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Abstract

Background: The search for new drug targets for antibiotics against Plasmodium falciparum, a major cause of human
deaths, is a pressing scientific issue, as multiple resistance strains spread rapidly. Metabolic network-based analyses
may help to identify those parasite’s essential enzymes whose homologous counterparts in the human host cells are
either absent, non-essential or relatively less essential.

Results: Using the well-curated metabolic networks PlasmoNet of the parasite Plasmodium falciparum and
HepatoNet1 of the human hepatocyte, the selectivity of 48 experimental antimalarial drug targets was analyzed.
Applying in silico gene deletions, 24 of these drug targets were found to be perfectly selective, in that they were
essential for the parasite but non-essential for the human cell. The selectivity of a subset of enzymes, that were essential
in both models, was evaluated with the reduced fitness concept. It was, then, possible to quantify the reduction in
functional fitness of the two networks under the progressive inhibition of the same enzymatic activity. Overall, this in
silico analysis provided a selectivity ranking that was in line with numerous in vivo and in vitro observations.

Conclusions: Genome-scale models can be useful to depict and quantify the effects of enzymatic inhibitions on the
impaired production of biomass components. From the perspective of a host-pathogen metabolic interaction, an
estimation of the drug targets-induced consequences can be beneficial for the development of a selective
anti-parasitic drug.

Keywords: Plasmodium falciparum, Human hepatocyte, Drug targets, Drug selectivity, Genome-scale networks,
Reduced fitness, Flux balance analysis

Background
An ideal drug should tackle the disease-causing processes
in the most selective way, i.e. with no harm for the healthy
cells. To our knowledge, such a perfectly selective drug
does not exist. In fact, administrated chemicals can trig-
ger at least secondary consequences (off-target effects) in
the organism or in host cells [1]. In case of anti-parasitic
drugs, side-effects on the metabolism of host cells may
arise from the binding to homologous proteins that share
a long evolutionary history with the parasite [2]. To min-
imize such side-effects, analyses on the performance of
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multiple networks and the consequences of enzymatic
homologous inhibitions may be useful. Ideally, this analy-
sis should be based on detailed mechanistic models of the
metabolic networks of the parasite and the host cell path-
ways [3,4]. However, all the kinetic information needed
for the creation of such models is rarely available. There-
fore, alternative modeling frameworks, such as Monte
Carlo simulations [5] and flux balance analysis (FBA)
[6], have been developed for the simulation of the cellu-
lar metabolism. These methods allow the simulation of
genome-scale networks, do not require kinetic enzymatic
knowledge and are suited to test the outcome of gene
deletions [6-8].
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Genome-scale metabolic models of pathogens are
extensively exploited to predict putative drug targets with
FBA frameworks [9-11]. Furthermore, recent network-
based analyses integrate host and pathogen models to
describe more accurately the metabolic interactions and
to improve the search of putative drug targets. For exam-
ple, the topology of automatically inferred networks of
Plasmodium falciparum and its human host are studied
to identify essential enzymes [12]. The metabolic network
ofMycobacterium tubercolosis is integrated with a human
alveolar macrophage to describe three degrees of infec-
tion (latent, pulmonary, and meningeal tuberculosis) [13].
Similarly, a metabolic model of Plasmodium falciparum
is embedded in a red blood cell model to simulate its
intra-erythrocytic developmental stage [14]. Furthermore,
the selectivity of enzymatic drug targets is already exten-
sively predicted with large-scale metabolic networks of
human cancer cells [15]. Thus, it is reasonable to assess
the selectivity of enzymatic drug targets in host-pathogen
metabolic interactions with genome-scale networks. The
aim of this study was the prediction of selective enzymatic
inhibitions with genome-scale networks of Plasmod-
ium falciparum (PlasmoNet) and the human hepatocyte
(HepatoNet1) [14,16]. Although the intra-erythrocytic
plasmodial phase is still extensively investigated, the intra-
hepatic phase of development is the first infection site
and, thus, a promising stage of treatment [17]. To pre-
dict feasible metabolic phenotypes, for eachmodel a set of
metabolic objectives was assembled with extensive liter-
ature search. This set described the cellular composition
that is specific to the modeled cell type. Then, compu-
tational methods were applied to predict the selectivity
of antimalarials in absolute and in relative sense. To pre-
dict the enzymatic inhibitions in absolute terms, in silico
gene deletions of homologous enzymes were performed.
Alternatively, the concept of reduced fitness was applied
to homologous essential enzymes to assess inhibitions in
relative terms. While in silico gene deletions predicted
scenarios where the enzyme is fully disrupted (e.g. with
gene-excision experiments), the second approach better
described the possibility of residual enzymatic activity.
The latter is more appropriate for the administration
of enzymatic inhibitors that only gradually reduce the
enzyme activity.
The set of experimental antimalarial targets, that were

tested in this work, were a merged and pruned list of
published “gold standards”. The merged list contained 96
enzymes, out of which 48 were selected. These enzymes
are known to be essential for Plasmodium falciparum
metabolic homeostasis and growth [14,18,19]. To test the
selectivity of these enzymes, in silico gene deletions of the
enzymatic set were simulated. Twenty-four enzymes were
found to be essential only for the parasite and did not com-
promise the host metabolic performance. Twelve enzymes

were essential for both models and were investigated with
the concept of reduced fitness [20], to identify which net-
work could bemore sensitive to an enzymatic impairment.
Then, the fitness-based selectivity score predicted that 10
enzymes out of this last set were more sensitive for the
host, as their in silico perturbations had a larger impact on
the achievement of host metabolic objectives (Table 1).

