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Protein stickiness, rather than number of
functional protein-protein interactions, predicts
expression noise and plasticity in yeast
Leandra M Brettner1,2 and Joanna Masel1*
Abstract

Background: A hub protein is one that interacts with many functional partners. The annotation of hub proteins, or
more generally the protein-protein interaction “degree” of each gene, requires quality genome-wide data. Data
obtained using yeast two-hybrid methods contain many false positive interactions between proteins that rarely
encounter each other in living cells, and such data have fallen out of favor.

Results: We find that protein “stickiness”, measured as network degree in ostensibly low quality yeast two-hybrid
data, is a more predictive genomic metric than the number of functional protein-protein interactions, as assessed
by supposedly higher quality high throughput affinity capture mass spectrometry data. In the yeast Saccharomyces
cerevisiae, a protein’s high stickiness, but not its high number of functional interactions, predicts low stochastic
noise in gene expression, low plasticity of gene expression across different environments, and high probability of
forming a homo-oligomer. Our results are robust to a multiple regression analysis correcting for other known
predictors including protein abundance, presence of a TATA box and whether a gene is essential. Once the higher
stickiness of homo-oligomers is controlled for, we find that homo-oligomers have noisier and more plastic gene
expression than other proteins, consistent with a role for homo-oligomerization in mediating robustness.

Conclusions: Our work validates use of the number of yeast two-hybrid interactions as a metric for protein
stickiness. Sticky proteins exhibit low stochastic noise in gene expression, and low plasticity in expression across
different environments.

Keywords: Protein-protein interaction networks, Stochastic gene expression, Evolutionary constraint, Correlomics,
Cooperativity, Phenotypic plasticity
Background
A protein that functionally interacts with many other
proteins may be more sensitive to noise in gene expres-
sion [1]. In agreement with this prediction, a negative
correlation between noise and protein-protein inter-
action (PPI) degree has been found [2,3]. However, PPI
datasets are notorious for high rates of false positive
and false negative interactions [4-7]. Older high
throughput datasets rely on yeast two-hybrid (Y2H)
studies, which can measure interactions between two
proteins that would never even encounter each other
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in nature. More recently, high throughput affinity cap-
ture mass spectrometry (ACMS) data have become
available [8], which do not suffer from this drawback
and subsequent high false positive rate.
Y2H data may indicate the non-specific “stickiness” of

a protein towards a random polypeptide better than it
indicates the number of functional protein-protein inter-
actions that the protein is involved in [9,10]. The num-
bers of PPIs per protein (node degrees) for Y2H vs.
ACMS data are only weakly correlated in yeast (Figure 1,
R2 = 0.008, p = 2e-05). Y2H and ACMS data clearly
measure different things.
Here we find that Y2H degree/stickiness predicts gene

noise better than ACMS/“real PPI” degree does. It has
previously been argued that a protein that functionally
interacts with many other proteins will be more sensitive
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Figure 1 A protein’s number of PPIs correlates poorly across
two high throughput data types. Model 1 regression line is
shown for illustrative purposes only, to show the weakness of the
correlation.
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to noise [1]. However, if a protein binds promiscuously
to many non-functional partners, variable expression of
that protein may be extremely disruptive to diverse pro-
cesses, also leading to a negative correlation, in this case
between the number of false positive PPIs and noise. By
itself, ACMS degree is correlated with noise, perhaps
due to residual sticky but non-functional false positives
in the ACMS data. But ACMS drops out as a statistically
significant predictor in a multiple regression when Y2H
degree, a better estimator of non-specific protein-protein
binding, is included.
Here we also introduce a new metric of plasticity, i.e.

the variation in gene expression across different experi-
ments. Again, we find that Y2H degree/stickiness pre-
dicts plasticity better than higher quality ACMS data on
the number of functional PPIs. For both noise and plasti-
city, our results are robust to a multiple regression ana-
lysis that controls for protein abundance and that
controls noise for plasticity and vice versa. Other signifi-
cant predictors include the presence of a TATA box,
whether a protein forms a homo-oligomer, and gene
essentiality.

