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Abstract

Background: In the functional genomics analysis domain, various methodologies are available for interpreting the
results produced by high-throughput biological experiments. These methods commonly use a list of genes as an
analysis input, and most of them produce a more complicated list of genes or pathways as the results of the analysis.
Although there are several network-based methods, which detect key nodes in the network, the results tend to
include well-studied, major hub genes.

Results: To mine the molecules that have biological meaning but to fewer degrees than major hubs, we propose, in
this study, a new network-based method for selecting these hidden key molecules based on virtual information flows
circulating among the input list of genes. The human biomolecular network was constructed from the Pathway
Commons database, and a calculation method based on betweenness centrality was newly developed. We validated
the method with the ErbB pathway and applied it to practical cancer research data. We were able to confirm that the
output genes, despite having fewer edges than major hubs, have biological meanings that were able to be invoked
by the input list of genes.

Conclusions: The developed method, named NetHiKe (Network-based Hidden Key molecule miner), was able to
detect potential key molecules by utilizing the human biomolecular network as a knowledge base. Thus, it is hoped
that this method will enhance the progress of biological data analysis in the whole-genome research era.
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Background
The emergence of next-generation sequencing technology
and sophisticated microarray technology has enhanced
the diversity of high-throughput biological experiments.
In addition to gene expression profiling, epigenetic data,
including DNA methylation and histone modifications,
and mutation analysis in cancer have been studied com-
prehensively in a genome-wide manner. It is absolutely
indispensable to use biological knowledge-based analysis
methods to translate the results of these experiments into
a better understanding of the underlying phenomena and
to plan the next stages of research.
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Biological knowledge, such as pathways or gene sets, is
compiled in various databases. In these databases, biologi-
cal knowledge is represented as a precompiled, divided set
of genes, such as the “P53 signaling pathway” or “apoptotic
signaling pathway”. These pathways are utilized by various
knowledge-based analysis methods. Over-representation
analysis (ORA) is a widely used method for mapping a
list of genes onto these pathways automatically, and this
technique can determine the pathways or functional gene
sets that are enriched in a given list of genes obtained
experimentally. ORA is frequently implemented as a web
application, such as the NCI-Nature Pathway Interaction
Database [1,2] and the DAVID bioinformatics resources
[3], that receive an input list of genes and calculate the
p-values based on the frequency of the appearance of the
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input genes in each precompiled gene set. However, using
the ORA methodology, the input list of genes is simply
characterized with respect to the already-known path-
ways. Thus, researchers can rarely discover something
new related to their input.
Another type of knowledge-based analysis is the

network-based analysis method, which uses an interac-
tion network of biomolecules as the knowledge. In this
type of network, the biomolecules (proteins or genes)
correspond to the nodes, and the edges indicate the rela-
tionships between the molecules (e.g., “protein A induces
protein B” or “protein B phosphorylates protein C”). The
assembled network is often called a protein-protein inter-
action (PPI) network or a biomolecular network, and
several methodologies are available for analyzing experi-
mental results using this network-based biological knowl-
edge [4-6]. Many network-based analysis methods extract
modules, which are sets of tightly connected nodes con-
sisting of the input genes, and it is strongly expected that
the genes in a module achieve a biological function in
a coordinated manner. In addition, these modules some-
times include nodes that were not present in the input list.
Thus, the network-based analysis methods partially over-
come the disadvantages of ORA, in terms of the limitation
to the predefined pathways or gene sets. However, these
module-centric methods restrict the results of the analy-
sis to a certain area of each module, even though the input
genes are spread over the whole biomolecular network.
Furthermore, when the modules of the analysis results
become larger or more complex, it is almost impossible to
understand their biological meanings.
Consequently, it would be beneficial to identify the

nodes in the network as the key molecules that are rele-
vant to the input list of genes. One of the most prominent
characteristics of a node in a network is its degree, or
number of neighbors. However, the degree contains infor-
mation only about its neighbors, and in a similar way,
other network measures, such as the clustering coeffi-
cient and assortativity, merely reflect the situations of
their neighbors [7]. In contrast, certain node centralities
can determine the importance of each node in a network
by taking into consideration the topology of the entire
network. Although there are various types of centralities,
such as degree centrality, closeness centrality, eigenvector
centrality, betweenness centrality and others, it is known
that almost all of the centralities correlate with the degree
of the node [8]. Partially because the role of hub nodes in
biomolecular networks still remains an intensive research
target [9-11], the methods based on these centralities
[12-14] tend to produce analysis results that are biased
toward major hub nodes.
In this study, we present a new network-based method

for identifying the hidden key molecules, a description
that indicates that the molecules are biologically relevant

to the input but do not have as many neighbors as the
major hub nodes have. We have developed a centrality
measure derived from betweenness centrality [15,16],
named node-limited betweenness centrality (nlBC). First,
we validated the method using a well-known pathway,
the ErbB (EGFR) signaling pathway. Next, we applied it
to a practical cancer mutation dataset and explored the
availability of our method.