Results and discussion
The gene-deletion approach divided the set of drug targets
in three groups (Table 1): (i) enzymes that are essen-
tial in both networks, (ii) enzymes that are essential only
in PlasmoNet and (iii) enzymes that are dispensable in
both networks. The largest set of experimental drug tar-
gets (24 out of 48) was not lethal for the host (due to
alternative paths that bypassed the deleted reactions) and
essential for the parasite network (at least one biomass
fluxwas not achieved). These enzymes are, thus, predicted
to be perfectly selective with respect to the Plasmod-
ium falciparum network. Intriguingly, 12 drug targets
were identified to be dispensable in both models. When
the simulations included the experimental in vitro condi-
tions that validated the drug targets, 9/12 enzymes turned
out to be essential. This situation was defined as condi-
tional essentiality, as the enzyme becomes essential when
some substrates are not available in the medium. The
remaining 3 glycolytic enzymes were, instead, predicted
to be non-essential. This could be due to off-target effects,
to extra-metabolic functions or to possible assembly of
multi-enzymatic complexes.

Homologous drug targets essential in both networks
The gene-deletion approach predicted that 12 enzymes
are essential in both networks (Table 1), thus indicating
a possible metabolic hepatic impairment caused by the
inhibition of homologous enzymes.
While this enzymatic set is already experimentally

tested, a literature search was done to find any evidence of
human cellular toxicity.
It was predicted that only acyl-CoA syntethase may

be a selective target for antimalarial treatment (selec-
tivity score=1.97). The essentiality of this enzyme is
experimentally demonstrated in human lymphoblast-like
cells [21].
The fitness approach predicted that thymidylate syn-

thase was equally detrimental for both models (selectivity
score=1). This enzyme is a possible therapeutic drug tar-
get that is efficient against a wide spectrum of human
tumors [22,23] but one main drawback is the possibil-
ity of its enzymatic over-expression that may confer drug
resistance.
Orotidine-5-phosphate decarboxylase and orotate phos-

phoribosyltransferase form amultienzymatic complex, but
for this analysis the two enzymatic activities were assessed
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Table 1 Outcome of the simulated drug target inhibitions

EC HN gene PN gene RF50 HN perturbed RF50 PN perturbed

number Enzyme General reaction deletion deletion RF Score metabolites (deviation %) metabolites (deviation %) Sources

Acyl-CoA Fatty Acid + ATP + CO2 → Cardiolipin Sphingomyelin

6.2.1.3 synthetase Fatty Acid CoA + AMP + PPi X X 1.97 (mitochondrion) (-50%) (-97.07%) [17]

Thymidylate dUMP + 5,10 Methylene THF ↔
2.1.1.45 synthase dTMP + DHF X X0 1.00 dTTP (-50%) DNA (nucleus) (-50.31%) [12,14,17]

4.1.1.23 Orotidine 5P decarboxylase Orotidine 5P →UMP + CO2 X X 0.713 UDP-Glucose (-80.57%) mRNA (nucleus) (-57.44%) [12,14,17]

2.4.2.10 Orotate phosphoribosyltransferase Orotidine 5P + PPi ↔ X X 0.713 UDP-Glucose (-80.57%) mRNA (nucleus) (-57.44%) [17]

Orotate +PRPP

2.1.3.2 Aspartate carbamoyltransferase Carbamoyl-P + Aspartate → X X1 0.713 UDP-Glucose (-80.57%) mRNA (nucleus) (-57.44%) [17]

Carbamoyl-Aspartate + Pi

3.5.2.3 Dihydroorotase N-Carbamoyl-Aspartate → X X1 0.713 UDP-Glucose (-80.57%) mRNA (nucleus) (-57.44%) [14,17]

S-Dihydroorotate + H2O

4.3.2.2 Adenylosuccinate lyase Adenylsuccinate → X X 0.611 NADPH (-91.23%) mRNA (nucleus) (-59.25%) [17]

Fumarate + AMP

2.1.2.1 Serine hydroxymethyltransferase 5,10 Methylene THF + Glycine + X X2 0.514 NADPH (-91.92%) DNA (nucleus) (-50.31%) [12,14,17]

H2O ↔ THF + Serine

1.5.1.3 Dihydrofolate reductase THF + NAD(P)H ↔ DHF + NAD(P) X X 0.50 dTTP (-50%); DNA (nucleus) (-50.31%) [12,14,17]

Tetrahydrofolate (-50%)

6.4.1.2 Acetyl-CoA carboxylase ATP + Acetyl-CoA + HCO3- → X X 0.47 Triacylglycerol (+105.11 %)3 Protein N6 (lipoyl)lysine [12,17]

Malonyl-CoA + ADP + Pi (apicoplast) (-50%)
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Table 1 Outcome of the simulated drug target inhibitions (continued)

6.3.5.5 &
6.3.4.16

Carbamoyl-P
synthetase

2 ATP + Glutamine + HCO3- + H2O → X X1 0.404 UDP-Glucose (-80.56%); Urea (-61.3%) mRNA (nucleus) (-57.43%) [17]

2 ADP + Pi +Glutamate + Carbamoyl-P

2.3.1.15 Glycerol 3P acyltrans-
ferase

Acyl-CoA + glycerol 3P → X X4 0.37 Phosphatidyl ethanol amine (-55.77%); Phosphatidyl choline (-94.53%) [12]

CoA + 1-acyl-glycerol 3P Triacylglycerol (-50%);

Phosphatidyl inositol (-50%);

Phosphatidyl choline (-50%);Cardiolipin (-50%)

2.3.1.50 Serine C-palmitoyl
transferase

Serine + Palmitoyl-CoA ↔ O X ∞ - - [14]

3-Dehydrosphinganine + CoA + CO2

CoA + CO2

1.17.4.1 Ribonucleotide reduc-
tase

dNDP + Ox. Thioredoxin ↔ O X ∞ - - [12,14,17]

NDP + Thioredoxin

2.3.1.37 5-aminolevulinate syn-
thase

Glycine + Succinyl-CoA ↔ O X ∞ - - [12,14,17]

