
by all independent components S* = span(z,,z, - z2y).
Each statistically independent component is a basis in
the subspace, ie., [x;,x,x,] = Z"ay,a, ~-a,|, where
the mixing matrix A=[a,,a, -~-ap]T, a;e R*, and
z, € R™. z, € R". In other words, each sample can be
represented as x; = ZTa,», where the meta-sample 4; is
the i row of the mixing matrix recording the coordi-
nate values of the sample x; in the subspace. As a low
dimensional vector, the meta-sample a; retains almost
all local features and the most important global features
of the original high-dimensional sample x;. Thus, it can
be viewed as a data-locality preserved prototype of x;. It
is worthwhile to note that each meta-sample in the sub-
space is the data locality persevered prototype of its cor-
responding high-dimensional mass spectral sample.

The redundant global feature suppressing and local
feature extraction in MICA decrease the total data var-
iances for the following meta-profile by only keeping the
data variance on the first PC of each coefficient matrix
before or at the level threshold 1. As a same-dimen-
sional but a low variance approximation for the original
data by keeping the most important global data
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characteristics and capturing local data characteristics,
the meta-profile X* makes the following independent
component analysis more sensitive in catching subtle
data behavior than applying ICA directly applying to the
original data. Figure 1 visualizes three control and can-
cer samples of the colorectal (CRC) data [7]. Each sam-
ple is a 16331x1 vector, and their low-dimensional
meta-samples are obtained from MICA at the thresholds
1=2,4,6 with a Daubechies family wavelet ‘db8’. We indi-
cate the control and cancer samples and their corre-
sponding meta-samples by red and blue lines
respectively. It is clear that there is no any way to detect
two types of samples from the plot of the original data
(sub-fig 1 at the NW corner). However, their meta-sam-
ples at the three thresholds demonstrate clear separa-
tions between the controls and cancers (sub-fig 2,3,4 at
the NE, SW, and SE corners). The extracted local fea-
tures and selected important global features make two
types of samples display two distinct prototypes in the
low-dimension subspace. With the increase of the level
thresholds, the two groups of prototypes tend to show
more capabilities to separate cancer and control sam-
ples. Interestingly, two types of meta-samples demon-
strate a “self-clustering” mechanism in that the meta-
samples belonging to the same type show very close
spatial proximities. Obviously, the clear sample separa-
tion information conveyed by the self-clustering
mechanism of the meta-samples is almost impossible to
obtain from the original high-dimensional data directly,
and the key discriminative features captured by our pro-
posed MICA method would be able to facilitate the sub-
sequent classification step and contribute to high-
accuracy disease diagnosis. It is also worth pointing out
that similar results can be also obtained for the other
mass spectral data.

MICA-based support vector machines

The MICA-based support vector machine applies the
classic support vector machine (SVM) [16] to the meta-
samples calculated from MICA to gain classification in a
low-dimensional space. Unlike the traditional SVM that
builds a maximum margin hyperplane in the original
high-dimensional space " where n ~ 10° — 10%
MICA-SVM separates biological samples by construct-
ing the maximum margin hyperplane in the spanned
subspace §* — R¥ where k< p~10?, using the meta-
samples. If we assume the number of support vectors Nj
is much less than the training points /, then, the
time  complexity of the MICA-SVM s
O(N,* + N’ + N, x kx1), which is much lower than
that of the classic SVM: O(N 2+ N2+ N, xnxl),
provided the same number of training points and sup-
port vectors. We briefly describe the MICA-SVM algo-
rithm for binary classification at first.
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Given a training dataset X =[x, x,--x,", x; € R", 1>,
and sample class type information {x,¢;}?,, where
c; € {~1,1}, a meta-dataset A =[ay,a, -'-ap] ,a; € ]Rk,
is computed by MICA. Then, a maximum margin
hyper-plane: O, :w'a; +b=0, we R*, is constructed
to separate the ‘+1’ (‘cancer’) and ‘-1’ (‘control’) types of
meta-samples. It is equivalent to solving the following

quadratic programming problem,

1 p
: 2
min— || w +CZ .
min [ w]} +C) &
i=1
st. c(wla; +b)=1-¢&;, i=1,2--p
¢iz0

1)

Eq. (1) can be solved through its Lagrangian dual that is
also a quadratic programming problem, where
o;,i=1,2---p are the dual variables of primal variables
W and b.

i=1 j=1 (2)