Results and discussion
Methodology overview
Figure 1 shows a schematic view of our method. We
call this method Network-based Hidden Key Molecule
Miner (NetHiKe), and a detailed description is pro-
vided in the “Methods” section. First, we constructed
a biomolecular network as an undirected graph, which
represents the knowledge about the interactions among
the biomolecules (genes or proteins) using Pathway
Commons data. Then, we projected the input genes onto
the network and calculated the newly developed central-
ity values of the nodes. To calculate the centrality, we
used only the shortest paths that have both ends in the
set of the input nodes. Thus, the only nodes that were
included in the network consisted of the shortest paths
between all the possible combinations of any two input
nodes with the centrality values. We named this centrality
value the “node-limited betweenness centrality (nlBC)”,
and this method can utilize the sum of the weight val-
ues of both ends of each shortest path (see “Methods”
for details). The significance of the nlBC was assessed by
p-values based on a Monte-Carlo simulation, by generat-
ing the same number of randomly selected nodes as the
input nodes.

Verification of the Method
First, we conducted the following computational experi-
ments to verify whether the developed method has the
ability to extract the appropriate knowledge related to the
input data. As with the input data, we used a gene list
that consisted of 10 ligands and 30 transcription factors
of the ErbB pathway (listed in Additional file 1, and see
“Methods” for details). The results of this analysis are
listed in Table 1. This table contains the list of 31 genes
whose simulated p-values were under 0.05, in ascending
order of the p-values. The list also indicates the degree of
the node in the background network, nlBC, and whether
the gene was included in the input list.
The output list includes all four transmembrane tyro-

sine kinase receptors: the epidermal growth factor recep-
tor (EGFR; also known as ERBB1), ERBB2, ERBB3 and
ERBB4. These four receptor genes were not included in
the input; NetHiKe successfully detected these four key
molecules, which were deeply relevant to the 10 ligands
in the input list. The transcription factors of the ErbB
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Construct a biomolecular network
with the Homo sapiens interaction data of 
Pathway Commons.

Project input genes onto the biomolecular 
network (blue nodes).

Calculate node-limited betweenness 
centrality values of the square nodes using 
only the solid circle nodes.

 Identify hidden key molecules with the 
simulated p-values (the red node).

Figure 1 Schematic view of the NetHiKe method. A schematic view of Network-based Hidden Key Molecule Miner (NetHiKe). The blue nodes
indicate the input nodes, and only the square nodes have node-limited betweenness centrality values. The red node indicates the statistical
significance by the simulated p-values.

pathway, such as Jun, E2F, STAT and MEF2, are presented
in Table 1, and these factors were included in the input
list. This observation means that NetHiKe can mark a
molecule as key even when the node is in the input list.
The network view of this result is shown in Figure 2. This
figure contains all of the pairs of the shortest paths among
the inputs. In this figure, we can verify that NetHiKe
appropriately detected ErbB pathway related genes, such
as FOXO4 and CREBBP.
To confirm the biological meanings of the results,

we analyzed the genes in Table 1 using the Pathway
Interaction Database, which is one of the typical over-
representation analysis methods (see “Methods” for
details). As shown in Additional file 2A (the link
to NetHiKe), we obtained “E2F transcription factor
network” as the most significant pathway, which is
one of the downstream effects of an ErbB pathway
stimulus.