5-aminolevulinate + CoA + CO2

2.5.1.6 S-Adenosyl
methionine synthase

Methionine + ATP ↔ O X ∞ - - [17]

S-Adenosyl-Methionine + PPi + Pi

2.7.6.1 Phosphoribosyl
pyrophosphate
synthase

ATP + Ribose 5P ↔ O X ∞ - - [17]

PRPP + AMP

2.7.7.15 Choline phosphate
citidyl transferase

CTP + Phosphocholine → O X ∞ - - [17]

PPi + CDP-Choline

1.15.1.1 Superoxide dismutase 2 O2- + 2 H+ → O2 + H2O2 O X ∞ - - [12,14,17]

2.3.1.24 Sphingosine N-Acyl
transferase

Acyl-CoA + Sphingosine ↔ CoA + Ceramide O X ∞ - - [14]
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Table 1 Outcome of the simulated drug target inhibitions (continued)

1.8.1.7 Glutathione reductase 2 GSH + NADP+ ↔ GSSG + NADPH + H+ O X ∞ - - [14,17]

1.8.1.9 Thioredoxin reductase Thioredoxin + NADP+ ↔ Thioredoxin disulfide + NADPH O X ∞ - - [14,17]

4.2.1.24 Delta aminolevulinate dehy-
dratase

2 5-aminolevulinate → porphobilinogen + 2 H2O O X ∞ - - [12,14,17]

3.3.1.1 S-adenosyl-l-homocysteine
hydrolase

S-adenosyl-L-homocysteine + H2O → L-homocysteine + Adenosine O X ∞ - - [12,14,17]

1.10.2.2 mitochondrial Ubiquinone-
Cytochrome C
reductase

QH2 + 2 ferricytochrome c ↔ Q + 2 ferrocytochrome c + 2 H+ O X ∞ - - [12,14,17]

4.2.1.1 Carbonate dehydratase H2CO3 ↔ CO2 + H2O O X ∞ - - [14]

2.7.8.3 Sphingomyelin synthase CDP-choline + a ceramide → CMP + sphingomyelin O X ∞ - - [14,17]

1.1.1.27 L-lactate dehydrogenase (S)-lactate + NAD+ ↔ pyruvate + NADH + H+ O X ∞ - - [17]

6.3.2.2 Gamma-glutamylcysteine
synthetase

ATP + Glutamate + Cysteine → ADP + Pi + gamma-Glutamyl-cysteine O X ∞ - - [12,14,17]

6.3.4.2 CTP synthase ATP + UTP + Glutamine + H2O → ADP + Pi + Glutamate + CTP O X ∞ - - [17]

6.3.4.4 Adenylosuccinate synthase GTP + IMP + Aspartate → GDP + Pi + Adenylosuccinate O X ∞ - - [14], [17]

1.9.3.1 Cytochrome c oxidase 4 ferrocytochrome c + O2 + 4 H+ ↔ 4 ferricytochrome c + 2 H2O O X ∞ - - [17]

2.4.2.1 Purine nucleoside phospho-
rylase

Inosine + Pi ↔ Ribose 1P + Hypoxanthine O X ∞ - - [17]

6.2.1.1 Acetyl-CoA synthase ATP + Acetate + CoA →Acetyl-CoA + AMP + PPi O X ∞ - - [17]

2.4.2.8 Hypoxanthine guanine phos-
phoribosyl transferase

Nicotinate D-ribonucleoside + Pi -→Nicotinate + Ribose 1P O X ∞ - - [12,14,17]

6.3.2.17 Folylpoly glutamate synthase ATP + tetrahydropteroyl-[gamma-Glu]n + L-glutamate → ADP + phosphate + O X ∞ - - [17]
tetrahydropteroyl-[gamma-Glu]n+1

1.1.1.205 IMP dehydrogenase IMP + NAD + H2O →Xanthosine 5P + NADH O •5 0 - - [12,14,17]

1.6.99.3 NADH dehydrogenase Acceptor + H++ NADH ↔ Reduced Acceptor + NAD+ O •6 0 - - [14]

2.5.1.16 Spermidine synthase S-Adenosylmethioninamine + Putrescine ↔ 5-Methylthioadenosine + Spermidine O •7 0 - - [14] ,[12]

2.7.1.32 Choline kinase Choline + ATP → Phosphocholine + ADP O •8 0 - - [12,14,17]

3.5.4.4 Adenosine deaminase Adenosine + H2O ↔ Inosine + NH3 O •9 0 - - [12,14,17]

4.1.1.50 S-Adenosyl methionine
decarboxylase

S-Adenosylmethionine ↔ Adenosylmethioninamine + CO2 O •10 0 - - [12,14,17]

4.1.2.13 Aldolase Fructose 1,6 PPi ↔ Glycerone P + Glyceraldehyde P O •11 0 - - [12,14,17]
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Table 1 Outcome of the simulated drug target inhibitions (continued)

