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Abstract

Background: Molecular level of biological data can be constructed into system level of data as biological
networks. Network motifs are defined as over-represented small connected subgraphs in networks and they have
been used for many biological applications. Since network motif discovery involves computationally challenging
processes, previous algorithms have focused on computational efficiency. However, we believe that the biological
quality of network motifs is also very important.

Results: We define biological network motifs as biologically significant subgraphs and traditional network motifs are
differentiated as structural network motifs in this paper. We develop five algorithms, namely, EDGEGO-BNM,
EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-BNM and VOLTAGE-BNM, for efficient detection of biological network
motifs, and introduce several evaluation measures including motifs included in complex, motifs included in functional
module and GO term clustering score in this paper. Experimental results show that EDGEGO-BNM and
EDGEBETWEENNESS-BNM perform better than existing algorithms and all of our algorithms are applicable to find
structural network motifs as well.

Conclusion: We provide new approaches to finding network motifs in biological networks. Our algorithms
efficiently detect biological network motifs and further improve existing algorithms to find high quality structural
network motifs, which would be impossible using existing algorithms. The performances of the algorithms are
compared based on our new evaluation measures in biological contexts. We believe that our work gives some
guidelines of network motifs research for the biological networks.

Background
Systems biology focuses on the study of complex interac-
tions in biological systems, rather than the study of indi-
vidual molecules such as DNA, RNA, proteins and
metabolites [1]. One of the goals of systems biology is
understanding the structures of all molecules and their
interactions in a system level. Therefore major challenges
are understanding the dynamic structures of small mole-
cules and determining their functions in a living cell.
Various types of biological interactions have been
expressed in networks, which include transcriptional reg-
ulatory networks, signaling pathways, metabolic networks
and protein-protein interaction (PPI) networks. Biological
networks share some of structural properties of other
complex networks, or have specific features of scale-free

and small-world effect [2]. However, the properties have
been questioned by Lacroix et al. [3] with a number of
reasons including the incompleteness of networks and
inconsistent link generation for the graphs. Therefore,
the analysis extends to other network properties such as
network clusters and network motifs.
As biological networks are massive and the size is still

increasing, dividing the network into a number of clus-
ters helps reveal specific local properties. Network
motif, as another concept describing local properties of
a network, is defined as a small connected subgraph
appearing frequently and uniquely in a network. Similar
to a protein sequence motif, network motif is defined as
a over-repeated pattern, but it requires much more
computation as the process involves isomorphic testing
and repeated processes for uniqueness determination.
Network alignment [4] and network querying [5] are
analogous to network motifs, but while network motifs
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are defined with only structural information, network
alignment and network querying require both of the
topological and biological information. Previous network
motif discovery algorithms include exact counting and
approximation algorithms: Exhaustive recursive search
(ERS) [6], enumerate subgraphs (ESU) [7] and compact
topological motifs [8] are exact counting algorithms. For
efficient detection, several approximation algorithms
have been provided including edge sampling (MFIN-
DER) [6], randomized version of ESU from a search tree
(RAND-ESU) [9], and tree-filtering search which is
NEMOFINDER[10]. Furthermore, parallel search algo-
rithms have been developed to realize feasible exact
counting algorithms [11,12].
Network motifs are used for many applications in bio-

logical networks. Feed-forward-loop (FFL) and bifan net-
work motifs are identified as the typical patterns in
different types of biological networks [13,14]. Przulj et al.
[15] used network motifs as a relative graphlet frequency
distance to distinguish different protein-protein interac-
tion networks. Also motif frequencies are exploited as
classifiers for network model selection [16]. Milo et al.
[17] studied that networks of different biological and
technological domains have been classified into different
superfamilies on the basis of motif significance profiles.
To predict protein-protein interactions, Albert I. and
Albert R. [18] used network motifs successfully. In the
study by Conant and Wagner [19], network motifs in
transcriptional regulatory networks are not evolutionary
conserved while network motifs in PPI networks are evo-
lutionary related. On the other hand, network motifs are
extended to ‘motif modes’ each of which has a certain
topology and a specific functional property [20].
Through a number of network motif applications,

however, we notice several problems regarding the bio-
logical meanings of network motifs, on top of the com-
putational challenge for the detection. First, the
biological quality of network motifs are not validated
thoroughly. A network motif is selected only by its
structural uniqueness and just small number of
instances of the type are biologically exemplified. Sec-
ond, only small portion of network motif instances are
used for applications and others are ignored. Third,
non-motifs, that is, structurally insignificant subgraphs,
have not been analyzed in any studies, which are filtered
out before applying to any applications. Fourth, it is still
questionable what the network motifs really represent in
biological networks.
As we believe that the biological quality of network

motifs are also significant, we define a biological net-
work motif in this paper. Throughout this paper, we
refer a network motif as a structural network motif to
distinguish it from a biological network motif. Unlike
structural network motifs, biological network motifs are