The relationship between nlBC and P-values
To illustrate the properties of the nlBC and its p-values,
we constructed individuals scatter plots for the nlBC,
degree and p-value for the genes listed in Table 1
(Additional files 3A to 3C). The nlBC values modestly

correlate with degree (Additional file 3A), whereas the
p-value has almost no relationship with degree or nlBC
(Additional files 3B and 3C). To understand the behavior
of nlBC and its p-value and to determine the robustness
of nlBC, we constructed a boxplot to visualize the nlBC
values for the genes in Table 1 (Additional file 3D and
3E). In the plots, the boxes of Additional file 3D show the
nlBCs that were generated using randomly selected genes
for calculating simulated p-values, and the vertical spread
of the boxes are indicative of the variation of the nlBC
in response to the various input list of genes. The boxes
of Additional file 3E were generated by a leave-one-out
method using the ErbB input genes, and the boxes are
indicative of the robustness of the nlBC for certain input
genes. The nlBC values vary in the different input list and
their ranges also differ from each other. It seems that the
ranges depend on the degree of each gene. However, the
nlBC values of a certain semantic group of genes, such as
those in the ErbB pathway, are significantly different from
their randomly generated background distributions. Fur-
thermore, the values are robust. Thus, to identify these
alterations in the nlBC using NetHiKe, we validated the
importance of the genes using simulated p-values instead
of the nlBC values themselves.
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Table 1 The results of the ErbB pathway analysis

Gene symbol Degree nlBC Included in Simulated
the input p-value

EGFR 129 0.248 no 5.01 × 10−5

JUN 90 0.0854 yes 1.17 × 10−3

CREBBP 124 0.0919 no 1.42 × 10−3

TCF3 24 0.0431 no 1.59 × 10−3

FOXO4 9 0.00429 no 2.62 × 10−3

EP300 146 0.102 no 2.70 × 10−3

ERBB2 33 0.0274 no 6.05 × 10−3

CDC25A 18 0.0149 no 8.28 × 10−3

CABIN1 8 0.0369 no 9.42 × 10−3

ERBB3 13 0.0329 no 9.76 × 10−3

TFDP2 4 0.0039 no 1.12 × 10−2

CEBPB 34 0.0261 no 1.18 × 10−2

BAG1 13 0.00881 no 1.19 × 10−2

ID2 17 0.0318 no 1.28 × 10−2

MEF2D 11 0.00573 yes 1.34 × 10−2

MYBL2 13 0.0445 no 1.44 × 10−2

ERBB4 19 0.0304 no 1.74 × 10−2

SP1 59 0.0288 no 1.92 × 10−2

RB1 92 0.061 no 2.02 × 10−2

HCFC1 26 0.0352 no 2.11 × 10−2

RYBP 13 0.0155 no 2.12 × 10−2

E2F4 21 0.00537 yes 2.31 × 10−2

USP7 42 0.0606 no 2.41 × 10−2

SRF 26 0.0427 no 2.85 × 10−2

TFDP1 14 0.00927 no 2.96 × 10−2

RBL2 25 0.00674 no 3.01 × 10−2

STAT1 50 0.026 yes 3.06 × 10−2

E2F1 45 0.0282 yes 3.31 × 10−2

ATF2 27 0.00428 no 4.78 × 10−2

CEBPA 21 0.00393 no 4.89 × 10−2

YWHAQ 63 0.0189 no 4.93 × 10−2

Key molecules (genes) with simulated p-values less than 0.05 are listed in the
order of ascending p-values. The degree is the number of edges (number of
interaction partners), and the fourth column indicates whether the gene was
included in the input list of genes.

Comparisonwith the Hubba results
To clarify the characteristics of our methods, we com-
pared our results with the existing method. As a com-
parison method, we chose Hubba [12] (see “Methods” for
details). We compared the top 30 genes from the NetHiKe
results, chosen based on their p-values, and the Hubba
results, which were produced by the six different algo-
rithms that are implemented in Hubba. Figure 3A shows
a Venn diagram of this comparison. The Hubba results

have more genes than the NetHiKe results. This discrep-
ancy occurs because the Hubba results consist of a union
of the six different outputs (all of the genes are listed
in Additional file 4). As shown in Additional files 2B
to 2F, the Hubba results from the six different methods
include ErbB pathway-related genes, such as “Glucocor-
ticoid receptor regulatory network” and “Regulation of
nuclear SMAD2/3 signaling”. This observation means that
the results of Hubba also have an important role in the
analysis of the ErbB pathway.
When drawing the boxplots for the degrees of the genes

(Figure 3B), the degree distribution of the NetHiKe results
was much smaller than that of the Hubba results exclud-
ing DMNC, one of the algorithms of Hubba. For example,
EGFR (ERBB1), ERBB2, ERBB3, and ERBB4, which are
four membrane receptors of the ErbB pathway, have 129,
33, 13, and 19 neighbors, respectively, in the background
knowledge-base network. EGFR is considered to be one
of the major hubs in this network, and Hubba (DMNC),
whose degree distribution was as small as that of NetHiKe,
failed to detect EGFR. In contrast, only the NetHiKe result
has all four of these receptors in the top 30 gene list.
Recently, ERBB2 and ERBB3, which have fewer degrees
than EGFR, have been considered to play key roles in can-
cer tissue [17,18]. These results suggest that NetHiKe can
detect the hidden key molecules based on the context in
which an input list of genes is given.