6.3.5.2 GMP syntethase ATP + Xanthosine-5P + Glutamine + H2O → AMP + PPi + GMP + Glutamate O •12 0 - - [14]

4.1.1.17 Ornithine decarboxylase L-ornithine → putrescine + CO2 O •13 0 - - [12,14]

2.7.1.1 Hexokinase Glucose + ATP → Glucose 6P + ADP O •14 0 - - [17]

2.1.1.103 Phospho ethanolamine N-methyl transferase SAM + Ethanolamine-P ↔ SAH + N-Methylethanolamine-P O •15 0 - - [14]

5.3.1.1 Triose phosphate Isomerase D-glyceraldehyde 3-phosphate ↔ Glycerone phosphate O •16 0 - - [17]

0lethal with block of the alternative reaction Q00007, EC 1.5.7.1.
1to activate the enzyme in the reference state, the import of dihydroorotate should be blocked.
2lethal with block of thetrahydrofolate recharging. Block of R01221,Q00007, R07168, R01224, R01220, R01218.
3Triacylglycerol is imported, instead to be exported, to compensate the inhibition consequences ( load value=0.063; RF50 inhibited target flux= -0.0032183).
4lethal with external depletion of glycerol, 1,2-diacyl glycerol, sn glycerol 3 phosphate, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine.
5lethal with external depletion of adenosine, adenine, hypoxanthine, inosine.
6acceptors of the respiratory electron chain are ubiquinone and cytochrome C (complex III), lethal if also complex III is blocked.
7lethal with external depletion of spermidine.
8lethal with external depletion of phosphatidylcholine.
9lethal with external depletion of 5’-methylthioinosine, xanthine, hypoxanthine, inosine.
10lethal with external depletion of spermidine.
11off-target effects due to the enzymatic role during host invasion.
12lethal with external depletion of guanine and guanosine.
13lethal with external depletion of putrescine, spermidine and blocked agmatinase (EC 3.5.1.53), in Plasmodium bergheii but not yet charaterized in Plasmodium flaciparum).
14topologically not essential, synthetically lethal with inhibition of glucose 6p isomerase (EC 5.3.1.9).
15lethal with external depletion of phosphatidylcholine and choline.
16off-target effects due to cytoskeleton association of the enzyme.
17RF Score = selectivity score predicted with the concept of reduced fitness.
X = essential enzyme;O=non essential enzyme; •=conditional essential enzyme.
HN = HepatoNet1; PN=PlasmoNet; RF50=Reduced Fitness at 50% of enzyme inhibition.
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separately. Nevertheless, the results obtained with the fit-
ness approach indicated the same degrees of biomass
impairment. The cellular toxicity caused by the inhibi-
tion of orotidine-5-phosphate decarboxylase was demon-
strated in human leukemia cell lines [24], while orotate
phosphoribosyltransferase is an antitumoral target for
human gastric carcinoma cells [25]. Equally to the effects
caused by these two enzymes, also aspartate carbamoyl-
transferase was predicted to inhibit the same biomass
components (Table 1). The essentiality of last enzyme is
demonstrated in human hepatocytes [26].
Similarly to the cited enzymes, dihydroorotase can also

impair the synthesis of the same biomass components.
Its essentiality is demonstrated in CCRF-CEM leukemic
cells [27].
The reduced fitness approach correctly predicted that

the enzymatic inhibition of acetyl-CoA carboxylase causes
an importing of plasma triglycerides and this phenomenon
has been experimentally demonstrated in vitro [28].
Acetyl-CoA carboxylase is the rate-limiting step of the
fatty acid anabolism and it is essential for human breast
cancer cells [29].
Carbamoyl-phosphate synthase was predicted to be

more detrimental for the hepatocyte than acetyl-CoA
carboxylase. This enzyme catalyzes the formation of car-
bamoyl phosphate from carbon dioxide and ammonia
(EC 6.3.4.1.6) or glutamine (EC 6.3.5.5). Here, it was not
discriminated between the ammonia-donors (NH4+ or
glutamine) because the inhibition of one reaction was
able to be fully compensated by the other. The essential-
ity of carbamoyl phosphate synthetase (EC 6.3.5.5) was
demonstrated in mouse liver [30].
The last enzyme of this set was glycerol-3-phosphate

acyltransferase, that is essential for human hepatocyte
cultures [31].
The gene deletions of this antimalarial drug target set

were confirmed by the aforementioned experimental data.
Moreover, the reduced fitness approach correctly pre-
dicted the specific case that was triggered by the inhibition
of acetyl-CoA carboxylase: while in the reference state the
triglycerides are part of the maintenance function, thus
they are exported into the blood, under the perturbation
there was an inversion of the boundary flux and they were
instead imported.
The behavior of the predicted fitness functions, that

were simulated for this enzymatic set, are depicted in
Figure 1.

Reduced fitness rank of essential drug targets
For the 12 essential enzymes, we applied the reduced
fitness concept to assess in a more subtle way their
impact on the two metabolic networks (see Table 1).
To validate the outcome of the reduced fitness rank,

three enzymes were shortlisted from Table 1: acyl-
CoA synthetase (score: 1.97); aspartate carbamoyltrans-
ferase (score: 0.713); glycerol-3-phosphate acyltransferase
(score: 0.37).
The impairment of acyl-CoA synthetase in HepatoNet1

caused a perturbation in the mitochondrial synthesis
of cardiolipin (–50%), while in PlasmoNet the inhibi-
tion severely destroyed the production of sphingomyelin
(–97.07%). HepatoNet1 mitochondrial cardiolipin was
produced by the condensation of glycerol-3-phosphate
and CDP-diacylglycerol, that was obtained by mitochon-
drial phosphatidate. This latter metabolite was synthe-
sized from acyl-CoA mitochondrial pool (that collects
many activated fatty acids as palmitoyl-CoA and oleoyl-
CoA). Cytosolic acyl-CoA syntethase was responsible for
the formation of these activated fatty acids, thus an enzy-
matic impairment can affect the cardiolipin synthesis.
This is experimentally demonstrated in human tumoral
cells [32]. Acyl-CoA synthetase inhibition impaired Plas-
moNet sphingomyelin production: the main precursors
of sphingomyelin are serine and palmitoyl-CoA, that was
produced in the cytosol by the enzyme. The parasite
shows a high activity of fatty acid anabolism, thus the
enzyme is important for plasmodial growth [33]. Dur-
ing the intra-erythrocytic stage, the parasite synthesizes
new sphingolipids which are necessary for the formation
of the tubovesicular network [34]. The formation of this
membrane structure connects the parasitic vacuole with
the host membrane during invasion. A possible activation
of sphingomyelinase, that degrades sphingomyelin pools,
provokes the plasmodial death. This suggests that a cer-
tain amount of sphingolipids is essential for Plasmodium
falciparum.
The second enzyme is aspartate carbamoyltransferase