biologically significant small connected subgraphs
regardless of the structure. The biological significance
is unspecified in the definition, as it will be assigned
flexibly by a goal of the application. We introduce
EDGEGO-BNM, EDGEBETWEENNESS-BNM, NMF-
BNM, NMFGO-BNM and VOLTAGE-BNM algorithms
for efficient discovery of biological network motifs, and
design new evaluation measures named, ‘motifs included
in complex’, ‘motifs included in functional module’ and
‘GO term clustering score’. Our algorithms compete
with existing algorithms including ESU, RAND-ESU and
MFINDER, and the performance are compared based on
the new measures introduced in this paper. The main
idea for our algorithms is to reduce the number of sub-
graphs to search by removing a number of edges from
the original network and, at the same time, increase the
discovery rate for biological network motifs. Experimen-
tal results with a couple of S. cerevisiae PPI networks
demonstrate that EDGEGO-BNM and EDGEBET-
WEENNESS-BNM algorithms perform better than other
algorithms in most of the measures. In addition, we
show that all of our algorithms are applicable to the dis-
covery of structural network motifs as well.
The work has three contributions to the study of net-

work motifs: 1)We question biological meanings of net-
work motifs which have not been focused by existing
detection algorithms. New motif search algorithms and
evaluation measures are developed based on these ques-
tions. 2)We design several algorithms combining the
topological and biological information in a network. The
algorithms further enrich existing algorithms in a biolo-
gical context. 3)We develop a number of evaluation
measures which qualify biological importance of net-
work motifs. As we know of, this is the first time to sug-
gest systematical evaluation measures for network
motifs. With these contributions, we hope that our work
gives some guidelines for the researches of network
motifs in biological networks.

Results and Discussion
In this paper, we define biological network motifs as
biological meaningful network motifs and develop
EDGEGO-BNM,EDGEBETWEENNESS-BNM, NMF-
BNM, NMFGO-BNM and VOLTAGE-BNM algorithms
for an efficient detection of biological network motifs.
For clarification, traditional network motifs are referred
as structural network motifs throughout this paper. The
performance of each algorithm is compared based on
three evaluation measures such as ‘motifs included in
complex’, ‘motifs included in functional module’, ‘GO
(Gene ontology) term clustering score’ which we design
to assess biological quality of network motifs. Detail
description of algorithms and evaluation measures are
described in the “Methods.”
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Data sets
We test the performance of each algorithm with a cou-
ple of PPI of S. cerevisiae (yeast). We download a yeast
core data, referred to ‘Scere20101010’ from DIP data-
base [21] which has 2,130 proteins and 4,434 interac-
tions and call this as DIP Core network. A network of
988 proteins and 2,455 with high confidence level of
interactions, introduced as a high-throughput data in
[22] and obtained from the authors of [23], is also used
in this experiment. As it was conventionally referred to
Y2k, it is called Y2k network. Since the increase of net-
work motif size boosts the computational time and the
number of motifs exponentially, we set the size of sub-
graphs as four to five for practical experiments. There
are 6 types of isomorphic graphs for undirected 4-node
subgraphs and 21 types for undirected 5-node sub-
graphs. Undirected 4-node subgraph types are labeled
using Nauty program [24] as appeared in Figure 1.

Comparison of the algorithms against different evaluation
measures
We first enumerate all subgraphs of size four or five
with ESU algorithm [7] and evaluate them with the eva-
luation measures introduced in this paper and name the
experiment as an ESU. Then we run EDGEGO-BNM,
EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-
BNM and VOLTAGE-BNM algorithms and measure
them with the same evaluation measures. Furthermore,

we add experiments with two existing approximation
algorithms; RAND-ESU and MFINDER. RAND-ESU
searches subgraphs in a tree structure and it skips over
some of the branches during its search. MFINDER ran-
domly picks edges until it reaches the desired number
of subgraphs. ESU algorithm enumerates all subgraphs
and all other algorithms produce roughly 30% of total
subgraphs by adjusting parameters. Additionally, we run
FANMOD [9], which is a software implementing ESU,
and investigate the topological properties for each type
of subgraph in order to observe the relationships
between biological network motifs and structural net-
work motifs. Table 1 compares the performances of 8
different algorithms for 4-node biological network
motifs from DIP core network, accessed by the following
biological measures;’motifs included in complex’, ‘motifs
included in functional module’ and ‘GO term clustering
scores for BP, MF and CC.’ The results of ESU, RAND-
ESU and MFINDER algorithms are also provided as well
for comparison purpose. The best result for each mea-
sure is marked as bolded in the table. EDGEBETWEEN-
NESS-BNM algorithm provides highest rates for ‘motifs
included in complex’ measure, but EDGEGO-BNM
algorithm produces overall the best values compared to
others. It is reasonable for the EDGEGO-BNM and
NMFGO-BNM algorithms have good scores for GO
term clustering score measures as they include GO term
information. However, it is interesting to see that

Figure 1 Shapes and labels for 4-node subgraphs in an undirected network. There are six types for 4-node subgraph in an undirected
network. Each type is labeled with Nauty as shown as a text accordingly.
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EDGEBETWEENNESS-BNM algorithm provides rela-
tively good scores for all of the evaluation measures
when this algorithm considers only topological property
of the network. This suggests that the structural prop-
erty helps infer meaningful biological information as
well. We provide the results with 5-node biological net-
work motifs as well in Table 2. Similar to the results in
Table 1, EDGEBETWEENNES-BNM algorithm is the
best for the ‘motifs included in complex’ term and
EDGEGO-BNM is best for the rest of measures.
To see if the results are consistent with other network,

we search biological network motifs in the Y2k network
as well. The results are shown in Table 3 of 4-node sub-
graph and Table 4 of 5-node subgraph. Consistent with
DIP core network, EDGEGO-BNM algorithm provides
overall good scores except ‘motifs included in complex’
term and ‘MF GO term clustering score’. EdGEBET-
WEENNESS-BNM algorithm is superior for the ‘motifs
included in complex’ term too. It is interesting to see
that NMFGO-BNM shows good scores as well in the
Y2k network, which is because that NMF tends to pro-
duce better results with smaller data set. It is also
appealing that the random-edge-selection algorithm

(MFINDER) beats the random-vertex-select algorithm
(RAND-ESU). This implies that edges are more impor-
tant aspect for explaining its biological meanings.