Weighted inputs
Finally, we have validated the function for handling the
weighted values of the input nodes. The weight of NRG2,
which is one of the input genes in this validation study,
was set to 2.0, and the remainder of the input nodes had
their weight values set to 1.0. The results of the analy-
sis are shown in table format in Additional file 5. Overall,
there were many overlaps between the NRG2 weighted
results and the non-weighted results, such as JUN, TCF3,
CREBBP and EP300 (Additional file 5A and Table 1).
This observation could also be confirmed by the results
of an analysis using the Pathway Interaction Database
(Additional files 2A and 2G). The network visualization
near ERBB receptor family is shown in Figure 4. We can
confirm that the red color of ERBB3 and ERBB4 is deeper
than that of Figure 1, which was produced using the
non-weighted input list. This finding means that the
p-values of these genes became more significant, with
p-values less than 0.05 to 0.01, and the results were
satisfactory considering that NRG2 is the ligand for
ERBB3 and ERBB4, not for ERBB1 and ERBB2 [19].
When the weight value of NRG2 was increased to 20.0,

the results included more ERBB4-related genes (the result
table is shown in Additional file 5). To confirm this find-
ing, we again examined the results using the Pathway
Interaction Database. As shown in Additional file 2H,
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Figure 2 Network visualization of the results of the ErbB pathway analysis. The extracted subgraph (420 nodes and 1,575 edges) induced by
the input genes. The red color depth represents the p-values, which were estimated by the simulations, and the blue boundaries indicate that the
node was included in the input list.

“ERBB4 signaling events” was the second most impor-
tant pathway because the increased weight of NRG2, the
ligand of ERBB4, appropriately enhances the importance
of ERBB4-related pathways. Taking these results together,
if appropriate weights are given to NetHiKe, this algo-
rithm can detect the nodes that have biological meaning
but do not have many edges with statistical significance,
such as p < 0.01.

Analysis of practical cancer mutation data
We applied the NetHiKe algorithm to the list of genes
that are somatically mutated in glioblastomas using their
observed mutation frequencies as the weight values.
The input mutation data were obtained from The Can-
cer Genome Atlas (TCGA) website (see the “Methods”

for details about TCGA and glioblastoma). The analysis
results are shown in Table 2 and Additional file 6. The
genes with p-values less than 0.01 are listed in Table 2,
and the whole network is visualized in Additional file
6. In Additional file 6, PTEN, TP53 and EGFR have a
thicker blue border than the other genes because they
have an extremely high mutation rate in glioblastomas.
(See Additional file 1 for the numerical data).
As shown in Table 2, the NetHiKe results do not include

several famous key players in glioblastoma biology, such
as EGFR, SRC and TP53 [20]. However, the nodes with
fewer edges than those above that are included also have
implications in glioblastoma biology. PTK2 (also known as
FAK: focal-adhesion kinase), which is the top-ranked gene
in Table 2, is a non-receptor tyrosine kinase protein that
serves as a major mediator of cell migration [21], and the
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Figure 3 Comparison of the results of NetHiKe and Hubba. A) Venn diagram for the comparison of the results of NetHiKe and Hubba. The
Hubba result is the combination of the six different methods. B) The boxplot of the degree of each node. The degree was calculated in the
background network rather than in the extracted network.

suppression of PTK2 phosphorylation inhibits glioma cell
migration [22]. PTK2 is also gaining attention as a drug
target in cancer therapy; for example, a kinase inhibitor of
PTK2 has been developed in ovarian cancer [23]. Clinical
studies on pancreatic cancer [24] and neuroblastoma [25],
which is the most common childhood brain cancer, are
also under way. PXN (also known as Paxillin), which is
one of the hidden key molecules (Table 2), is known
to be a downstream target of PTK2. Additionally, the
PTK2(FAK)-signaling pathway, which is formed by these
genes, has been shown to be upstream of AKT-signaling
in promoting malignant behaviors of high-grade gliomas
[26]. BCAR1 (also known as p130Cas), which is the second

most significant key molecule, is also known to be a
mediator of growth factor-dependent migration through
tyrosine phosphorylation in glioma cells [27].
Figure 5 shows the neighbor nodes of PTK2, which