The normal of the maximum-margin hyperplane is
calculated as w=Y ace, and the intercept term b can be
CalculatNed as b= c; — wTai. The decision function
f(x)=sign(Y acik(a;a)+b) is used to determine the class type

i=1

of a testing sample x’, where q;,a’¢ R" are the corre-
sponding meta-samples of samples x;, x’e R", com-
puted from MICA respectively, and k(y; ®y’') is a SVM
kernel function mapping the meta-samples into a same-
dimensional or high-dimensional feature space. In this
work, we mainly focus on the linear kernel for its effi-
ciency in proteomic pattern classification. In fact, we
have found that a SVM classifier under a standard
Gaussian ( ‘rbf) kernel kernel) inevitably encounters
overfitting for mass spectral proteomic data through rig-
orously theoretical analysis. The details can be found in
the additional file 1.

Results

To demonstrate the superiority of our algorithm, we
include five publicly available large-scale mass spectral
profiles: colorectal (CRC) [7], hepatocellular carcinoma
(HCC) [8], ovarian-qaqc, prostate [17], and cirrhotic [8],
in our experiments. They are heterogeneous data gener-
ated from different profiling technologies and prepro-
cessed by different algorithms. The HCC and cirrhotic
datasets are two binary-class datasets separated from a
three-class profile consisting of 78 HCC, 72 control, and
51 cirrhotic samples [8].

To address the data heterogeneity, we employed dif-
ferent preprocessing methods for these profiles. We
conducted baseline correction, smoothing, normaliza-
tion, and peak alignment for the ovarian-gqaqc data. The
baseline for each profile was estimated within multiple
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shifted windows of widths 200 m/z, and the spline
approximation was applied to predict the varying base-
line. The mass spectra were further smoothed using the
‘lowess’ method, and normalized by standardizing the
area under the curve (AUC) to the group median. More-
over, the spectrograms were aligned to two reference
peaks: (3883.766, 7766.166). Alternatively, we only con-
ducted the baseline correction, normalization and
smoothing for the HCC, prostate, and cirrhotic data,
where the smoothing method was selected as the ‘least-
square polynomial’ smoothing instead of the ‘lowess’
smoothing. We did not conduct our own preprocessing
for the colorectal data because it was preprocessed data
[7]. Table 1 shows detailed information about the five
data sets.

Cross validations and comparison peers

We compared our algorithm with six state-of-the-art
peers in terms of average classification rates, sensitivities,
and specificities under k-fold (k=10) and 100-trial of 50%
holdout cross validations (HOCYV). The classification
accuracy in the i classification is the ratio of the cor-
rectly classified testing samples over total testing samples:
rc(i) =t,; / n;. The sensitivity and specificity are defined as
the ratios: D =1p/(1p+ fn), D =wm | (tm+ fp),
respectively, where tp (¢tn) is the number of positive
(negative) targets correctly classified, and fp (fn) is the
number of negative (positive) targets incorrectly classified
respectively. In the 100-trial of 50% holdout cross valida-
tion, all samples in each data set are pooled together and
randomly divided into half to get training and testing
data. Such a partition is repeated 100 times to get 100
sets of training and testing data sets. In the k-fold cross
validation, an input dataset is partitioned into k disjoint,
equal or approximately equal proportions. One propor-
tion is used for testing and the other k-1 proportions are
used for training alternatively in the total k rounds of
classifications. These cross validations are able to
decrease potential biases in algorithm performance eva-
luations compared with the pre-specifying training or
testing data approach.

Table 1 Five heterogeneous mass spectral profiles

Dataset  #m/z #Sample Technology

Colorectal 16331 48 controls + 64 MALDI-TOF high
cancers resolution

HCC 23846 72 controls + 78 MALDI-TOF high
cancers resolution

Ovarian- 15000 95 controls + 121 SELDI-TOF high
gaqc cancers resolution

Prostate 15154 63 controls + 69 SELDI-TOF low
cancers resolution

Cirrhotic 23846 72 controls + 51 MALDI-TOF high
diseases resolution
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The six comparison algorithms can be categorized
into two types. The first type consists of the standard
support vector machines (SVM) and linear discriminant
analysis (LDA), both of which are the state-of-the-art
classification methods. The second type consists of four
methods embedding subspace feature-selections in SVM
and LDA: they are support vector machines with princi-
pal component analysis (PCA) / independent compo-
nent analysis (ICA) / nonnegative matrix factorization
(NMEF), and linear discriminant analysis (LDA) with
principal component analysis. We refer to them as
PCA-SVM, ICA-SVM, NME-SVM, and PCA-LDA
respectively. The implementation details of these algo-
rithms can be found in [14].