Relationship between biological and structural network
motifs
We also investigate the relationship between structural
network motifs and biological network motifs in this
work. Table 5 is the table generated by FANMOD [9] to
observe the statistical properties of each 4-node sub-
graph type in the DIP core network. The first column is
the label for each type generated by Nauty program [24]
and Figure 1 shows shape for each label of subgraph.
Second column indicates the percentage of each type
appears in the DIP Core network and the next two col-
umns show the average frequencies and standard devia-
tion of each type, out of 10, 000 randomized graphs.
Last two columns of Z-score and P-value show the
structural statistics of each type. As a subgraph type of
Z-score larger than 2.0 or P-value smaller than 0.01 is a
network motif, in DIP Core network, the five types of

Table 1 Results of 4-node biological network motifs in
the DIP Core network

Algorithm Motif included in GO Clustering score

Complex Function BP MF CC

ESU .13 .205 .64 .51 .61

RAND-ESU .13 .208 .65 .28 .46

MFINDER .15 .299 .74 .57 .71

EDGEGO-BNM .21 .479 .85 .70 .80

EDGEBETWEENNESS-BNM .28 .392 .78 .60 .79

NMFGO-BNM .18 .360 .78 .61 .75

NMF-BNM .15 .230 .68 .54 .64

VOLTAGE-BNM .26 .330 .77 .59 .75

EDGEBETWEENNESS-BNM performs best in ‘motif included in complex’
measure while EDGEGO-BNM performs best in other measures.

Table 2 Results of 5-node biological network motifs in
the DIP Core network

Algorithm Motif included in GO Clustering score

Complex Function BP MF CC

ESU .07 .097 .67 .51 .63

RAND-ESU .07 .096 .66 .52 .62

MFINDER .09 .167 .75 .56 .72

EDGEGO-BNM .08 .240 .87 .70 .79

EDGEBETWEENNESS-BNM .14 .210 .81 .59 .76

NMFGO-BNM .08 .169 .71 .59 .60

NMF-BNM .13 .104 .65 .53 .61

VOLTAGE-BNM .08 .121 .71 .50 .67

EDGEBETWEENNESS-BNM performs best in ‘motif included in complex’
measure while EDGEGO-BNM pe forms best in other measures.

Table 3 Results of 4-node biological network motifs in
the Y2k network

Algorithm Motif included in GO Clustering score

Complex function BP MF CC

ESU .501 .152 .61 .21 .67

RAND-ESU .491 .126 .61 .23 .65

MFINDER .586 .180 .65 .26 .72

EDGEGO-BNM .603 .463 .94 .25 .90

EDGEBETWEENNESS-BNM .904 .178 .82 .19 .84

NMFGO-BNM .609 .434 .92 .27 .90

NMF-BNM .819 .177 .76 .26 .80

VOLTAGE-BNM .638 .200 .63 .26 .77

EDGEBETWEENNESS-BNM performs best in ‘motif included in complex’
measure. NMFBO-bnm performs best on ‘MF’ and ‘CC clustering score’
measures. EDGEGO-BNM performs best in the ‘motif included in functional
module measure ‘BP, CC clustering score’ measures. However all the
algorithms perform poorly in ‘MF clustering score’ measure, with less than 30.

Table 4 Results of 5-node biological network motifs in
the Y2k network

Algorithm Motif included in GO Clustering score

Complex function BP MF CC

ESU .281 .083 .69 .17 .76

RAND-ESU .305 .090 .71 .17 .77

MFINDER .431 .096 .73 .21 .80

EDGEGO-BNM .362 .376 .99 .24 .96

EDGEBETWEENNESS-BNM .814 .087 .89 .13 .91

NMFGO-BNM .445 .257 .98 .18 .96

NMF-BNM .643 .073 .80 .18 .83

VOLTAGE-BNM .665 .089 .82 .19 .85

EDGEBETWEENNESS-BNM performs best in ‘motif included in complex’
measure while EDGEGO-BNM performs best in other measures.
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C^, CN, CF, C~, and Cr are network motifs. Figure 2
shows relative frequencies for each subgraph types,
where the horizonal axis lists all six types and vertical
axis indicates its relative frequency. Each line refers to a
result of each algorithm, differentiated by colors. All of
the algorithms except ESU reduce the total number of
subgraph search to 30%, but the relative frequencies are
almost same as those of ESU. In fact, when we plug
each of the reduced network, which is the by-product of
each algorithm, in FANMOD, the same five types of

subgraphs ( C^, CN, CF, C~, Cr) are detected as net-
work motifs. It proves that our algorithms are applicable
to find structural network motifs as well, but more
efficiently.
We analyze Y2k network as well to see a relevance of

structural network motif and biological network motif.
Table 6 generated by FANMOD identifies top three
subgraphs as network motifs, labeled C~, C^ and CN.
Similar to DIP core network, all of the algorithms pre-
serve relative frequencies for each type as appeared in