Results
Table 1 summarizes the results of regression analyses
predicting noise. After extensive bottom-up and top-
down multiple regression model building, the best
model (first numeric column: total coefficient of deter-
mination R2 = 0.1083) included Y2H, but not ACMS, as
a predictor of noise. The second numeric column shows
the R2 when a single predictor is considered in isolation.
These values are given as a contrast to our primary
results in the first numeric column, which show the ex-
tent to which the coefficient of determination is reduced
if a predictor is removed from the best model. For the
purposes of more graphical illustration, Figure 2A also
shows the effect of each binary predictor in isolation.
The strongest predictor for noise is the presence of a

TATA box, consistent with earlier findings: TATA boxes
are associated with higher noise [11-13]. Gene essential-
ity is also an important predictor of gene noise, again
consistent with earlier findings that essential genes have
lower noise [1,2,13,14]. We also found a statistically sig-
nificant interaction term, with genes that are both non-
essential and possess a TATA box having higher noise
than would be expected from the two factors in isolation.
Genes that interact with themselves (form homo-oli-

gomers) have higher noise than genes that do not self-
associate. Explanations for this novel finding are
explored further at the end of the Results section and in
the Discussion.
Genes with high noise in a single environment tend

also to have high variation across different environ-
mental conditions (plasticity), due at least in part to
mechanistic coupling at the promoter level [2,11,15-18]
(Figure 3). In order to infer variables that affect noise
reliably, it is therefore important to correct for plasti-
city. Previous metrics of plasticity have been based on
the average pair-wise ratio between microarray spot
densities across a variety of environmental conditions
[11,12,19,20]. However, the dynamic range of micro-
array signals depends on transcript abundance [21],
making this plasticity metric dependent on abundance.
Here we construct a plasticity metric that is less
abundance-dependent by design, and which we then
correct for residual effects of protein abundance (see
Methods). Note that our estimate of protein noise has
already been corrected for protein abundance [13]. It
is important to correct noise and plasticity for abun-
dance before testing their correlation with PPI degree,
since PPI degree can be confounded with abundance
[22]. Indeed, protein abundance is an important con-
straint on evolution, and so may affect a wide range of
properties [23].
When we correct for plasticity, our main results on

predictors of noise all still hold (Table 1, last two col-
umns, total coefficient of determination R2 rises to
0.1609), although many of the R2 values attributable to
specific predictors are modestly reduced. Correlations
between noise and plasticity are known to be stronger in
genes containing a TATA box [11]. In agreement with
this, the TATA×Plasticity interaction term is statistically
significant. Plasticity predicts noise both for TATA(+)
genes and for TATA(−) genes, but the effect size (i.e. re-
gression coefficient or slope) is 2.5 times as large for
TATA(+) genes (Table 1).