were extracted and visualized by Cytoscape, and this
figure shows that PTK2 associates not only with PXN
but also with BCAR1. Although the role of the relation-
ship between PTK2 and ITGB3 in glioma biology is not
clear, ITGB3 (integrin β3) plays a pro-apoptotic role in
glioma cells, and it is related to anti-cancer drug resis-
tance [28]. These results suggest that NetHiKe can detect
the molecules that are deeply related to the biological
background of the brain tumor.
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Figure 4 Network visualization with weighted input. Network visualization for the case of the weighted input, in which only NRG2 has double
weight relative to the others. The figure shows only the area around NRG2 and its receptors (ERBB3 and ERBB4). As NRG2 is one of the input genes, it
has a blue line around the node, and its greater width indicates a greater weighted value relative to the other input genes.

Comparison to Hubba
We compared the NetHiKe results with the Hubba results
as an existing similar method. Because Hubba cannot
manipulate the node weights, we used only the gene
names as an input for Hubba with the six different
algorithms, as in the ERBB comparison case (see the

Table 2 The results of GBMmutation data

Gene symbol Degree nlBC Included in Simulated
the input p-value

PTK2 20 0.014 no 5.02 × 10−5

BCAR1 17 0.00496 yes 1.52 × 10−3

CD36 11 0.00336 no 2.15 × 10−3

PIK3CB 10 0.00525 no 2.70 × 10−3

MAP2 6 0.00223 no 3.81 × 10−3

DHFR 4 0.00318 no 4.62 × 10−3

VAV3 11 0.00483 no 5.44 × 10−3

ITGB3 37 0.0273 yes 5.83 × 10−3

SP3 9 0.00678 no 6.44 × 10−3

TXN 8 0.00692 no 6.83 × 10−3

DAP3 8 0.00269 no 7.22 × 10−3

RUNX2 22 0.0111 no 7.78 × 10−3

NR2F1 8 0.0239 no 8.61 × 10−3

PXN 45 0.0198 no 8.85 × 10−3

RPS27L 9 0.00121 no 9.09 × 10−3

PTPN1 33 0.018 no 9.50 × 10−3

The table shows the keymolecules (p < 0.01) that were inferred by NetHiKe, with
their degrees and nlBC values. The genes are ordered by their simulated p-values.

“Methods” for the details). Additional file 7 shows the
top 16 genes of the six Hubba methods, which repre-
sents the same number of genes found in the NetHiKe
results with p < 0.01. There were no overlapping genes
between the NetHiKe results and the Hubba results. In
contrast, there were several overlapping genes among
the six Hubba methods. When we mapped the differ-
entially expressed genes in glioblastoma obtained from
TCGA to these results, the genes were distributed across
all of the results from both NetHiKe and Hubba. This
observation could indicate that the listed genes of both
methods are related to glioblastoma biology. For example,
MAP2, which was selected by NetHiKe and is differen-
tially expressed in glioma, is known to be one of the
neuronal differentiation markers, and its expression level
is naturally decreased in brain tumors [29].
Table 3 shows the genes that were presented at least

three times in all six methods of generating Hubba results.
Obviously, the genes selected byHubba havemuch greater
degrees than the genes selected by NetHiKe (Additional
file 7, also Tables 2 and 3). Many of the genes selected by
Hubba are known to be major key players in glioma biol-
ogy, such as EGFR, EP300, SRC and TP53 [20]. Although
the NetHiKe results tend to have fewer degrees, they have
relationships to these major genes to a certain extent.
For instance, SRC and TP53, which were selected in the
Hubba results many times, are presented in Figure 5 as
the neighbors of PTK2. RAC1 and SHC1, which were also
selected by Hubba (Additional file 7), associate with PTK2
(Figure 5), and the association between SHC1 and PTK2
has been known for a long time [30].
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Figure 5 PTK2 and its neighbors. The network visualization of PTK2 and its neighbor nodes with input weight values (thickness of blue border
line) and P-values (depth of red color). PTK2 has a direct relationship with BCAR1 and PXN, as well as TP53, which is well-known to be one of the
most famous hub genes.

Therefore, these results show that NetHiKe captures
the nodes that are on the periphery of the major hub
nodes. We think that this outcome arises because nlBC
includes only the shortest paths with both ends in the
input nodes. This characteristic reduces the shortest paths
that are concentrated on the major hubs with no rela-
tionships to the input genes. Consequently, NetHiKe is
able to mine the hidden key molecules that have suffi-
cient biological meaning and fewer degrees than themajor
hub nodes.