Table 5 DIP Core- statistical properties, from FANMOD

Label Freq(Original) Mean-Freq (Random) S-Dev(Random) Z-score P-value

C^ 1.46% 5.9e-005% 3.04e-006 4813.3 < 10-3

CN 10.21% 0.01% < 10-6 289.09 < 10-3

CF 48.69% 42.22% < 10-6 17.31 < 10-3

C~ 0.48% 0.00% 0 undefined < 10-3

Cr 0.47% 0.23% < 10-6 16.28 < 10-3

CR 38.65% 57.54% < 10-6 -52.17 > 10-2

Each type of 4-node subgraph shows its significance based on its structural uniqueness. The label is generated by Nauty program [24] and the corresponding
shape is shown in Figure 1. All types except CR are structural network motifs by definition.

Figure 2 DIP Core network: Search ratios based on the subgraph type. The ratio of frequency of each type is relatively preserved and it
indicates that our algorithms can be used for the structural network motif discovery as well. Relative frequencies of each algorithm is plotted
with different colors of line. The horizontal axis indicated each subgraph type for 4-node subgraphs. The vertical axis shows the relative
frequency of each type. The values are shown in the table below the figure.
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Figure 3 and FANMOD confirms that the same three
types are still the structural network motifs in the
reduced Y2k networks as well.

Biological significance for biological network motifs
We provide one example which demonstrates that
EDGEGO-BNM is especially good for discovering biolo-
gical network motifs included in protein functional
modules. This example also shows that structurally non-

motifs cannot be ignored as many of the instances have
biological significance. Table 7 shows the recall value of
4-node biological network motifs included in a ‘rRNA
processing’ functional module in yeast, based on differ-
ent subgraph type and algorithms. We exactly count the
numbers of motifs included in ‘rRNA processing’ with
ESU algorithm first. Then all other algorithms are com-
pared with the recall in Equation (1).

Recall =
discovered number of motifs included in a ’rRNA processing’ with the algorithm

true number of motifs included in a rRNA processing (1)

In Table 7, the first column lists all the algorithms
conducted in this paper, and the other columns show
the recall of subgraphs included in ‘rRNA processing’
functional module according to each subgraph type. The
‘rRNA processing’ functional module consists of 206
proteins in the yeast. All algorithms except ESU search
only 30% of subgraphs out of the total subgraphs
searched with ESU algorithm but EDGEGO-BNM
recovers over 90% of subgraphs included in ‘rRNA pro-
cessing’. Furthermore, we observe that although the Cr,
CF, CR are structural network non-motifs, about 50% of
subgraphs included into the ‘rRNA processing’ are these

Table 6 Y2k- statistical properties, from FANMOD

Label Freq
(Original)

Mean-Freq
(Random)

S-Dev
(Random)

Z-
score

P-
value

C~ 4.66% 4.07e-006% 9.14e-007 51013 < 10-3

C^ 8.91% < 10-2 4.29e-005 2075.1 < 10-3

CN 32.89% 0.021% < 10-6 225.64 < 10-3

Cr 0.55% 1.14% < 10-6 -9.95 > 10-2

CF 19.58% 41.82% < 10-6 -66.188 > 10-2

CR 33.40% 57.06% < 10-6 -84.16 > 10-2

Each type of 4-node subgraph shows its significance based on its structural
uniqueness. The label is generated by Nauty program [24] and the
corresponding shape is shown in Figure 1. In this network, the first three
types are detected as network motifs.

Figure 3 Y2k network: Search ratios based on the subgraph type. The ratio of frequency of each type is relatively preserved and it indicates
that our algorithms can be used for the structural network motif discovery as well. The description of the plots and the table is same as in
Figure 2.
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non-motifs. This example shows that even non-motifs
also have biological meanings, therefore the structural
network motif defined by its structural uniqueness is
insufficient to explain biological meanings.

Conclusions
In this paper, we provide new approaches to finding
network motifs in biological networks. Structural net-
work motifs are defined as frequently and uniquely
repeated small connected subgraph in a network. How-
ever, motivated by several issues brought up while a
number of network motif applications are investigated,
we propose to find biologically meaningful network
motifs. Hence, we define biological network motifs as
biologically meaningful k-node subgraphs, develop a
number of algorithms for efficient detection of biological
network motifs and introduce new evaluation measures.
The algorithms reduce the number of subgraph search
and increase the detection rates of biological network
motifs at the same time. The algorithms are categorized
into two classes: Edge-removing algorithms and Net-
work clustering algorithms. EDGEGO-BNM and EDGE-
BETWEENNESS-BNM are algorithms which remove a
number of edges based on GO term and edge between-
ness score, respectively. NMF-BNM, NMFGO-BNM and
VOLTAGE-BNM algorithms partition the network
based on its topological property or GO term relevance.
All the algorithms introduced in this paper improve
existing algorithms for high quality structural network
motif detection.
We also introduce a number of evaluation measures

which measure biological significance of each subgraph:
‘motifs included in complex’, ‘motifs included in func-
tional module’ and ‘GO term clustering score.’ Biological
meanings of those biological network motifs are
assigned based on these evaluation measures. We ran
the algorithms on two PPI network of S. cerevisiae, and
compared them with our new measures. An existing
exhaustive search and other two existing approximation