Table 1 Multiple regression results predicting noise

Factor Subtract Factor from
Best Model Predicting Noise

Factor in
Isolation

Subtract Factor from
Best Model Predicting Noise

Factor in
Isolation

Plasticity Included in Model

Y2H PPI R2 0.0093 0.0100 0.0064 0.0121

p *** *** ** ***

ACMS PPI R2 ns 0.0081 ns 0.0114

p - ** - ***

TATA Box (+/−) R2 0.075551 0.0779 0.06022 0.0752

p *** *** *** ***

Self Interaction (+/−) R2 0.0067 0.0033 0.0038 0.0045

p ** * * *

Gene Essentiality (+/−) R2 0.017441 0.0169 0.01611 0.0211

p *** *** *** ***

Plasticity R2 - - 0.04953 0.0781

p - - *** ***

TATA×Essentiality R2 0.0098 - 0.0060 -

p *** - ** -

Plasticity if TATA(+) R2 - - 0.0279 0.0815

slope - - 0.0010 0.0015

p - - *** ***

Plasticity if TATA(−) R2 - - 0.0219 0.0281

slope - - 0.0004 0.0005

p - - *** ***

TATA×Plasticity R2 - - 0.0075 -

p - - ** -
1 also removed TATA× Essentiality.
2 also removed TATA× Essentiality, Plasticity if TATA(+), Plasticity if TATA(−), and restored Plasticity.
3 removed Plasticity if TATA(+) and Plasticity if TATA(−).
Models without (1st two numeric columns) and with (last two columns) plasticity as a predictor are shown. After extensive model building, we found that high
noise is predicted by low stickiness (low Y2H degree), presence of a TATA box, ability to bind itself, non-essentiality, and high plasticity. A statistically significant
interaction term between TATA presence and non-essentiality shows that these two factors have synergistic effects. The TATA×plasticity interaction term is also
statistically significant (last row). To provide greater insight, we transformed 3 terms (TATA, plasticity and their interaction) into more intuitive forms (TATA,
plasticity if TATA(+), plasticity if TATA(−)). The slope coefficient for plasticity if TATA(+) is 2.5 times larger than that for plasticity if TATA(−), but they make similar
contributions to R2 due to the much larger number of TATA(−) genes. R2 values are shown for each predicting factor in isolation (2nd and 4th numeric columns),
as well as, more importantly, for the reduction in the total coefficient of determination R2 when the factor is removed from the best model (1st and 3rd numeric
columns). Sometimes, as indicated in the footnotes, this involved removing multiple terms and reversing the interaction factor transformation to get a biologically
interpretable result. “ns” indicates p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Next, we considered how PPI metrics and other fac-
tors predict plasticity (Table 2, total coefficient of deter-
mination R2 =0.1267) for that subset of genes for which
noise data were also available. Note that this require-
ment for the availability of noise data biases analyses
towards the properties of higher-abundance proteins.
Fortuitously, this makes ACMS a more reliable metric of
“true” PPIs [5,24], strengthening our interpretation of
the results.
As with low noise, high Y2H degree/stickiness predicts

low plasticity but many ACMS/“functional” PPIs do not.
This plasticity correlation holds true even after correct-
ing for the effects of noise. This may be because promis-
cuous binding poses a particular challenge when it
occurs at different extents in different environments. Or
it may be because the successful fulfilment of the func-
tion of a plastic gene, which requires different levels of
expression in different environments, is more sensitive
to the effects of a given quantity of noise.
Gene essentiality predicts noise, but it does not predict

plasticity. This could be because many genes are only es-
sential in some environments or cell cycle stages, rather
than constantly. In agreement with previous findings
[11], the presence of a TATA box predicts plasticity as
well as noise.
A novel finding of this paper is that the ability to

homo-oligomerize predicts both noise and plasticity.
Sticky proteins that bind promiscuously are also more
likely to stick to themselves [25]. This means that self-
interaction and Y2H are both surrogate metrics for
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Figure 2 Illustration of binary predictors of noise and plasticity, taken in isolation. The presence of a TATA box strongly predicts noise and
plasticity. Homo-oligomerization does not, in isolation, predict plasticity, and its effect on noise is only marginally statistically significant
(p = 0.0496). However, these effects become significant when confounding factors are accounted for (Tables 1 and 2). Essentiality predicts noise
but not plasticity. To better assess effect sizes using more intuitive noise and plasticity measures, back transformations were performed to restore
original units. The mean plasticity residual was added to the mean Box-Cox transformed plasticity score, and then the Box-Cox transform was
reversed, so that plasticity corresponds simply to the estimated number of experiments for which expression varies. The noise axis corresponds to
the DM metric of Newman et al. [13]. Error bars correspond to 95% confidence intervals.
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intrinsic protein stickiness. In agreement with this inter-
pretation of Y2H, but not ACMS, as a measure of
“stickiness”, self-interaction correlates with Y2H but not
ACMS (Figure 4).
However, in our multiple regressions, supposedly

sticky self-interacting proteins had higher rather than
lower noise and plasticity. In the Discussion, we explore
possible causes of this relationship. The relationship can
only be seen when stickiness is first controlled for, via
Y2H data, in a multiple regression analysis. Deceptively,
correlations between homo-oligomerization and noise or
plasticity were weak to non-existent in single factor ana-
lyses (Table 1, Table 2, Figure 2), where stickiness is a
confounding factor.
Unsurprisingly given that both correlate with sticki-

ness, the Self-Interaction ×Y2H interaction term is sta-
tistically significant in our predictive model of plasticity.
Y2H predicts plasticity more strongly (i.e. with a larger
slope/coefficient) for the already-sticky self-interacting
proteins than for non-self-interacting proteins.