Conclusions
We have proposed an analysis method, Network-based
Hidden Key Molecule Miner (NetHiKe), which can
extract limited numbers of hidden key molecules relevant
to genes provided as input, using a human biomolec-
ular network. NetHiKe comprises three steps: map-
ping the input genes onto the network, a node-limited

Table 3 The summary of the Hubba results for GBM data

Gene Degree

EGFR 129

EP300 146

HSP90AA1 166

HSPA8 111

PRKDC 112

SHC1 110

SRC 134

TP53 132

YWHAG 183

The genes that were represented at least three times among the results of the
six different Hubba algorithms.

betweenness centrality (nlBC) calculation, and valida-
tion of the statistical significance by simulated p-values.
NetHiKe tends to capture the nodes with fewer degrees
than major hub nodes, which are usually intensive
research targets. We have confirmed that NetHiKe’s out-
puts contain sufficient biological information and that
the input node weights appropriately produce a change
in the results based on the biological meanings. Further-
more, with the glioblastoma analysis, we demonstrated
that NetHiKe can be used for analyzing practical biology
data produced by genome-wide experimental methodolo-
gies.
The present knowledge about cell biology is enormous,

and thus, the derivation of informative meaning from
genome-wide experimental results is urgently needed. We
anticipate that this simplicity will contribute to additional
striking insights into cellular activity and help researchers
to determine future research directions.

Methods
Biomolecular network
We used the Pathway Commons [31] dataset, released on
Oct 27, 2011, to construct a human biomolecular network.
Pathway Commons currently includes the following nine
data sources: BioGRID [32], The Cancer CellMap [33], the
HPRD [34], HumanCyc [35], the databases of the Systems
Biology Center NewYork [36], IntAct [37], the Molecular
Interaction Database (MINT) [38], the NCI-Nature Path-
way Interaction Database [1] and Reactome [39]; thus, it
includes many types of biomolecular interactions, such
as biochemical reactions, complex assembly, transport
and catalysis events, and physical interactions involving
proteins, DNA, RNA, small molecules and complexes.
We visualized the degree distribution of the network

that was constructed from the pathway commons data
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(Additional file 8A), and we found that there were extra
high-degree nodes, which disturb the power-law of the
log-log degree distribution. To obtain a more reliable
biomolecular network, we extracted the binary relation-
ships of biomolecules that represented at least two of the
nine data sources used by the Pathway Commons. Again,
we visualized the degree distribution of this edge-selected
network; the distribution now followed the power-law
clearly (Additional file 8B). We used this network in fur-
ther analyses.
In a network construction step, redundant edges and

self-directed edges may exist if multiple data sources
include the same interaction or a multimeric protein
complex. Because the nlBC algorithm described below
does not take into account multiple edges or self-directed
edges, all of the redundant edges were collapsed into sin-
gle edges, and all of the self-directed edges were pruned
from the network. Consequently, by ignoring the tiny dis-
connected components, we obtained a human biomolec-
ular network: a connected, unweighted, undirected graph
with 7,456 nodes and 35,553 edges.

Node-limited betweenness centrality
A biomolecular network can be described as a graph G =
(V ,E), where the set V of nodes represents proteins or
genes, and the set E of edges represents the relationships
among these biomolecules. Let σst denote the number of
shortest paths from the node s ∈ V to the node t ∈ V ,
and let σst (v) denote the number of shortest paths from s
to t that include v. The betweenness centrality of node v is
determined as follows:

BC(v) =
∑

s�=v�=t∈V

σst(v)
σst

.

The betweenness centrality of a node can be calculated
by counting the number of shortest paths passing through
the node and the entire number of shortest paths between
arbitrary pairs of nodes in the graph.
Normally, the betweenness centrality of a node is calcu-

lated based on all of the nodes in the graph. However, in
this study, as we wanted to identify the nodes that have a
close relationship to the input nodes, we developed a novel
variant of betweenness centrality, named “node-limited
betweenness centrality,” to mine the hidden key molecules
from among the whole background network. The variant
method includes only the shortest paths for which both
ends are in the input nodes. In addition, the method can
manipulate the weights of both ends.
Let U be the set of the input nodes; then, we can define

the subgraph H = (VH ,EH) as follows:

H =
⋃

s�=t∈U
SP<s,t>.