Experimental results

We employ the ‘db8” wavelet in MICA to conduct a 12-
level discrete wavelet transform for each dataset and
select the level threshold as t=2 for all profiles uni-
formly. Although not an optimal level threshold for all
data, it guarantees automatic de-noising and “fair” algo-
rithm comparisons. Moreover, the meta-samples
obtained from MICA at t=2 can clearly distinguish two
types of samples. Although other level threshold selec-
tions may be possible, any too ‘coarse’ (e.g.t=1) or too
‘fine’ (e.g.1=10) level threshold selection may miss some
important global or local features and affect following
classifications.

Table 2 and Table 3 illustrate the average performance
of MICA-SVM and its six peers in terms of classifica-
tion rates, sensitivities, specificities and their standard
deviations under two types of cross validations respec-
tively. The NMF-SVM and LDA algorithms are
excluded from Table 3 for their relatively low perfor-
mance. The best performance is highlighted for each
data set. It is clear that the MICA-SVM algorithm
achieved exceptionally leading advantages over the
others. For example, the average prediction ratios attain
>99.0% for all data under the 100 trials of 50% HOCV.
It is interesting to see that our results are superior to
those of the peak-selection based biomarker discovery
methods. For instance, the peak-selection method
employed by Alexandrov et al [7] achieved the SVM
classification rate: 97.3% (sensitivity: 98.4% and specifi-
city: 95.8%) on the colorectal (CRC) data under a double
cross validation (a leave-one-out CV and 5-fold CV).
Alternatively, another peak-selection biomarker discov-
ery method induced by nonnegative principal compo-
nent analysis (NPCA) attained 98.21% (sensitivity:
95.83% specificity: 100%) under a SVM classifier with
the leave-one-out cross validation (LOOCYV) on the
same data set [14].

However, our algorithm achieved the average 99.05%
classification rate (sensitivity: 98.84% and specificity:
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Table 2 Performance of seven algorithms under the 100 trials of 50% HOCV

Dataset Ave. classification rate + std (%) Ave. sensitivity + std (%) Ave. specificity + std (%)
Colorectal

mica-svm 99.05+01.82 98.84+03.41 99.28+01.82
svm 95.71+02.01 95.28+03.67 96.19+02.88
pca-svm 95.37+01.98 93.60+04.18 96.83+02.93
ica-svm 95.57+02.02 93.69+04.11 97.11+02.81
nmf-svm 92.46+02.97 89.91+06.92 94.65+04.04
Ida 87.39+04.60 84.97+07.56 89.36+06.11
pca-lda 94.21+02.75 93.87+03.64 94.51+04.03
HCC

mica-svm 99.07+01.03 98.82+01.73 99.31+01.62
svm 93.08+02.33 93.42+03.55 92.95+04.12
pca-svm 89.65+02.86 89.09+04.46 90.33+04.59
ica-svm 90.15+02.63 89.76+04.27 90.70+04.35
nmf-svm 89.81+03.17 87.68+07.28 92.22+05.14
Ida 89.48+03.67 91.55+04.42 87.75+06.88
pca-lda 91.20+02.81 90.08+05.18 92.38+03.62
Ovarian-gaqc

mica-svm 99.09+01.09 98.94+02.15 99.25+01.11
svm 97.64+01.36 974240204 97.86+02.18
pca-svm 98.63+00.88 99.28+01.20 98.12+01.58
ica-svm 98.52+00.83 99.06+01.30 98.10+01.50
nmf-sym 924740323 94.23+03.72 91.15+04.89
Ida 814240448 87.86+05.17 762610691
pca-lda 98.42+01.04 99.30+01.13 97.73£01.94
Prostate

mica-svm 99.36+00.99 99.09+01.43 99.64+01.66
svm 95.91+02.09 95.75+03.05 96.18+03.99
pca-svm 97.94+01.65 98.48+01.70 97.43+03.24
ica-svm 98.23+01.61 98.36+01.84 98.14+02.84
nmf-sym 91.21+04.67 94.44+04.70 87.46+06.69
Ida 89.92+04.77 94.43+04.65 85.02+10.46
pca-lda 97.50+02.20 97.90+02.50 97.10+03.25
Cirrhotic

mica-svm 99.52+00.85 99.44+01.65 99.62+00.95
svm 95.10+03.17 929740591 96.714£03.10
pca-svm 91.52403.76 88.00+08.39 94.15403.86
ica-svm 92.07+03.41 88.47+07.92 94.72+03.48
nmf-svm 88.03+03.10 80.43+07.84 93.42+03.62
Ida 86.66+06.11 86.57+10.30 86.93+08.19
pca-lda 92.39+03.62 89.04+07.45 94.83+03.48