whose inhibition caused an impairment of UDP-glucose
production in HepatoNet1 (–80.57%) and mRNA in Plas-
moNet (–57.44%). It is reported that inhibitors of aspar-
tate carbamoyltransferase cause a 10% reduction of the
UTP intracellular pools in hepatoma cell culture [35].
The last enzyme is glycerol-3-phosphate acyltrans-

ferase, that caused dramatic effects in the hepa-
tocyte metabolism, hindering the production of
phosphatidylethanolamine (–55.77%), phosphatidyli-
nositol (–50%), phosphatidylcholine (–50%), cardiolipin
(–50%) and triglycerides (–50%). Phosphatidate is
a common precursor of these metabolites and is
formed in the human in the linear chain from 1-acyl-
glycerol-3-phosphate, a product of glycerol-3-phosphate
acyltransferase. A specific inhibitor of this enzyme
(FSG67) causes in obese rats the reduction of triglyc-
erides and phosphatidylcholine [36] and this was also
confirmed by our analysis. The in silico inhibition of the
enzyme impaired the production of phosphatidylcholine
(–94.55%) in PlasmoNet. The plasmodial gene sequence
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Figure 1 HepatoNet1 and PlasmoNet fitness profiles.

that encodes glycerol-3-phosphate acyltransferase is
expressed in double yeast mutants and biochemically
characterized [37]. The authors suggested that it is likely
that glycerol-3-phosphate acyltransferase is essential for
a growing Plasmodium falciparum, that requires high
amount of phospholipids for membrane synthesis. This
hypothesis is sustained by another work, whose bio-
chemical analyses show that parasites in trophozoite and
schizont stages have an high acyltransferase activity [38].
Although it was not possible to assess the quantitative

aspect of the selectivity score with experimental evidence,
there was a good agreement among the obtained results
and the literature.

Homologous drug targets predicted non-essential in both
networks
Twelve drug targets showed up to be non-essential in
both networks (Table 1), although their essentiality is
experimentally validated for the parasite. In 8 cases the

conflicting outcomes could be sorted out with literature-
based assessment of the in vitro medium compositions
and restriction of indicated inbound fluxes (conditional
essentiality).
The remaining discrepancies may be due to possi-

ble molecular interactions that were not considered in
the network reconstruction, e.g. off-target effects. For
example, Velanker and coworkers find that plasmodial
glycolytic enzymes associate with membranes and
cytoskeleton components and drain their substrates near
to the invasion machineries, making contact with host
microtubules [39]. The authors also suggest that the
inhibition of the glycolysis is achieved with enzymatic
inhibitors or, alternatively, with the disruption of the
cytoskeleton assembly. It is then likely that plasmodial
glycolytic enzymes form a multi-enzymatic complex that
is associated to the cytoskeleton. This hypothesis is also
supposed by an old theoretical work, that suggests that the
glycolytic enzymes are not ”evenly distributed throughout
the cytosol”, but are likely localized in restricted regions
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[40]. It is also likely that these cytoskeleton-associated
enzymes have an important role during host invasion and,
thus, their inhibitors may cause off-target effects. In this
set, gene deletions predicted that 3 glycolytic enzymes
were dispensable. These were aldolase, hexokinase and
triose-phosphate isomerase. Parasitic aldolase, for exam-
ple, binds AMA1 effector to initiate host invasion [41].
Furthermore, the parasite relies on the glycolysis for its
own ATP production, that is invested for growth, repli-
cation, motility and invasion. Hexokinase is found to
be essential for the intra-erythrocytic stage of the pro-
tozoan [42]. On the other hand, it was predicted that
hexokinase in intra-hepatic stage was dispensable for the
achievement of the biomass reactions. Then, to simulate
the effects of the upper glycolytic branch disruption, a
double knock-out of hexokinase and glucose-6-phosphate
isomerase was simulated. In this case, the impaired
biomass components were phosphatidylinositols. This
impairment and its consequences were in agreement
with experimental assays, where the inhibition of hex-
okinase provokes the total disruption of the synthesis
of glycophosphatidylinositols [43]. It is then likely that
hexokinase and glucose-6-phosphate isomerase belong to
the same multienzymatic complex that was proposed by
Huebscher [40].
The last enzyme of this little set is triose-phosphate iso-

merase, that is expressed on the membrane of infected
erythrocytes where it triggers antibody selection and pro-
longed hemolytic anemia [39].
Because of its specific extra-metabolic functions (infec-

tion/immune system activation), it is very likely that this
enzyme is connected to off-target effects.
Among the enzymes that are conditionally essential,

ornithine decarboxylase was found to be essential under
the restriction of polyamines (as putrescine and spermi-
dine) and under the block of agmatinase. This enzyme
synthesizes the first polyamine: putrescine. In PlasmoNet,
a secondary bypass through agmatinase (EC 3.5.1.53)
made this enzyme dispensable. Agmatinase was identified
in Plasmodium berghei and hypothesized in Plasmodium
falciparum but never characterized here, so this bypass
may not be present. Here, a double enzymatic knock-
down was simulated and both enzymes resulted to be
essential for PlasmoNet. Recently, it has been reported
that a full perturbation of ornithine decarboxylase trig-
gers sophisticated compensatorymechanisms on the tran-
scriptome, proteome andmetabolome of the parasite [44].
It is then likely that the enzyme is per se essential for the
parasite and that the “rescue” mechanism is a evolution-
ary survival strategy. The literature indicates that the same
enzyme is dispensable for the human host, suggesting
a similar underlying conserved mechanism of regulation
[45]. In the set of conditional essential enzymes, phos-
phoethanolamine methyltransferase was found to become