algorithms are also provided to be compared with our
algorithms. EDGEGO-BNM shows overall good results
in all the measures, but EDGEBETWEENNESS-BNM is
the best in the ‘motifs included in complex’ measure.
The works in this paper can be studied further. Cur-

rently, the parameters of various algorithms in this
paper are adjusted only to obtain a desired number of
subgraphs. In near future, various impacts of the para-
meters on the results should be investigated. Besides the
parameters, the balance between topological and biologi-
cal information will be an important factor for a better
algorithm. On the other hand, current evaluation mea-
sures are limited to PPI networks. Comprehensive eva-
luation measures should be designed to apply various
types of biological networks. Meanwhile, the work
should be extended to weighted or direct networks for
more comprehensive analysis of biological network
motifs.

Methods
Definitions and notations
We assume that a biological network is a graph G = (V,
E) where each vertex in V is a molecule and each edge
in E is an interaction between vertices. A network
motif m is a connected subgraph of size k in a graph,
which appears more frequently than usual. The size of
network motif, k, ranges from 3 up to 15 or more, but
relatively very smaller than the number of vertices in
the network, |V|. The frequency fG(m) of m is the num-
ber of isomorphic graphs to m in G. To determine the
uniqueness of m, a number of random graphs, typically
more than 10,000 graphs, are generated and the fre-
quencies fR(m) is recorded for each generated graph R
to obtain a P-value as in Equation (2) or a Z-score in
Equation (3).

P(m) =
1
N

N∑
n=1

c(n), where c(n) =
{

1, if fR(m) ≥ fG(m);
0, otherwise.

(2)

Table 7 Y2k network: the rates of motifs included in a ‘rRNA processing’ functional module in yeast, computed using
equation (1).

Algorithm C~ C^ CN Cr CF CR

ESU (Counts) 1.0(2,509) 1.0(5,152) 1.0(17,457) 1.0(434) 1.0(8,095) 1.0(15,953)

RAND-ESU .30 .32 .34 .36 .34 .34

MFINDER .78 .54 .31 .38 .16 .13

EDGEGO-BNM .97 .97 .98 1.0 .99 .97

EDGEBETWEENNESS-BNM .67 .64 .32 .57 .22 .16

NMFGO-BNM .87 .88 .78 .89 .70 .73

NMF-BNM .69 .39 .23 .22 .12 .90

VOLTAGE-BNM .53 .38 .39 .39 .32 .31

Except ESU, all algorithms only search 30% of subgraphs in the original network. However, EDGEGO-BNM recovers over 90% of motifs included in functional
module. We note that the non-motif types of Cr, CF and CR have a number of instances for this functional match, indicating structural uniqueness is insufficient
to discover its biological significance.
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Z(m) =
fG(m) − average(fR(m))

std(fR(m))
(3)

Here average(fR(m)) and std(fR(m)) refer to the average
and standard deviation of frequencies in random net-
works respectively. Generally, a subgraph m with P-
value less than 0.01 or Z-score greater than 2.0 is con-
sidered as a network motif.
We define a biological network motif g as a small

connected subgraph of size k which has topological
property as well as biological meanings. For clear under-
standing, a network motif is referred to structural net-
work motif throughout this paper, and biological
network motifs and structural network motifs have
many-to-many relationships. We emphasize that we do
not categorize all of the biological network motifs into
some classes like ‘motif mode’ in the study by Lee and
Tzou [25], where the number of motif modes reaches
up to millions. Instead, we assume that biological net-
work motifs are application dependent, therefore flexibly
categorized according to the applications. For a specific
subgraph being a biological network motif, we need
some measures which are presented later in this section.
From now on, G = (V, E) is a target (original) network,
G’ = (V, E’) is a modified network, n is the number of
vertices and m is the number of edges in G.

Description of Algorithm
Structural network motifs are either exactly (exhaustively)
or approximately determined. As exhaustive search is
infeasible in large networks, approximation algorithms
have been used in many applications in practice. In this
study, we provide a number of algorithms originally
designed to detect biological network motifs, but also
improve existing algorithms for high quality structural net-
work motif discovery. Some algorithms use structural
information alone or biological information alone, and
others combine structural and biological information.
The main idea of the algorithms is to modify the ori-

ginal network so that we can increase the biological

network motif detection rates over total number of sub-
graphs in the original graph. For example, if we remove
23% of edges, then the number of subgraphs are
reduced to 30% of the total number. We provide two
ways of modifying the original network: 1) removing a
number of edges and 2) clustering the network into
smaller sub-networks. The two measures provide essen-
tially the same components, a list of removed edges and
a number of clusters as shown in Figure 4. When we
remove some edges, we obtain a number of clusters as
by-products. When we cluster a network, the edges in
between clusters will be listed in the set of removed
edges.
Edge-Removing Algorithms
We present two algorithms to remove ‘insignificant’
edges based on two different aspects. EDGEGO-BNM
(EDGEGO for biological network motif) algorithm
removes edges based on its related Gene ontology
terms. EDGEBETWEENNESS-BNM (EDGEBETWEEN-
NESS for biological network motif) algorithm removes
edges based on its edge betweenness score. Since
EDGEGO-BNM algorithm uses Gene ontology (GO)
terms associated with the nodes, the algorithm is applic-
able only to the gene or protein related networks. In
EDGEBETWEENNESS-BNM algorithm, although the
computation of EDGEBETWEENNESS score is existing
measure used for network clustering [26], it is the first
time used for network motif detection.
EDGEGO-BNM algorithm In this algorithm, we reduce
the number of subgraphs to be searched by removing a
number of ‘biologically insignificant’ edges in the origi-
nal network. Biologically insignificant edges are deter-
mined with the Gene ontology (GO) [27] terms
associated with its end points. GO terms provide anno-
tations of gene and gene product attributes across spe-
cies and databases. GO consists of three independent
domains: biological process (BP), molecular function
(MF) and cellular component (CC). A BP refers to series
of events by multiple molecular functions. Examples
include cellular physiological process and pyrimidine