99.28%) under 100 trials of 50% HOCV where much less
priori knowledge are available in classification than the
LOOCYV and 5-fold cross validation. In addition, under
the 10-fold cross validation, the proposed algorithm
achieves 99.33% and 99.52% predication ratios on the
HCC and ovarian-qaqc data respectively. More impress-
ively, it attains 100% classification ratios on the colorec-
tal, prostate, and cirrhotic data. Unlike the other
methods displaying instabilities in classifications, our
algorithm demonstrates strong stability in attaining

high-accuracy pattern detections for all the five profiles.
This observation is also supported by its lower standard
deviations of the three classification measures of MICA-
SVM than those of the others.

We also have found that there are almost no statisti-
cally significant differences between SVM and its sub-
space feature selection based extensions (e.g., PCA-
SVM), which achieve same level or slightly lower perfor-
mance than the standard SVM. The reason seems to be
rooted in the global feature selection mechanisms of the
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Dataset Ave. classification rate + std (%) Ave. sensitivity + std (%) Ave. specificity + std (%)
Colorectal

mica-svm 100.0 + 00.00 100.0 + 00.00 100.0 + 00.00
pca-lda 93.71 + 0746 9350 + 10.55 9357 + 1145
svm 96.27 + 0645 96.00 + 0843 96.67 + 07.03
pca-svm 9545 + 0643 94.00 + 09.66 96.90 + 06.55
ica-svm 96.35 + 04.73 96.00 + 0843 96.67 + 07.03
HCC

mica-svm 99.33 + 02.11 98.57 + 04.52 100.0 + 00.00
pca-lda 91.33 + 0549 90.36 + 06.69 9232 + 08.87
svm 93.99 + 06.55 94.64 + 09.11 93.57 + 09.00
pca-svm 90.16 + 06.20 91.61 + 09.89 88.75 + 1094
ica-svm 92.79 £ 07.10 91.79 £ 1142 93.75 + 08.84
Ovarian-gaqc

mica-svm 99.52 * 01.51 100.0 + 00.00 99.17 + 02.64
pca-lda 99.07 + 01.96 100.0 + 00.00 9833 + 0351
svm 97.68 + 03.25 96.78 + 05.20 98.40 + 03.38
pca-svm 98.61 + 0223 99.00 + 03.16 9833 + 0351
ica-svm 99.09 + 01.92 99.00 + 03.16 99.17 + 0264
Prostate

mica-svm 100.0 £ 00.00 100.0 £ 00.00 100.0 £ 00.00
pca-lda 9852 £ 03.13 98.57 £ 04.52 9833 = 05.27
svm 96.98 + 03.90 94.29 + 07.38 100.0 + 00.00
pca-svm 99.23 + 0243 100.0 + 00.00 9833 + 05.27
ica-svm 9845 + 03.27 98.57 + 04.52 9833 + 05.27
Cirrhotic

mica-svm 100.0 + 00.00 100.0 + 00.00 100.0 £ 00.00
pca-lda 96.73 + 05.77 94.00 + 09.66 9857 + 0452
svm 96.79 £ 04.14 96.00 + 0843 97.14 + 06.02
pca-svm 95.13 + 05.75 90.33 + 13.92 98.57 + 04.52
ica-svm 96.67 + 05.83 94.00 + 13.50 9857 + 04.52

PCA, ICA, and NMF methods. As we pointed out
before, since some mass spectral samples may display
very similar global-characteristics but different local-
characteristics, a SVM classifier integrated with a global
feature selection method may inevitably encounter diffi-
culty in distinguishing these samples. Although
extracted by different transformation methods, the glo-
bal features seem to have nearly same level contribu-
tions to proteomic data classification statistically.
Moreover, the redundant global features brought by the
global feature selection mechanism may get involved in
the SVM learning, which would limit all the SVM-
related classifiers’ generalization and cause instability in
classification. This point can be also observed through
their relatively high standard deviations of the classifica-
tion rates, sensitivities and specificities. For example, the
standard deviations of the three measures from the
PCA-SVM classifier are 3.76%, 8.39%, and 3.86% respec-
tively, which are much higher than those from the
MICA-SVM classifier (0.85%, 1.65%, and 0.95%) on the

cirrhotic profile. Similar observations can also be found
for the other data sets.

