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Regulation of cytoplasmic polyadenylation can
generate a bistable switch
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Abstract

Background: Translation efficiency of certain mRNAs can be regulated through a cytoplasmic polyadenylation
process at the pre-initiation phase. A translational regulator controls the polyadenylation process and this
regulation depends on its posttranslational modifications e.g., phosphorylation. The cytoplasmic polyadenylation
binding protein (CPEB1) is one such translational regulator, which regulates the translation of some mRNAs by
binding to the cytoplasmic polyadenylation element (CPE). The cytoplasmic polyadenylation process can be turned
on or off by the phosphorylation or dephosphorylation state of CPEB1. A specific example could be the regulation
of Calcium/Calmodulin-dependent protein kinase II (aCaMKII) translation through the phosphorylation/
dephosphorylation cycle of CPEB1.

Result: Here, we show that CPEB1 mediated polyadenylation of aCaMKII mRNA can result in a bistable switching
mechanism. The switch for regulating the polyadenylation is based on a two state model of aCaMKII and its
interaction with CPEB1. Based on elementary biochemical kinetics a high dimensional system of non-linear ordinary
differential equations can describe the dynamic characteristics of the polyadenylation loop. Here, we simplified this
high-dimensional system into approximate lower dimension system that can provide the understanding of
dynamics and fixed points of original system. These simplified equations can be used to develop analytical
bifurcation diagrams without the use of complex numerical tracking algorithm, and can further give us intuition
about the parameter dependence of bistability in this system.

Conclusion: This study provides a systematic method to simplify, approximate and analyze a translation/activation
based positive feedback loop. This work shows how to extract low dimensional systems that can be used to obtain
analytical solutions for the fixed points of the system and to describe the dynamics of the system. The methods
used here have general applicability to the formulation and analysis of many molecular networks.

Background
Cellular signaling pathways that can operate in a switch
like manner are called bistable systems [1,2]. A bistable
system has the ability to switch between two distinct
stable steady states and such a system cannot rest in
any intermediate state [3,4]. In response, to an external
stimulus a bistable system can move from one state to
another. If this switching is permanent then such a system
is called irreversible otherwise it is a reversible switch [5].
The bistability in a signaling network is typically due to a
positive feedback loop or double negative feedback loop
[3]. However, the presence of a positive or a double nega-
tive feedback loop does not guarantee bistability [4].

In addition, to these feedback loops a biological network
must have non-linear interactions to exhibit a bistable
behavior. Previous, experimental work has described sev-
eral examples of naturally occurring bistable system
[6-18]. Still bistability is not considered to be a unifying
theme of cellular signaling networks and more experimen-
tal work is needed to establish bistability as one of the gen-
eral mechanism of cell signaling [4]. Typically, bistable
biological systems were described either at the level of
gene expression due to the regulation of gene expression
by transcription factors, or at the level of posttranslational
modifications e.g., activation-deactivation cycle due to
phosphorylation. Here, we present a model of bistability
that can arise from the control of gene expression at the
level of translation of new proteins* Correspondence: naslam621@yahoo.com
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Cytoplasmic polyadenylation regulates the translation
efficiency of certain mRNAs through modulating the
length of 3’ poly (A) tail [19,20]. Polyadenylation can be
regulated through a short nucleotide sequence known as
cytoplasmic polyadenylation element (CPE) located in
their 3’ UTR. A CPE binding protein (CPEB1), represses
the translation through its dual interactions with CPEs
and other mRNA binding proteins. Phosphorylation of
CPEB1 changes its interactions with these other pro-
teins, promotes polyadenylation and increases the length
of the poly (A) tail [19,20]. The mRNAs with a longer
poly (A) tail are more likely to be translated compared
to mRNAs with a shorter poly (A) tail [21,22]. The
exact mechanism through which the longer poly (A) tail
enhances the translation efficiency is not clear. However,
it is believed that longer poly(A) tail leads to a circular
mRNA which enhances the translation efficiency
through recycling the translation machinery on the
mRNA frame thus increasing the possibility of mRNA
translation through initiation[23,24].
The translation of a highly abundant brain protein