Figure 4 After graph modify. Original network (left) and the modified network (right) after removing edges or clustering the graph, where a
number of clusters and a list of removed edges are provided as a result.
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metabolic process. An MF is a molecular level of activ-
ities, such as catalytic activity or binding. A CC is a
component of a cell which is part of larger item. Exam-
ples are nucleus, ribosome or proteasome. With the
three orthogonal aspects as roots, GO is represented as
a directed acyclic graph (DAG), a part of which is
shown in Figure 5. GO DAG describes each GO term as
a node and the relationships as an directed edge with
hierarchical structure, where children are more specific
than the parents. Each term can have multiple parents
as well as multiple children and it is traced backward to
the root of depth 0. If a gene ge is annotated with a GO
term pe, then ge is annotated with all of the ancestor
GO terms of pe.
We define an EdgeGO set as a set of all GO’s asso-

ciated to both of the end points of the edge e and an
EdgeGO depth of e is the maximum depth of the GOs
in the EdgeGO set. In EDGEGO-BNM algorithm, a
threshold GO term depth d should be given as a para-
meter and the edges whose EdgeGO depth is less than d
are removed. Algorithm 1 describes detail steps of the
EDGEGO-BNM algorithm.
Algorithm 1: EDGEGO-BNM
input: Graph G = (V, E), d :a GO depth threshold, k :

the motif size.
output: a number of subgraphs with size k.
1 RE ¬ ∅
2 E’ ¬ E
3 for ∀e Î E do
4 GO set ¬ all GO terms associated with both of the

endpoints of e
5 D ¬ maximum depth of GOset
6 if D <d then
7 RE = RE ∪ {e}
8 E’ = E’ - {e}
9 Let G’ = (V, E’)
10 Enumerate all k-subgraphs from G’
Line 10 in Algorithm 1 produces all the k-size sub-

graphs in the reduced graph G’, and any existing exact
counting algorithm can be used for this task. In
EDGEGO-BNM algorithm, different depth threshold d
results different number of edges to remove and we
experimentally determine the threshold depth to get a
desired number of subgraphs. More edges are removed
as the depth threshold increases, which in turn reduces
the number of subgraph searches. This work is moti-
vated by the paper [20] which reveals that different
levels of GO terms lead to different modes of motifs.
EDGEGO-BNM algorithm is deterministic and the
whole process except line 10 runs linearly with the
number of edges, m. In most cases, this algorithm
obtains unbalanced clusters, where a few clusters have
most of the vertices and most of the clusters consist of
small number of vertices.

EDGEBETWEENNESS-BNM algorithm EDGEBET-
WEENNESS-BNM algorithm uses topological information
to remove some of edges. EDGEBETWEENNESS algo-
rithm is initially introduced by Girvan and Newman [26]
to produce network clusters using betweenness score of
each edge. Network modularization [28] is supported by
this measure and many protein modules are successfully
discovered with it. EDGEBETWEENNESS-BNM algo-
rithm goes through all edges to compute its edge between-
ness score, namely, EBScore: The number of shortest paths
in all pairs of vertices that run along with the edge e is
EBScore(e), then the edge with the highest EBScore is
removed. This process is repeated until we get a desired
number of edges to remove. The detail procedure of
EDGEBETWEENNESS-BNM is described in Algorithm 2.
Algorithm 2: EDGEBETWEENNESS-BNM
input : Graph G = (V, E), r is the number of edges to

remove, k :the motif size.
output: a number of subgraphs with size k.
1 RE ¬ ∅
2 E’ ¬ E
3 R ¬ 0
4 while R < r do
5 for all pairs of vertices in V, obtain the shortest

path, SP
6 ∀e Î E, let EBscore(e) = number of SP’s containing

e in the path
7 Let ed be the edge with maximum EBscore
8 RE = RE ∪ {ed}
9 E’ = E’ - {ed}
10 R = R + 1
11 Let G’ = (V, E’)
12 Enumerate all k-subgraphs from G’
Except line 12 in Algorithm 2, EDGEBETWEENNESS-

BNM algorithm runs in O(rmn) where r is the number
of edges to remove. EDGEBETWEENNESS-BNM algo-
rithm produces relatively balanced network clusters and
is also a deterministic algorithm.
Clustering Algorithms
Another way of reducing a network is to partition the
network into smaller sub-networks and remove the
edges between clusters. In this work, we present three
clustering algorithms: NMF-BNM (Nonnegative matrix
factorization for biological network motif), NMFGO-
BNM (Nonnegative matrix factorization with GO term
for biological network motif) and VOLTAGE-bnm(Vol-
tage clustering for biological network motif) algorithm.
Voltage clustering algorithm has been used for network
clustering before, but not for network motif discovery.
NMF-BNM algorithm Nonnegative matrix factorization
(NMF) has been used to cluster various data, such as
face images, text corpus and gene expression data. Initi-
ally used as a dimension reduction technique, NMF is
successfully applied to many clustering tasks with
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additional sparseness constraints [29-31]. In this work,
we apply NMF for an efficient detection of biological
network motif. Detail process of NMF-BNM is described
in Algorithm 3.