SP<s,t> denotes a path set of all the possible shortest
paths from node s to node t. Node-limited betweenness
centrality (nlBC) can have non-zero values when the node
v satisfies the condition v ∈ VH , and the definition of this
term is as follows:

nlBC(v) = 1
w

∑

s�=t∈U
(w(s) + w(t))σst(v)

σst
.

w =
∑

s�=t∈U
w(s) + w(t)

w(x) is the weight value of the node x. Under the defini-
tion of nlBC, we can define the subgraph H that connects
all of the input nodes as a set of shortest paths, and
we extracted this subgraph to visualize the results and
compare NetHiKe with other methods.

Evaluating statistical significance
To estimate the statistical significance of the nlBC val-
ues of each node, we used a Monte Carlo simulation. The
same number of nodes as that on the input list was ran-
domly sampled from the network, and the nlBC values
of these nodes were calculated. After we obtained the
node weight values, the weights were randomly mapped
to the selected nodes. Repeating this procedure yielded
an empirical distribution of the nlBC values, and we were
able to calculate the simulated p-value using this distri-
bution. Let n be the number of times the simulation is
repeated and let r be the number of replicates obtained
that have the centrality values ≥ nlBCoriginal(v). The sim-
ulated p-value of node v (Pv) is given as follows [40]:

Pv = r + 1
n + 1

.

In this study, we set n = 20, 000, and the simulation
count can be controlled by one of the program options.

ErbB signaling pathway
The ErbB signaling pathway plays an important role in
cell growth and cancer development [19,41]. Although
the complete function of the pathway remains unknown,
the ErbB signaling pathway is usually represented by the
four transmembrane tyrosine kinase receptors (ERBB1 to
ERBB4), several ligands of the receptors, various types of
transcription factors and the complex signaling network
between the receptors and the transcription factors (for
example, see [42] or other pathway databases available on
the web). We selected 10 ligands and 30 transcription fac-
tors from the ErbB pathway (see Additional file 1), and
these molecules represent the entrance and the exit of the
information flows through the pathway. In the first step of
the validation, the weights of the genes were set to 1.0, and
in the later step, the weight of NRG2 was calibrated from
2.0 to 20.0 for the methodology verification.
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Visualization
Although visualizing a network that includes a large num-
ber of nodes is often difficult, it is important for under-
standing the relationships among the nodes of interest.
In this study, we visualized only the key molecules and
the input genes with the subgraph containing the nodes
connecting them (e.g., Figure 2). We used Cytoscape2.8.2
[43] for visualizing the network, and the Spring Embed-
ded layout option was applied to the network to provide
an overview of the relationships between the input nodes
and the key molecules. For this visualization, the NetHiKe
software produces input files for Cytoscape were as fol-
lows: background network information (.sif ) and node
attributes (.noa).

The pathway interaction database
The Pathway Interaction Database [1,2] is a curated col-
lection of information about known biomolecular interac-
tions and key cellular processes assembled into signaling
pathways. The database also has a web-based pathway
search interface. Once the gene list is uploaded to the
database, it calculates the p-values for each pathway,
depending on the number of input genes that are included
in the pathway. The functions of the input genes can
be estimated through the output pathways with p-values;
thus, we used it as a typical over-representation analysis
(ORA) to grasp the approximate meanings of the input list
of genes.

Hubba
Hubba [12] is one of the most widely used network
analysis programs in the molecular biology area, and
we can use it through the web interface or Cytoscape
plug-in. Hubba takes a network as the input data and
can evaluate the importance of nodes via various meth-
ods. In this study, we used the following six methods:
degree, BottleNeck, Edge Percolation Component (EPC),
Maximum Neighborhood Component (MNC), Density
of Maximum Neighborhood Component (DMNC), and
betweenness centrality. To import our data into Hubba,
we extracted the sub-network that consists of all pairs of
shortest paths connecting all of the input nodes.

GBM data from TCGA
With the recent advances in next-generation DNA
sequencing technology, comprehensive cancer genome
analyses are now underway [20,44]. The Cancer Genome
Atlas (TCGA) is a large-scale collaborative effort to
systematically characterize the genomic changes that
occur in cancer by applying genome analysis technolo-
gies. TCGA is designed to target many types of cancer
and to characterize various genomic changes in cancer,
including somatic mutation, mRNA and miRNA expres-
sion, methylation aberration and so on. Among these data

sets, glioblastoma multiforme (GBM), which is one of the
most aggressive types of primary brain tumor, has been
analyzed since the early stages of TCGA history. The
list of genes used for this analysis was downloaded from
TCGA data browser website on the TCGA data portal
[45]. The TCGA data browser website has a user-friendly
interface for downloading lists of genes matching many
types of search conditions from the accumulated TCGA
experimental results.