Discussion
Avoiding non-functional PPIs is an important constraint
in protein evolution [9,26-28]. Use of the number of
Y2H interactions as a validated metric of non-functional
PPIs, or “stickiness”, has the promise to reveal more
about the nature and consequences of this constraint.
Here we have contributed to this validation by showing
that Y2H degree is a better predictor of gene expression
noise, plasticity, and likelihood of homo-oligomerization
than the supposedly superior ACMS data on “true”
protein-protein interactions. Given that Y2H data are
known to be poor indicators of functional PPIs, our
results imply that Y2H data can nevertheless yield a
metric with real biological meaning.
We also found that proteins that homo-oligomerize

had higher noise and higher plasticity, after confounding
factors (including PPI [25]) were controlled for. High
variation in protein abundance (noise) does not neces-
sarily correspond linearly with high variation in protein
activity. To explain our results, we hypothesize that
homo-oligomerization decreases the sensitivity of pro-
tein activity to stochastic noise in protein abundance.
Plastic genes, which require different levels of activity in
different environments, may be more sensitive to the
effects of a given quantity of noise, explaining why plas-
ticity is also predicted by homo-oligomerization.
Two very different mechanisms may explain how

homo-oligomerization decreases the sensitivity of pro-
tein activity to stochastic noise in protein abundance,
depending on whether the active form of the protein in
question is a monomer or a homo-oligomer. First,



Table 2 Multiple regression results predicting plasticity

Factor Subtract Factor
from Best Model
Predicting Plasticity

Factor in
Isolation

Y2H PPI R2 0.01911 0.0194

p *** ***

ACMS PPI R2 ns 0.0040

p - *

TATA Box (+/−) R2 0.02422 0.0445

p *** ***

Self Interaction (+/−) R2 0.00873 0.0015

p ** ns

Gene Essentiality (+/−) R2 ns 0.0005

p - ns

Noise R2 0.053444 0.0781

p *** ***

Noise if TATA(+) R2 0.0315 0.0449

slope 167.24 0.9949

p *** ***

Noise if TATA(−) R2 0.0224 0.0438

slope 70.444 −0.9858

p *** ***

TATA×Noise R2 0.0085 -

p ** -

Y2H if Self R2 0.0123 0.0004

slope −0.3145 −0.0221

p *** ns

Y2H if Non-self R2 0.0070 0.0154

slope −0.0839 −0.1113

p ** ***

Y2H×Self Interaction R2 0.0059 -

p ** -
1 removed Y2H if Self and Y2H if Non-self.
2 also removed Noise if TATA(+), Noise if TATA(−) and restored Noise.
3 also removed Y2H if Self and Y2H if Non-self and restored Y2H PPI.
4 removed Noise if TATA(+) and Noise if TATA(−).
After extensive model building, we found that high plasticity is predicted by
low stickiness (low Y2H degree), presence of a TATA box, ability to bind itself,
and high noise. The TATA×noise and self-interaction × Y2H interaction terms
are also statistically significant. To provide greater insight, we transformed the
interaction terms as described in the Table 1 legend. R2 values are shown for
each predicting factor in isolation (last column), as well as, more importantly,
for the reduction in the total coefficient of determination R2 when the factor is
removed from the best model. Sometimes, as indicated in the footnotes, this
involved removing multiple terms and reversing the interaction factor
transformation to get a biologically interpretable result. “ns” indicates p > 0.05,
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 3 A gene’s noise and plasticity are correlated. Multiple
regression analyses in Tables 1 and 2 use Model 1 regression, but
with reversed dependent and independent variables. For such a
weak correlation, plasticity as a function of noise is quite different
from the inverse function of noise as a function of plasticity: both
lines are shown here. In the absence of a correlation, the functions
describing these two lines would be horizontal and vertical,
respectively. For comparison, the Model 2 Standard Major Axis
regression line is also shown. The correlation between noise and
plasticity is tighter in the top right corner, where values of both are
high [11].
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consider the case where the monomer is the active form.
Homo-oligomerization may act as a sequestration sink
that depends in a stronger than linear fashion on con-
centration. This creates robustness to noise by making
the active monomer concentration less dependent on
the total level of expression of that protein [29,30]. Se-
questration via homo-oligomers rather than hetero-
oligomers could help prevent concentration changes
from cascading through the PPI network [31].
If the homo-oligomer is the active form, noise in pro-