However, it is interesting that MICA’s local feature
capturing and redundant global feature suppressing
mechanism appear to contribute to the MICA-SVM
classifier’s exceptional performance and good algorithm
stability on the five heterogeneous data sets. Figure 2
compares the distribution of the MICA-SVM classifier’s
classification rates with those of the ICA-SVM, PCA-
SVM and SVM classifiers under the 100 trials of 50%
HOCV. It clearly demonstrates that MICA-SVM has
statistically significant advantages over the other three
classifiers on all five data sets. Moreover, Figure 3 shows
MICA-SVM'’s leading advantages over its four peers:
PCA-LDA, PCA-SVM, ICA-SVM, and SVM, in terms of
the average classification rates, sensitivities, specificities,
and positive prediction ratios under the 10-fold CV.
Consistent to the cases in the 100 trials of 50% HOCV,
the four peers also show a nearly same level perfor-
mance on the four classification measures.
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Multi-class classification

The MICA-based support vector machines can be also
extended to handle the multi-class classification, which
has not been seriously addressed in mass spectral proteo-
mics. However, it can be more practical in cancer diagno-
sis because detecting different pathologic states of
cancers is essential in early cancer discovery. We ‘merge’
the HCC and cirrhotic data into a three-class profile to
seek high-accuracy detection between healthy individuals
(controls) and patients with hepatocellular carcinoma
(HCC) and cirrhosis, where cirrhosis can be viewed as an
early HCC stage to some degree because chronic hepati-
tis C causes HCC via the stage of cirrhosis.

We employ the ‘one-against-one’ method in our
MICA-based multi-class SVM classification for its
proved advantage over the ‘one-against-all’ and ‘directed
acyclic SVM’ methods [18]. The ‘one-against-one’
method builds k(k-1)/2 binary SVM classifiers for a data
set with k classes: {1,2,...k}. Each classifier is trained on
data from two classes, i.e., training samples are from the
ith and jth classes where i,j=1,2,..k. We describe our
MICA-based ‘one-against-one’ SVM as follows.

Given a training data set consisting of ¢, € {i, j}, sam-
ples across m testing points from the ith and jth classes i.e.,
x;€ R", x;e R™, and their corresponding labels

t=1,2---Ny, ¢, e{i,j}, t=12--Nj, a corresponding
low dimensional meta-sample data A =[a; ,a,---a Nl_j]T,
is computed by MICA. Then, maximizing the margin
between two types of data is equivalent to the following
problem:

1 <
min —{Jw’ |2 +C) &
t

w,ijf,ijbij 2
(wh'a, +b721-¢)ifc, =i, 1=1,2--Ny 3)
whTa,; +b7) <1+, ifc, =,

Jzo0.

where a4, is the meta-sample calculated for the train-
ing sample x;. After building all k(k-1)/2 classifiers, we
first determine if a testing sample %’ is from class the
ith or jth class by a local decision function
fi(x") = sign((w”)"a’+b7) where a’ is the meta-sam-
ple of x’. Then, we use the ‘Max-wins’ voting
approach to infer its final class type: if the local deci-
sion function says x’ is in the ith class, then the ith
class wins one vote; Otherwise, the jth class wins one
vote. Finally, ” will belong to the class with the lar-
gest vote.
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We also implemented the ‘one-against-one’ method in
SVM, PCA-SVM and ICA-SVM multi-class classification
for a fair comparison. It was interesting to find that the
four classifiers: PCA-LDA, SVM, PCA-SVM, and ICA-
SVM had equivalent performance under the two types
of cross validations for this trinary data. Just as before,
the LDA and NMF-SVM algorithms had lower level
performance than those of the four algorithms. How-
ever, the MICA-SVM algorithm achieved average classi-
fication ratios: 97.37% and 98.52% respectively under the
100 trials of 50% HOCV and 10-fold CV, which were
much higher than the corresponding average 83.79%
and 86.61% level classification ratios attained by the four
peers under the same cross validations.

Figure 4 compares the classification performance of
our proposed algorithm with those of the PCA-SVM,
ICA-SVM and SVM algorithms under the 100 trials of
50% HOCYV by visualizing the distributions of their clas-
sification rates, sensitivities, and specificities. The similar
or even identical distributions of the three random vari-
ables suggest there are no statistically significant differ-
ences between the three classifiers. However, the
distributions of the three random variables for the
MICA-SVM algorithm imply it is significantly different
from those comparison algorithms by attaining high-
accuracy pattern prediction. On the other hand, it
appears that that integrating an ‘one-against-one’ SVM
with the global feature selection algorithms (e.g., PCA,

ICA) may not contribute to enhancing multi-class data
classification either. However, integrating the ‘one-
against-one’ SVM with MICA demonstrates a statisti-
cally significant improvement in multi-class classification
for its effective local feature capturing. Such results are
also consistent to those of the previous binary
classification.