essential under depletion of external choline and phos-
phatidylcholine. This enzyme had a replenishing func-
tion in the phospholipid synthetic pathway, transferring 3
methyl groups on the ethanolamine to form the choline
head (in case of choline depletion). In Plasmodium berghei
it has two different substrates, ethanolamine phosphate
and phosphatidylethanolamine [46]. In PlasmoNet only
the first reaction was included (ethanolamine-phosphate
+ 3 methyl-donors → choline-phosphate) and it was not
active since phosphatidylcholine and choline were avail-
able in the simulated medium. This bypass is important
only if choline is missing in the external environment, so
to assess its essentiality the choline/phosphatidylcholine
transporters were blocked and the missing reaction was
added in PlasmoNet. Under these conditions the enzyme
was essential. The last enzyme that was detected as dis-
pensable is NADHdehydrogenase. Its metabolic functions
can be fulfilled alternatively by Complex bc1. Inhibitors
of NADH dehydrogenase (as atovaquone) target the
mitochondrial electron transport chain but also affect
Complex bc1 [47]. Thus, a double knockout of NADH
dehydrogenase/Complex bc1 was applied, whose outcome
indicated that the synergistic activity of both enzymes was
essential for the parasite.

Conclusions
To increase the selectivity of an anti-pathogenic drug that
could target also host enzymes, a conventional way is to
exploit structural differences between homologous pro-
teins. On the other hand, network-based modeling meth-
ods are alternative and complementary strategies to assess
enzymatic inhibitions. In fact, genome-scale networks can
detect enzymes that are likely to be essential and selective.
Ideally, these approaches identify potential drug targets
that are specific to the parasite.
While this idea may be impressive in its simplicity, the

amount of parasite-specific enzymes can be restricted.
In fact, out of the merged list of 96 “gold standards”
only 18 enzymes are specific to Plasmodium falciparum
metabolism.
It should also be considered that Plasmodium falci-

parum, when exposed to drug-induced selective pressure,
develops drug-resistance (e.g. pyrimethamine and chloro-
quine) [48]. In this context, it would be nice to have more
predictive methods and this was the rationale behind this
research. The question this work aimed to address was the
assessment of the selectivity of antimalarial drug targets
with FBA-basedmethods. A human hepatocyte metabolic
network was chosen to represent the host metabolism
since the liver is the first human infection site for malaria
parasites [17]. Furthermore, the liver possesses the most
versatile metabolism among human cells. In fact, it is
likely that drug targets, that compromise the metabolism
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of any human cell, should also be identifiable in the hep-
atocyte. Furthermore, it is the preferred organ to inves-
tigate the drug-induced metabolic impairments, whose
consequences may be not detectable in preclinical and
clinical trials [49].
To apply FBA-based methods, the main requirement

is the availability of curated genome-scale metabolic
networks. Furthermore, to achieve a realistic flux dis-
tribution, each model should be simulated with a
literature-based set of metabolic objectives. This set
allows the simulation of an anabolic physiological state
of the metabolic model, in similar way to the biomass
objective function [50]. The applied metabolic objective
sets were assembled, approximated and rescaled from a
multitude of different sources. The relative concentra-
tion share of each biomass component was taken as an
estimate of its production rate. A physiological assembly
of the metabolic objectives was necessary to describe
realistically the consequences of the inhibitions of chosen
antimalarial drug targets.
Overall, this work predicted that a large drug target set

was non-essential for the hepatocyte model (24/48) and
that 12 enzymes were instead essential for both mod-
els. For the first set gene deletions were simulated, while
for the second set the concept of reduced fitness was
applied. This last method can analyze more in detail the
drug-induced impairments and their consequences on the
network performance.
Gene-deletion simulations are a mean to assess the

importance of a given biochemical reaction for the func-
tionality of the network. This type of simulations are
comparable to experimental gene-excision methods: the
enzyme sequence is a priori disrupted and the resulting
metabolic consequences are then investigated. On the
other hand, it is rare that an administrated drug can
achieve 100% enzymatic inhibition. To simulate this last
scenario, the concept of reduced fitness was applied. In
this case, 12 enzymes, that gene deletions predicted to
be essential in both models, were studied in the context
of reduced fitness. This method allows to compare the
relative enzymatic essentiality and to understand which
model is more sensitive to a chosen enzymatic restric-
tion. Unfortunately, the predicted selectivity score could
not be validated with the available pharmacological data
(e.g. drug binding constant for the target and cytotoxic
IC50 index) for infected and non-infected hepatocyte
cultures. Our work had clearly some limitations, that
were due to lacking pharmacological data on antimalar-
ials and approximations of the metabolic objectives.
Then, genome-scale metabolic networks do not usu-
ally integrate regulatory feed-back loops and, thus, they
may be not feasible to predict consequences of enzyme
inhibition that are triggered by negative regulation. As
mentioned above for the case of thymidylate synthase,

enzymatic drug-induced inhibition may cause enzymatic
over-expression and this aspect can not be exhaustively
predicted with the methods that are here applied.
Despite the applied approximations and the missing

data, the obtained results were in agreement with the
available literature. Thus, this framework may be useful
to detect putative selective drug targets, that gene-
deletion simulations may discard. Further analyses on
the selectivity of antimalarial targets (by means of RNA
interference and covalent inhibitor assays) are therefore
required to validate the predicted selectivity score. RNA
interference, for example, allows to tune the degree of
inhibition, avoiding off-target effects due to unspecific
protein binding [51]. Alternatively, enzyme impairments
by covalent inhibitor assay [52,53] could provide the
experimental mirror of the computed fitness function. In
this last case, drug binding constant and cytotoxic index
for each inhibitor will be useful to assess the ”pure” net-
work effects that were here predicted. In fact, cytotoxic
index alone is not informative in this respect, as it can not
discriminate among strong network effects under weak
drug binding and weak network effects under strong drug
binding. Finally, the last important aspect to consider is
the choice of the strain of Plasmodium falciparum, as
drug resistance and sensitivity may largely vary among
different strains. This is the rationale why anti-pathogenic
drug discovery is now focusing on drug combinations,
that are effective against a wide spectrum of pathogenic
strains in low doses [54].