tein abundance can be mitigated by switch-like kinetics
(i.e. a sigmoidal dose–response curve) [32]. With a
switch, increasing gene expression has a negligible effect
until a critical threshold concentration is reached
(Figure 5A). The response is then rapidly amplified until
near saturation. Sigmoidal kinetics attenuate the effects
of noise by allowing the cell to react only to stimuli of
an adequate magnitude [32]. Sigmoidal kinetics control
noise by controlling the level of activity, rather than by
closely regulating the concentration of a signal molecule.
Protein cooperativity is a common example of a

switch-like system [33,34]. For example, the active form
of a protein may consist of several subunits, each with a
binding site. In a cooperative protein, the binding of one
subunit to one target will lead to a conformational
change that has allosteric effects on the other subunits.
This will in turn affect the target binding affinity of the
other sites. For example, when oxygen binds to one of
the four subunits of hemoglobin, the entire complex
relaxes, allowing oxygen to bind more easily to the other
three subunits. With each successive binding, oxygen is
taken up more readily. The binding activity of
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Figure 4 Proteins that homo-oligomerize are stickier, but do not have more functional PPIs. Analyses were performed on log(PPI) and
back-transformed to yield more intuitive PPI metrics. 95% confidence intervals are shown.
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hemoglobin increases with the amount of available sub-
strate. This leads to the “all or nothing” switching re-
sponse. Cooperative systems follow the Hill equation
θ = [P]n/(Kd + [P]n) where θ is the proportion of ac-
tive protein and n is the Hill coefficient, which is
related to, but often lower than, the number of subu-
nits in the active complex (Figure 5B) [33].
Cooperative binding means that sigmoidal all-or-

nothing response curves are likely to be more common
for homo-oligomers. This could mean that the evolution
of homo-oligomerization is favored for gene products
whose activity needs to be robust to accidental activa-
tion, for example if gene expression is particularly noisy,
or if plasticity is critical, with strong selection against
accidently turning on an inappropriate pathway [35].
The de novo evolution of active homo-oligomers is likely
to be rare, making causality more plausible in the oppos-
ite direction, at least under the cooperativity rather than
the sequestration explanation of our results. In other
words, given a homo-oligomer that reduces the conse-
quences of any expression noise, relaxed selection allows
Figure 5 Sigmoidal dose–response curves of cooperative proteins. A)
expression noise, preventing inappropriate pathways from being switched o
greater noise and plasticity to evolve, either against a
background of constant gene function, or in terms of
which new functions are likely to evolve within a gene
family. Whichever direction causality operates, we ex-
pect homo-oligomerization to be correlated with noisy
and plastic gene expression, in agreement with our
regression analyses. This effect became statistically de-
tectable only after we accounted for the important con-
founding factor of protein stickiness, which our results
suggest can be measured using Y2H data.
Conclusions
Our work validates use of the number of Y2H interac-
tions as a metric for protein stickiness. Sticky proteins,
but not proteins with more functional partners, exhibit
low stochastic noise and low plasticity across environ-
ments. This presumably indicates the greater evolution-
ary constraints acting on intrinsically sticky proteins.
Homo-oligomers also exhibit low noise and low plasti-
city, once their high level of stickiness is controlled for.
In the shaded area, cooperativity suppresses the effects of gene
n. B) Dose–response curves shown for Hill coefficients of 1, 2, 3, and 4.



Figure 6 Loess regression correcting plasticity for protein
abundance. Statistical analyses were performed on transformed
plasticity numbers (left vertical axis), untransformed plasticity is
shown right for illustration. Further analysis was performed on the
deviate of each data point from the red loess regression line. The R
loess regression function was used rather than the lowess function
because loess returns residuals and better handles larger datasets.
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This suggests that homo-oligomers might help mediate
robustness to the consequences of noisy expression.

Methods
Protein abundance, TATA status and essentiality
Protein abundance measures were taken from Ghaem-
maghami et al. [36] and subjected to a log transform.
Classification of a gene’s promoter type as TATA(+) or
TATA(−) was taken from Basehoar et al. [37]. The dis-
pensability of each gene was identified using the essenti-
ality classification of Mewes et al. [38].