MICA-based linear discriminant analysis

Although linear discriminant analysis (LDA) had the
worst performance among all seven algorithms in our
investigation, it would be interesting to generalize
MICA to LDA classification by designing a MICA-LDA
classifier to further verify the effectiveness of MICA in
enhancing proteomic pattern detection, and take advan-
tage of LDA’s built-in multi-class handling mechanism.
Similar to the MICA-SVM algorithm, the multi-resolu-
tion independent component analysis based linear dis-
criminant analysis (MICA-LDA) applies the classic LDA
to the meta-samples obtained from MICA to gain sam-
ple classification. Table 4 shows the MICA-LDA algo-
rithm’s performance on the six profiles. To keep
consistency with the previous experiments, we still use
the ‘db8 wavelet and set the level threshold t=2 in
MICA. Interestingly, this algorithm’s performance is
only secondary to that of the MICA-SVM algorithm. It
achieves a 96.84% average classification rate with 98.69%
sensitivity and 96.21% specificity on the three-class
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profile under the 100 trials of 50% HOCV. Furthermore,
it outperforms the other comparison algorithms on the
colorectal, cirrhotic, and HCC data.

Three partial least square (PLS) based regression methods
We also compare our algorithm with three PLS-based
regression methods. As an interesting dimension reduc-
tion algorithm originally developed in the field of che-
mometrics, PLS recently draws more and more
attention in machine learning and statistical inference.
The three PLS-based regression methods consist of the
PLS-based regression, PLS-based linear logistic regres-
sion proposed by Nguyen and Roche [19], and PLS-
based ridge penalized logistic regression proposed by
Fort and Lambert-Lacroix [20]. In our context, all the
three algorithms treat classification as a regression one

with discrete outputs under few observations and many
predictor variables. We refer to them as PLS-REG, NR-
LLD, and RPLS-LLD respectively. Since the NR-LLD
and RPLS-LLD algorithms require feature selection
before classification, we conduct a two-sample t-test
with pooled variance estimate to select the 2000 most
differentially expressed features from each data set for
the two methods, where the three-class data set is trea-
ted as a binary data set with 72 controls and 129 dis-
eased samples (78 hepatocellular carcinoma +51
cirrhosis samples). The number of PLS components are
uniformly selected as 10 for all the three methods.
Table 5 shows MICA-SVM and the three algorithms’
average classification rates and their standard deviations
from the two types of cross validations. It is interesting
to see that our proposed MICA-SVM algorithm still
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Table 4 MICA-LDA performance on six mass spectral data sets

Cross validation Ave. classification rate + std (%)

Ave. sensitivity + std (%) Ave. specificity + std (%)

50%HOCV

Colorectal 96.21+£02.07
HCC 98.19+01.67
Ovarian-qaqc 90.62+02.73
Prostate 93.03+03.05
Cirrhotic 98.93+01.37
Three-class 96.84+01.32
10-fold CV

Colorectal 96.26 + 06.77
HCC 97.38 + 03.39
Ovarian-qaqc 8846 + 07.16
Prostate 90.87 + 07.86
Cirrhotic 99.17 + 02.64
Three-class 9733 £ 0344

96.20+03.70 96.29+02.53
100.0+00.00 96.50+03.21
91.93+04.67 89.58+04.05
96.15+03.24 89.42+05.24
97.52+03.05 99.97+00.28
98.69+01.49 96.21+02.10
95.00 £ 15.81 96.90 + 06.55
100.0 + 00.00 95.00 + 0645
91.78 £ 1341 86.03 + 06.54
92.86 + 10.10 88.57 + 13.65
98.00 £ 06.32 100.0 + 00.00
96.25 = 06.04 9857 £ 0452

hold obvious advantages over the three peers in
performance.