Algorithm 3: NMF(GO)-bnm
input : Graph G = (V, E), c is the number clusters, k :

the motif size, (d is GO depth threshold), h
and b for sparse NMF.
output: a number of subgraphs with size k.
1 RE ¬ ∅
2 E’ ¬ E
3 Let CL1, ..., CLc = ∅.
4 Construct a data matrix A from G.
5 Run sparse NMF to A and get an n × c matrix H
6 for all the columns in H do
7 Let hj = {hj

1, · · ·, hj
c}T be jth column vector of H.

8 if hj
iis largest in hj then

9 put the vertex vj to CLi.
10 for ∀e Î E do
11 if e lies between clusters of CLi then
12 RE = RE ∪ {e}
13 E’ = E’ - {e}
14 Let G’ = (V, E’)
15 Enumerate all k-subgraphs from G’
In NMF-BNM, a nonnegative matrix A = (aij) of line 4

in Algorithm 3 is topology-based feature data as shown
in Equation (4) and sparseness constraints are added for
better clustering. In sparse nonnegative matrix factoriza-
tion (Algorithm 3 line 5), the data matrix A are decom-
posed into two factor matrices W and H using the
objective function in Equation (5).

aij =
1

|vi − vj|2 , 1 ≤ i, j, ≤ n (4)

min
W,H

1
2

{||A − WH||2F + η||W||2F + β

m∑
j=1

||H(:, j)||21}subject to W ≥ 0, H ≥ 0. (5)

Here, ||.||2F is the square of the Frobenius norm, ||.||21 of
the L1 norm, and H(:,j) is the jth column of matrix H.
Two parameters, h for sparseness and b for balance
between sparseness and correctness, should be given.
Intuitively, the matrix H gives clustering information as
described in lines 6 to 9. The detail description of sparse
NMF is illustrated in the paper [31] by Kim and Park.
Except the last step in Algorithm 3, NMF-BNM runs
linearly with the size of A at each iteration, and it con-
verges to a stable point, not necessarily unique, through
a number of iterations.
NMFGO-BNM algorithm NMFGO-BNM algorithm dif-
fers from NMF-BNM only in line 4 of Algorithm 3,
where the feature matrix A = (aij) combines structural
and GO term information of the network as shown in
Equation (6). In this algorithm, an additional parameter
d, which is a GO term depth threshold, is given. First,
all the GO terms associated with the network and
whose depth is greater than d are listed. Suppose the
list of GO terms is {g1, g2, ..., gp}, then each entry aij in

Figure 5 GO DAG example. GO DAG example view, where the
root node is a molecular function (MF) GO term.
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the (n + p) × n matrix A is defined as in Equation (6).
The rest of process is the same as of the NMF-BNM
algorithm.

aij =
1

|vi − vj|2 , if 1 ≤ i, j ≤ n

= 1, if vj is annotated with gi−n and n < i ≤ (n + p), 1 ≤ j ≤ n

= 0 if vj is not annotated with gi−n and n < i ≤ (n + p), 1 ≤ j ≤ n

(6)

VOLTAGE-BNM algorithm VOLTAGE clustering algo-
rithm is developed by Wu and Huberman [32] to cluster
a network based on voltage drops. The algorithm first
generates a number of candidate clusters using Kirchh-
off equations [33], which tell that total current of each
node should sum up to zero. From the candidate clus-
ters, a seed is selected which appears most frequently in
the candidate clusters, and the neighbor vertices of this
seed are collected to form a cluster. The process is
repeated until we get a desired number of clusters. The
number of clusters are later adjusted if the seeds are too
close. An exact solution for this algorithm requires O(|
V|3), but Wu and Huberman [32] provide an approxi-
mation solution in O(|V| + |E|). In this paper, we utilize
VOLTAGE clustering algorithm to design a VOLTAGE-
BNM (voltage for biological network motif) algorithm
for efficient discovery of biological network motifs as
shown in Algorithm 4. We emphasize that VOLTAGE-
BNM algorithm is easy and fast, but it is non-determi-
nistic algorithm because the randomly selected seeds
lead to quite different results every time it runs.
Algorithm 4: VOLTAGE-BNM
input : Graph G = (V, E), c is the number clusters, k :

the motif size.
output: a number of subgraphs with size k.
1 RE ¬ ∅
2 E’ ¬ E
3 Let CL1, ..., CLc = ∅.
4 m ¬ 0.
5 while (m ≤ c) do

//Generate c number of candidate
clusters.
6 Pick a vertex pair, source and sink.
7 Compute voltages of each vertex of graph G using

source and sink.