Methods
Drug target selection
Three literature-based datasets of validated antimalarial
targets [14,18,19] were collected, merged and pruned. The
merged set contains 96 experimentally validated essen-
tial enzymes reported for the parasite Plasmodium falci-
parum. Three enzymes are targets of approved drugs and
only two of them are common in all sets (dihydrofolate
reductase, dihydropteroate synthase). For 18 targets, no
homologous enzymes are present in HepatoNet1. These
pathogen-specific enzymes are suitable as drug targets
and require no further in silico flux-based investigation.
Thirty other enzymes belong to genetic functions and are
only remotely intertwined with metabolism (e.g histone
deacetylase, telomerase). Thus, they were discarded, since
they are not represented in the networks. The remaining
48 enzymatic drug targets were present in both models. In
Figure 2 the overlapping of the three datasets is depicted;
the full list is given in Additional file 1.

Themetabolic models
HepatoNet1 is a primarily literature-based metabolic
network of a human hepatocyte, whose reactions are
individually curated and functionally tested [16]. It
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Figure 2 Antimalarial drug targets and their overlap. For each
circle the name indicates the first author. Globally the scheme depicts
the distribution of 96 antimalarial drug targets.

comprises 2539 reactions, 704 genes and 1149 metabo-
lites. To simulate the pathogen, PlasmoNet model was
chosen (Biomodels database ID: MODEL1111240000).
PlasmoNet is a large metabolic network of Plasmod-
ium falciparum, whose reconstruction is based on infor-
mation from several databases and extensive literature
search [14]. While the published version consists of 1622
metabolites, 1375 reactions and 579 genes, here the
model was modified for the scope of the research and
the current version (PlasmoNet v2.0, Biomodels database
id: MODEL1206070000) contained 1394 reactions: 20
inbound reactions, measured with metabolomics assays
[55], were included; one reaction of steroid hormone
pathway was removed (KEGG id: R01836; EC 1.1.1.239),
since it is likely to be present only in mammalian gen-
itourinary system [56]. Previous versions of the KEGG
database [57] indicated that this reaction belongs to the
plasmodial metabolism. The correction was then intro-
duced in KEGG version 57.0 and above. Furthermore,
an irreversible directionality was added for the reac-
tions catalyzed by S-adenosyl-L-methionine decarboxy-
lase (EC 4.1.1.50) and phosphoenolpyruvate carboxylase
(EC 4.1.1.31), as indicated in BRENDA database [58]. The
PlasmoNet v2.0 is included as Additional file 2. Detailed
information about the applied parameters (reaction direc-
tions, imported/exported metabolites) is available on
request.

Definition of metabolic objectives
Themetabolic objectives of the two networks were formu-
lated in terms of the so-called biomass reactions which:
(i) yield building blocks for the cellular composition,
(ii) remove potentially harmful metabolites (e.g. toxins)
and (iii) are exported by the cell in the context of sys-
temic physiological functions. For HepatoNet1, literature

search collected concentration shares of 98 metabolites,
that are cellular building blocks or that can be exported
into the blood. The list of applied HepatoNet1 metabolic
functions is included as Additional file 3. In some cases,
human liver data were not available, thus murine infor-
mation was applied and rescaled. Also several approxi-
mations and assumptions were applied (e.g. the amount
of cardiolipin is measured in the periportal and perive-
nous liver areas [59] and in this case an arithmetic mean
of the two concentrations was applied). The metabolites,
that HepatoNet1 was allowed to import from the extra-
cellular environment, were the human blood components
and their inbound fluxes were left unconstrained [16]. The
set of PlasmoNet biomass components consisted of 98
metabolites, whose concentration shares were retrieved
from literature. An initial set of 57 values was already
published along with PlasmoNet reconstruction [14], but
for the scope of the research this set was enlarged to
98 metabolites. The environment in which PlasmoNet is
embedded represented the host cytoplasm. To describe
a feasible situation for a growing parasite, all host-
pathogen exchange reactions were left unconstrained. The
full list of PlasmoNet metabolic objectives is given as
Additional file 4.

Gene deletions
To test the essentiality of drug targets, gene deletions were
performed under the flux minimization framework [60],
in similar way to previous studies [6-8]. The optimization
problem aimed (i) to minimize the sum of internal fluxes
and (ii) the simultaneous achievements of all biomass
reactions. To simulate gene-deletion of a drug target,
the fluxes through the corresponding catalyzed reactions
were constrained to zero. Under these conditions, a suc-
cessful simulation would predict that the enzyme is non-
essential and all biomass reactions can be fulfilled. If no
feasible solutions can be reached, the enzyme is consid-
ered to be essential. A more detailed explanation of the
flux minimization problem is given in Additional file 5:
Appendix A.

Reduced fitness approach
This approach has been applied to an erythrocyte model
to simulate the impact of enzyme deficiencies on network
performance [20]. The initial step is the calculation of a
reference state without any impairment. Then, for each
potential target enzyme, ametabolic scenario is simulated,
where (i) the fluxes through the reactions catalyzed by this
enzyme are progressively restricted and (ii) the deviation
of the biomass fluxes from the reference state is min-
imized. The deviations express the model’s impairment
under the enzymatic perturbation, the inverse is called fit-
ness. A detailed explanation of this concept together with
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an exemplary application are given in Additional file 6:
Appendix B.