Noise
Noise values for 2168 genes were taken from Newman
et al. [13], who used flow cytometry to measure the
fluorescence of individual cells expressing GFP-fusion
proteins from their endogenous promoters. The total co-
efficient of variance includes substantial contributions
from variation in cell size and cell cycle state. We used
the gated measurements of Newman et al. [13], which
minimize the effects of these confounding factors. New-
man et al. [13] reported their findings both as coeffi-
cients of variance (CV) and as a distance of each CV to
a running median of CVs (referred to as DM). The DM
values remove the strong and intrinsic effects of protein
abundance on noise, and are the most appropriate for
the study of evolutionary constraints. We therefore used
the DM values, taken from cells grown in rich media.
We performed an optimized Box-Cox transform
(λ=−1.879) to make the data normal, as assessed by a
Shapiro-Wilk test for normality. Note that noise data
tended to be unavailable for genes expressed at low
levels.

Plasticity
mRNA expression data were downloaded from the Sac-
charomyces Genome Database [39,40]. We excluded 19
of the listed microarray papers on the grounds that they
looked at conditions that wild yeast populations would
not be expected to encounter, leaving 11 papers suitable
for analysis [41-51].
Most papers included results from several trials. For

example, Gasch et al. [44] contains expression data from
cells using fructose, galactose, glucose, etc. as a carbon
source. In contrast, Roberts et al. [41] contains expres-
sion data only from cells exposed to different concentra-
tions and time durations of alpha factor. Our aim was to
count one data point per biologically relevant environ-
mental condition. In the first case, each microarray data-
set was classified as its own experiment. In the second,
since each microarray dataset involved alpha factor ex-
posure, we grouped these as a single experiment. After
we classified the microarrays within each paper, 27 inde-
pendent experiments were obtained from the 11 papers.
If at least one measurement within an experiment
showed a change in a gene’s expression by a factor of at
least two relative to the experimental control, we
counted that as an experiment for which that gene chan-
ged. For each gene, we counted the number of experi-
ments in which a gene showed a change in expression at
least as large as this arbitrary cut-off. We then per-
formed an optimized Box-Cox transform (λ= 0.303) on
this number, followed by a loess regression against pro-
tein abundance (Figure 6). Subsequent analyses were
performed on the residuals from this loess regression,
which are normally distributed as assessed by a Shapiro-
Wilk test.

Protein-protein interaction data, including self-interaction
The Y2H data were isolated from downloads of the
BioGRID Interaction Database, Database for Interacting
Proteins (DIP), IntAct database, and Molecular INTer-
action Database (MINT) [52-59], yielding 29096 unique
interactions from 1680 publications. No quality filter
was applied to the Y2H data. The ACMS data were
taken solely from the BioGRID Interaction Database
[52,53], as BioGRID provides a comprehensive listing of
data for that experiment type. To help reduce the influ-
ence of false positives in the ACMS data, we only kept
interactions that appeared across 2 or more independent
experiments: this is similar to the ACMS filtering pro-
cedure performed by Heo et al. [24]. Note that this fur-
ther biased the ACMS data towards greater accuracy for
more abundant proteins. After filtering, the “True” PPI
consisted of 16786 unique interactions from 436 ACMS



Figure 7 Methods flowchart. Simple illustrative flowchart showing progression of research methods including datasets analysed, data
transforms, statistical tests, and regression models.
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publications. Both Y2H and ACMS data were subjected
to log transforms, yielding truncated normal data distri-
butions, as assessed visually.
Self interaction status was assessed using Y2H data.

Y2H data frequently contain false positive PPIs between
proteins that would never be expressed in the same place
and time. This drawback is clearly not a problem for the
assessment of self-interactions, and Y2H rather than
ACMS data were used to minimize false negatives.
Regression models
Multiple regression models were calculated using a
linear regression function (lm) in the R statistical
computing environment. Continuous variables (i.e.
noise, plasticity, Y2H degree, and ACMS degree) were
transformed, as described above, to make the data
normal or nearly so and, in the case of noise and plas-
ticity, to control for the confounding factor of protein
abundance. Note, however, that both of the log-
transformed PPI variables have truncated normal dis-
tributions, due to a floor at zero. The coefficients of
determination of nested models were compared using
an ANOVA. See Figure 7 for a flowchart demonstrat-
ing the research procedure.
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