Algorithmic stability analysis
The instabilities of current classification methodologies
are widely found in mass spectral proteomics. In fact,
almost all of these classification methods were proposed
through analyzing an individual dataset [1-3,5,7,8]. They
may work efficiently on the individual data but lack sta-
bility when applied to other heterogeneous data gener-
ated from different profiling technologies or processed
by different preprocessing methods. In fact, such
instabilities not only present difficulties in reproducible
biomarker discovery, but also hamper exploring the clin-
ical potentials of this technology. Although algorithmic
stability analysis is essential in computational proteo-
mics, there is even no ad-hoc investigation on this topic.
To evaluate the algorithmic stabilities of mass spectral
proteomic data classification algorithms, we present an
algorithmic stability analysis by introducing two scale-
free measures: algorithm stability index and relative sta-
bility. The algorithm stability index measures the stabi-
lity of an algorithm across a number of datasets. A high
algorithm index value indicates better stability of an
algorithm. Alternatively, the relative stability measures
the stabilities of a set of classification algorithms with
respect to a specific algorithm, which is selected as the
MICA-SVM algorithm in this study. A small relative
stability indicates an algorithm with a relatively close
performance to that of the MICA-SVM algorithm.
Given a classification algorithm running on M hetero-
geneous profiles under a cross validation, the algorithm
stability index J, and the relative stability , are defined
as, 5u:i2(1—:7“)r 6:52“% where y;, s; are the average
classification rate and' the corresponding standard devia-
tion of the algorithm on the i profile respectively, and

the parameter 4 is the average classification ratio of
the MICA-SVM algorithm on the i profile.

The two left figures in Figure 5 show the algorithm
stability index and relative algorithm stability values of
all eight algorithms on the six profiles under the 100
trials of 50% HOCV. It is interesting to see that the
PCA-SVM, ICA-SVM, and SVM algorithms have almost
same level stabilities for their close J, values. The two
smallest J, values suggest the least stabilities of the
NME-SVM and LDA algorithms. The J, values of the
MICA-SVM and MICA-LDA algorithms are the largest
and 2" largest among the eight algorithm index values.
The relative stability value of the MICA-LDA algorithm
suggests it achieve the closest performance with respect
to the MICA-SVM algorithm. At the same time, the two
right figures in Figure 5 illustrate similar observations

Table 5 Performance of MICA-SVM, PLS-REG, NR-LLD, and
RPLS-LLD

Algorithms  MICA-SVM PLS-REG NR-LLD RPLS-LLD
Data Average classification rates under the 100 trials of 50%
HOCV (%)

Colorectal 99.05+01.82  96.64+02.19  97.02+01.78  96.23+02.32
HCC 99.07+01.03 946040212 91.09+0265 94.40+02.19
Ovarian-gagc  99.09+£01.09  9544+02.00 98.18+01.52  96.68+02.00
Prostate 99.36+00.99  9832+0143  96.74+01.97 9832+0147
Cirrhotic 99.52+00.85 91.36+£03.44 89.82+03.50 92.84+02.36
Three-class 9737£01.20  6851+£04.82 84.04+£03.66 85.23+03.31
Data Average classification rates under10-fold CV (%)
Colorectal 100.0£00.00  94.53+08.80  98.09+04.03  97.18+06.25
HCC 993340211 927040726 933240726  93.37+06.29
Ovarian-qagc  99.52+01.51  98.64+0431 98.18+03.18  98.16+02.38
Prostate 100.0£00.00  9932+0243  96.26+£05.19  99.29+02.26
Cirrhotic 100.0£00.00  95.06+07.00  89.36+09.60 94.36+06.62
Three-class 9852+03.35 77.11£0823 8599+08.17 88.64+06.83
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Figure 5 Algorithmic stability analysis. The algorithm stability index and relative stability values under the 100 trials of 50% HOCV and 10-fold
CV. The MICA-SVM algorithm has the largest stability among all eight algorithms, and MICA-LDA has the closest performance to that of the
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for the two measures on the six algorithms (The two
least stable algorithms NMF-SVM and LDA are
excluded) under the 10-fold CV. Obviously, the MICA-
SVM algorithm still maintains its highest stability when
more priori knowledge is available in classification.
Although the relative stabilities of the PCA-SVM, ICA-
SVM, SVM, PCA-LDA, and MICA-LDA algorithms
have the same ‘ordering as those of the five methodolo-
gies under the 50% HOCYV, all the five algorithms have
smaller relative stability values because more prior
knowledge is available in the classifications under the
10-fold CV.

Optimal level threshold selection

A remaining question is how to determine the optimal
level threshold in MICA so that the following SVM clas-
sifier achieves best performance. It is reasonable to
believe an optimal level threshold will contribute to cap-
turing important local and global features of the original
data in the meta-samples. We here employ a log-condi-
tion number o =10g,¢(Amax / Amin) Of the mixing
matrix A to estimate the status of global and local feature
capturing, where A, and A, are the maximum and
minimum singular values of the mixing matrix. A large
log-condition number indicates the better global and
local feature capturing. The level-threshold is counted
‘optimal’ if the log-condition number of the mixing
matrix is the largest. If log-condition numbers from two
level thresholds are same numerically, the lower level
threshold (which is required to be > 1) is counted as the

optimal one. For instance, the largest and 2" largest o
values are achieved at 1=1 and t=7 respectively on the
ovarian-qaqc data. However, our algorithm achieved the
best average classification performance at t=7, where the
average classification rate, sensitivity and specificity are
99.74%, 99.73% and 99.76% respectively (The average
classification rate is 95.28% at 1=1).