Somatic mutation data
Using the Data Portal web of TCGA, we obtained the
somatic mutated genes for the following conditions: for
“Disease Type”, we selected “GBM Glioblastoma multi-
forme”; for “Validated Somatic Mutations”, we selected
“any non-silent-validated” and for Frequency ≥ 1.0%,
we used the default value of the setting. We filtered
out the genes that were analyzed in a small number
(< 100) of samples and used the mutation ratio (percent-
age) as the weight of each gene (Additional file 1, sheet
“GBM analysis”).

Expression data
In the TCGA Data Portal site, we downloaded the list of
differentially expressed genes in GBM with the following
conditions: “AgilentG4502A 07 log2 tumor/normal ratio”
was selected for “Gene Expression”; the ratio values were
set between -1.2 and 1.2, and Frequency was over 40 per-
cent. The resulting list is available as the second sheet of
Additional file 7.

Software availability
TheNetHiKe software is written in C++ and Python and is
available at the following website. http://tsjshg.bitbucket.
org/nethike.
Because it requires considerable system memory (4 GB

or more), this software should be run on a 64-bit system.

Additional files

Additional file 1: The input gene list of the ErbB pathway and GBM
analysis. Two input gene lists were used for this study. One contains the
ligands and transcription factors from the ErbB pathway, and the other
contains the mutated genes in GBM with the frequencies as the weights.
(http://www.microsoft.com/download/en/details.aspx?id=10).

Additional file 2: The collection of results for the Pathway Interaction
Database analysis. The index.html file contains the links to the Pathway
Interaction Database results for the various input genes. The input genes
consist of the results of NetHiKe and Hubba (the top 30 genes of each).
(Mini-websites, browse the index.html.

Additional file 3: Degree, P-value, and nlBC for the ErbB pathway
analysis data. Plots of the degrees, p-values, and nlBC values of genes with
P < 0.05 in the results of the ErbB pathway analysis (A-C) and boxplots of
the nlBC values (D and E). A) Plot of the node degrees in the background
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network vs. nlBC. B) Degree vs. simulated p-values. C) nlBC vs. p-values. D)
Boxplot visualization of the genes in Table 1. The boxes are the nlBC values
generated from randomly selected genes to calculate the simulated
p-values, and the yellow dots denotes the actual nlBC value that was
calculated based on the input genes (listed in the Additional file 1). The
simulated p-values, listed in the Table 1, are plotted as the red line
associated with the right axis. E) The nlBC values that were generated by a
leave-one-out method using the input genes, and the actual nlBC values as
the yellow dots. The plot D and E have the same Y-axis scale (left) and the
gene order in X-axis.

Additional file 4: Comparison lists of the top 30 genes on NetHiKe and
Hubba. The lists of the top 30 genes generated by NetHiKe and Hubba
with the same input data. In the Hubba analysis, six different methods were
used. The six-digit number indicates the Pathway Commons ID, as the
molecules do not have general gene names.

Additional file 5: The NetHiKe results of the weighted NRG2. The sheet
named “NRG2 weighted 2.0” is the NetHiKe result of the input with the
NRG2 weight set to 2.0, and “NRG2 weighted 20.0” is the result with the
NRG2 weight set to 20.0. The genes with p-values less than 0.05 are listed.
(http://www.microsoft.com/download/en/details.aspx?id=10)

Additional file 6: The GBM network and key molecules inferred by
NetHiKe. The extracted network made by genes mutated in GBM. The
blue-bordered nodes are the input nodes, and the p-values are shown by
the depth of the red color.

Additional file 7: The comparison of the GBM analysis results between
NetHiKe and Hubba. The sheet named “NetHiKe and Hubba results”
contains the top 16 genes that were p < 0.01 in the NetHiKe analysis and
the same number of top-ranked genes from the various Hubba methods.
There are no overlapping genes between the NetHiKe results and the
Hubba results. However, there are several overlapping genes among the
various Hubba methods. The second sheet, named “GBM expression
1.2 ov40p,” contains the downloaded data from the TCA website to
clarify the differentially expressed genes in the GBM analysis.
(http://www.microsoft.com/download/en/details.aspx?id=10).

Additional file 8: Two different degree distributions depend on the
edge selection. Log-log degree distribution for the network constructed
from the whole Pathway Commons data (A) and the selected edges (B).
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