8 Group the vertices in two clusters (high/low).
9 Store resulting candidate clusters.
10 m = m + 2
11 l ¬ 1
12 while l <c do

//generatec - 1 clusters
13 Pick one cluster seed s most appearing in candi-

date clusters.
14 Obtain co-occurrence vertices to the s, and put

them to a cluster CLl.
15 Remove all the co-occurrence vertices and s from

candidate clusters.
16 l = l + 1.
17 Remaining unassigned vertices belong to the CLc

cluster.
18 if ∀e Î E, e lies between clusters of CLi, then
19 RE = RE ∪ {e}
20 E’ = E’ - {e}
21 Let G’ = (V, E’)
22 Enumerate all k-subgraphs from G
Table 8 summarizes the algorithms introduced in this

paper. As all of the algorithms have a common step of
‘Enumerate all k-subgraphs from G’, the time in this
table excludes this last step.

Evaluation Measures
Network motif is defined as a frequently and uniquely
represented subgraph in a network and is determined
through structural uniqueness, measured by P-value (9)
or Z-score (3). The structural uniqueness, however, is
an inappropriate validation for motifs in biological net-
works. Therefore, we design several biological evaluation
measures other than topological uniqueness in this
study. These are called ‘motifs included in complex’,
‘motifs included in functional module’, ‘GO (Gene
ontology) term clustering score’. Protein complexes are
the groups of proteins interacting with each other at the
same time and same place in a cell, whereas functional
modules are the groups of proteins binding to partici-
pate in different cellular processes at different times.
Currently, these evaluation measures are specifically
designed for PPI networks. More comprehensive valida-
tion measures should be developed in near future.

Table 8 Various algorithms used for the detection of biological network motifs

Algorithm Type Time before ESU Parameter Deterministic

EDGEGO-BNM Edge-Removing O(|E|) d Yes

EDGEBETWEENNESS-BNM Edge-Removing O(r|E||V|) r Yes

NMFGO-BNM Clustering O(|E|(|V| + l)) d, c, h, b No

NMF-BNM Clustering O(|E||V|) c, h, b No

VOLTAGE-BNM Clustering O(|E| + |V|) c No

All the algorithms introduced in this paper are compared based on type, time before enumeration, parameter, and whether its deterministic property. Here d is
GO depth threshold,l is the number of GO terms associated to the graph G, c is the number of clusters, r is the number of edges to remove, and h, b for sparse
NMF computation.
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Motifs included in complex
The first assessment is a match with a protein complex.
We consider a subgraph g is included in a complex if a
known protein complex contains all the nodes in g. We
define motif included in complex measure as the preci-
sion of the subgraphs included in protein complexes as
shown in Equation (7). Obviously, the algorithm with
higher value for this measure performs better in this work.

Motifs included in complex =
number of motifs included in a complex

number of all discovered subgraphs
(7)

Motifs included in functional module
Similar to the previous measure, if all components of a
subgraph g are included in a known protein functional
module, g is included in a functional module. There-
fore motif included in a functional module is defined
as the precision of the subgraphs included in functional
modules as in Equation (8).

Motifs included in functional module =
number of motifs included in a functional module

number of all discovered subgraphs (8)

In our experiments, the database for protein com-
plexes and functional modules are obtained from MIPS
[34] server.
GO term clustering score
We define a P-value of a subgraph g as the minimum
P-value over the union of GO terms of g and lower P-
value is preferable. P-value for a GO term is computed
using hypergeometric distribution as in Equation (9),
where N is the whole population, M is the population
that is annotated by the GO term, n is the subgraph size
and x is the number of genes annotated with the GO
term in the sample.

P − value =
n∑

j=x

(
M
j

)(
N − M
n − j

)
(

N
n

) (9)

To determine if a subgraph g with a P-value p is sig-
nificant, a cutoff value should be pre-defined. Since P-
value decreases as the size of g increases, higher cutoff
value is necessary for small-size of subgraph g. For 4-
node and 5-node subgraph, we set the cutoff value as
0.1 and if the P-value of g is lower than the cutoff, g is a
significant subgraph. A better algorithm should provide
more significant subgraphs and lower average p-value of
the subgraphs. In other words, average P-value alone, or
the number of significant subgraphs alone cannot fairly
assess the performance of an algorithm. To evaluate the
overall performance of an algorithm, we use the cluster-
ing score introduced in the studies of [28,35] which has
measured the quality of clustering algorithms. For a GO
term clustering score measure, we use subgraphs
instead of clusters in the formula (10),

clustering score = 1 −
∑ns

i=1 min(pi) + (ni · cutoff)

(ns + ni) · cutoff
,(10)

where min(pi) is the P-value of each subgraph, ns is
the number of significant and ni is the number of insig-
nificant subgraph. A higher GO term clustering score of
an algorithm indicates a better algorithm. Since GO
term has three independent aspects of BP, MF, CC, we
have three types of this measure: BP GO term clustering
score; MF GO term clustering score; and CC GO term
clustering score.

List of abbreviations
BNM: Biological Network Motif; GO: Gene Ontology; BP: Biological Process;
MF: Molecular Function; CC: Cellular Component; DAG: Directed Acyclic
Graph; SP: Shortest Path; NMF: Non-negative Matrix Factorization; ERS:
Exhaustive Recursive Search; ESU: Enumerate SUbgraph; RAND-ESU:
Randomized ESU.
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