Enzymatic fitness estimation and selectivity score
To assess the network performance under an enzymatic
impairment, the initial reference state is obtained with
flux minimization method. This framework does not pre-
dict a unique solution but this aspect is common to many
FBA methods that are based on optimization problems.
To calculate the reduced fitness for an enzymatic knock-
down, the enzyme-catalyzed null fluxes are blocked. The
non-null fluxes, instead, are subjected to a progressive
reduction of 1% of the reference flux values for each
simulation run. For each decremental step of the non-
null fluxes, a single value of reduced fitness is calculated.
In this way, a single fitness curve is obtained for each
enzymatic knock-down (Figure 1). To define selectivity in
terms of the reduced fitness, the area under the fitness
curves (AUC) of the networks is calculated and compared
for each enzymatic inhibition. In case of a non-essential
drug target, the obtained fitness curve is a straight hori-
zontal line at fitness 1 and, applying the progressive decre-
ment of 1% of the reference enzymatic activity, its AUC is
100 (as a per cent measure). The larger the area under the
fitness curve (i.e. the smaller its deviation from 100), the
less is the effect of the drug target on metabolic fitness.
The AUC deviation from 100 defines the selectivity score
(equation 1).

AUCdev = 100 − AUC (1)

Then, the selectivity score of a drug target is defined as

Selectivity Score = AUCdevPlasmoNet
AUCdevHepatoNet1

(2)

A similar selectivity score has already been applied with
kinetic models to predict anti-parasitic selective drug tar-
gets [4]. Note, that application of the selectivity score as
defined in equation (2) requires the drug target to elicit
an impairment of the metabolic fidelity of the host (other-
wise the denominator is zero). The selectivity score would
rank a 100% impairment of a single biomass component
and 10% impairment of ten biomass components equally.
In this case great care should be taken, since the in vivo/in
vitro relevance of a specific biomass component may be
beyond the metabolism (e.g. some metabolites are syn-
thesized by the parasite for biomass formation, but also
to build invasion machineries). The results obtained with
the selectivity score should, thus, be contextualized with

experiments and information about the possible extra-
metabolic role of the biomass components.
Additional files

Additional file 1: Merged set of validated antimalarial targets.

Additional file 2: Updated version of PlasmoNet. The network is
available on Biomodels database under the ID MODEL1206070000.

Additional file 3: HepatoNet1 applied metabolic objectives.

Additional file 4: PlasmoNet applied metabolic objectives.

Additional file 5: Appendix A. Flux minimization optimization
framework.

Additional file 6: Appendix B. Reduced Fitness optimization framework
and example.
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Ganeshan R, König M, Rother K, Weidlich M, Behre J, Holzhütter HG:
HepatoNet1: a comprehensive metabolic reconstruction of the
human hepatocyte for the analysis of liver physiology.Mol Syst Biol
2010, 6:411. [http://view.ncbi.nlm.nih.gov/pubmed/20823849]

17. Nussenzweig RS, Long CA:Malaria vaccines: multiple targets. Science
1994, 265(5177):1381–3. [http://view.ncbi.nlm.nih.gov/pubmed/
8073276]

18. Fatumo S, Plaimas K, Mallm JP, Schramm G, Adebiyi E, Oswald M, Eils R,
König R: Estimating novel potential drug targets of Plasmodium
falciparum by analysing the metabolic network of knock-out strains
in silico. Infect Genet Evol 2009, 9(3):351–8. [http://view.ncbi.nlm.nih.gov/
pubmed/18313365]

19. Yeh I, Hanekamp T, Tsoka S, Karp PD, Altman RB: Computational
analysis of Plasmodium falciparummetabolism: organizing
genomic information to facilitate drug discovery. Genome Res 2004,
14(5):917–24. [http://view.ncbi.nlm.nih.gov/pubmed/15078855]

20. Holzhütter HG: The generalized flux-minimization method and its
application to metabolic networks affected by enzyme deficiencies.
Biosystems 2006, 83(2-3):98–107. [http://view.ncbi.nlm.nih.gov/pubmed/
16229937]

21. Tomoda H, Igarashi K, Cyong JC, Omura S: Evidence for an essential role
of long chain acyl-CoA synthetase in animal cell proliferation.
Inhibition of long chain acyl-CoA synthetase by triacsins caused
inhibition of Raji cell proliferation. J Biol Chem 1991, 266(7):4214–9.
[http://view.ncbi.nlm.nih.gov/pubmed/1999415]

22. Galvani E, Peters GJ, Giovannetti E: Thymidylate synthase inhibitors for
non-small cell lung cancer. Expert Opin Investig Drugs 2011,
20(10):1343–56. [http://view.ncbi.nlm.nih.gov/pubmed/21905922]

23. Wilson PM, Labonte MJ, Lenz HJD, Mack PC, Ladner RD: Inhibition of
dUTPase induces synthetic lethality with thymidylate synthase-
targeted therapies in non-small cell lung cancer.Mol Cancer Ther
2012, 11(3):616–28. [http://view.ncbi.nlm.nih.gov/pubmed/22172489]

24. Bello AM, Konforte D, Poduch E, Furlonger C, Wei L, Liu Y, Lewis M, Pai EF,
Paige CJ, Kotra LP: Structure-activity relationships of
orotidine-5’-monophosphate decarboxylase inhibitors as
anticancer agents. J Med Chem 2009, 52(6):1648–58. [http://view.ncbi.
nlm.nih.gov/pubmed/19260677]

25. Ochiai T, Nishimura K, Noguchi H, Kitajima M, Tsukada A, Watanabe E,
Nagaoka I, Futagawa S: Prognostic impact of orotate phosphoribosyl
transferase among 5-fluorouracil metabolic enzymes in resectable
colorectal cancers treated by oral 5-fluorouracil-based adjuvant

chemotherapy. Int J Cancer 2006, 118(12):3084–8. [http://view.ncbi.nlm.
nih.gov/pubmed/16425285]
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