Figure 6 shows the MICA-SVM average classification
rates and corresponding o values under the 100 trials of
50% HOCYV on the colorectal, cirrhotic, and prostate
data, when the level threshold values are from 1 to 11
in MICA. It is interesting to see that the average classifi-
cation rates have some or significant decreases when the
level threshold values 126 where the corresponding log-
condition numbers show some level ‘stability’. However,
it seems that the level threshold corresponding to the
maximum log-condition number indicate the optimal or
near optimal level classification performance in our
experiment. Furthermore, we also have found that the
MICA-SVM algorithm’s performance may decrease with
too coarse level thresholds (e.g., T =1) and too fine level
thresholds (e.g., T 28). Since the optimal level threshold
selection method may increase computing complexities
in classification for its maximum log-condition number
computing. In practice, we suggest the empirical level
threshold as 2<7<L/3 for its robust performance and
automatic de-noising property. In addition, we discuss
possibly optimal wavelet selection for MICA-SVM
under different cross validations, which can be found in
the additional file 2.
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Figure 6 Optimal level threshold selections. Average classification rates and corresponding log-condition numbers at 11 level thresholds on
the colorectal, cirrhotic and prostate data under the 100 trials of 50% HOCV.

10 "2 4 & 8 10
leval thresholds

& &

Discussion

In this study, we present a multi-resolution feature
selection algorithm: multi-resolution independent com-
ponent analysis (MICA) for effective feature selection
for mass spectral data, propose a high-performance clas-
sification algorithm for heterogeneous proteomic pro-
files, and demonstrate its superiority by comparing it
with nine peers. Our approach seeks reproducible high-
accuracy diagnosis by treating an input profile a whole
biomarker from a machine-learning viewpoint. It shows
a great potential to facilitate mass spectral proteomics
technology into a clinical routine, even if the data repro-
ducibility is not guaranteed. It is worthwhile to note that
independent component analysis is a necessary step to
achieve good classification performance. We have found
that a similar multi-resolution principal component ana-
lysis based SVM algorithm is not able to reach a com-
parable performance as our algorithm because of the
loss of statistical independence in the feature selection.
Although our methodology can achieve the clinical-level
disease diagnosis for mass spectra even if the data
reproducibility is not guaranteed, we do not intend to
de-emphasize the importance in enhance mass spectral

proteomic profile reproducibility because of its potential
in identifying reproducible biomarkers. In fact, previous
studies [21] pointed out that data reproducibility may
affect data analysis and bring biases. For example, hier-
archical clustering may bring different results for mass
spectra acquired in day one and the same data a month
later. However, it is also reasonable to expect the pro-
posed algorithm’s exceptional performance on the mass
spectral data with robust reproducibility for its general-
ity on heterogeneous data.

Conclusions

Our study suggests a new direction to accelerate mass
spectral proteomic technologies into a clinical routine.
The novel concepts of global and local feature selection,
multi-resolution data analysis based redundant global
feature suppressing, and effective local feature extraction
techniques proposed in this study will also have positive
impacts on large scale ‘omics’ data mining. The excep-
tional discriminative power demonstrated by MICA-
based classifiers in multi-class proteomic data classifica-
tion also contributes to early stage cancer diagnosis. It is
interesting to find the MICA-based methods can be also
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applied to achieve exceptional gene expression pattern
classification and meaningful biomarker discovery [22].
In the following work, in addition to further polishing
our algorithm by comparing them with other state-of-
the-art methodologies or data analysis tools [23], we are
interested in investigating the multi-resolution indepen-
dent component analysis based unsupervised or semi-
supervised learning algorithms in proteomic pattern dis-
covery by integrating the multi-resolution feature selec-
tion with the state-of-the-art clustering or semi-
supervised learning algorithms, and generalize corre-
sponding methods to the related topics such as gene
subnetwork identification [24], and biomedical text clas-
sification in our future work.

Additional material

Additional file 1: Overfitting analysis A rigorous analysis on SYM
overfitting under a standard Gaussian kernel for mass spectral proteomic
data.

Additional file 2: Wavelet selection for MICA-SVM
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