aCaMKII (2% of total brain protein is aCaMKII) is regu-
lated through activity induced polyadenylation. The
aCaMKII-mRNA contains two CPE elements in its
3’UTR and its translation can be regulated through phos-
phorylation of CPEB1 [25,26]. Recent studies have shown
that aCaMKII can phosphorylate CPEB1 and therefore,
possibly modulate its own translation through a positive
feedback loop. Here, we examine the hypothesis that the
positive feedback loop between aCaMKII and CPEB1
forms a bistable switch which regulates the translation of
aCaMKII. The aim of this paper is to obtain analytical
expressions for the bistability of the CPEB1- aCaMKII
molecular pair as a generic example for such systems.
In this paper, we analyze the mathematical properties of

this molecular loop. The characteristics of this loop are
analyzed by evaluating the dynamics and directly locating
the fixed points. Using the elementary biochemical
kinetics we develop a molecular model of self-sustained
polyadenylation based translation loop. This simple mole-
cular model is represented by six differential equations.
We simplify this model through introducing an approxi-
mation and algebraic manipulations. These, systematic
simplifications result in a three dimensional differential
equation based model. Further approximations can reduce
this to a single dynamical equation. Based on our approxi-
mate equation we also developed an approximate analyti-
cal method to directly locate the fixed points of this
system. We compare these analytical results to the numer-
ical bifurcation diagrams obtained through numerical
tracking of the complete system of equations and show
their correspondence. Our results demonstrate that such a
positive feedback loop which involves the control of

translation through polyadenylation can indeed be bistable
over a wide range of parameters. This simplified model,
though motivated by the aCaMKII-CPEB1 loop, could be
seen as a generic model for such a positive feedback loops
which involves translation, and degradation of proteins.
Such feedback loops do not conserve the quantity of these
proteins and are therefore qualitatively different than most
post translational feedback models [3,4]. Since, we use a
simplified model we can obtain approximate analytical
results, which provide us with intuition about how such
feedback systems operate.

Method
A. Complete Model Equations
The following set of reactions is used to describe the
interactions between the aCaMKII and CPEB1 mole-
cule. These biochemical reactions are based on elemen-
tary Michalis-Menten type kinetics. The dynamical
variable X represents aCaMKII and Y represents the
CPEB1. The P subscript represents the phosphorylated
form and an A as superscript represents the active form.

x + (Ca+2)4.CaM
k10−→

←−−
k1010

xP (R1)

x + xP

k1−→
←−
k2

C1
k3−→ 2xP (R2)

XP + P
k4−→ X + P (R3)

Y + xP

k5−→
←−
k55

C2
k6−→ YP + XP (R4)

YP + P
k7−→ Y + P (R5)

YP + T
k8−→

←−
k88

C3
k9−→ YP + X + T (R6)

From above reactions following differential equations
can be deduced.

dXP

dt
= −k1 ∗ X ∗ XP + k2 ∗ C1 + 2 ∗ k3 ∗ C1 − k4 ∗ XP ∗ P + k55 ∗ C2 + k6 ∗ C2

−k5 ∗ Y ∗ XP + k10 ∗ x ∗ U − k1010 ∗ XP − λ1 ∗ (XP − XPbasal)
(A� 1)

dYP
dt

= −k7 ∗ YP ∗ P + k6 ∗ C2 − k8 ∗ YP ∗ T + k88 ∗ C3 + k9 ∗ C3 (A� 2)

dX
dt

= −k1 ∗ X ∗ XP + k2 ∗ C1 + k4 ∗ XP ∗ P + k9 ∗ C3 + k10 ∗ x ∗ (Ca+2)4.CaM − k1010 ∗ XP

−λ2 ∗ (X − Xbasal)
(A� 3)
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dC1

dt
= k1 ∗ X ∗ XP − k2 ∗ C1 − k3 ∗ C1 (A� 4)

dC2

dt
= k5 ∗ Y ∗ XP − k55 ∗ C2 − k6 ∗ C2 (A� 5)

dC3

dt
= k8 ∗ YP ∗ T − k88 ∗ C3 − k9 ∗ C3 (A� 6)

B. Model analysis and reduction
In the following equations, the dynamical variable X
represents aCaMKII and Y represents the CPEB1. The
P subscript represents the phosphorylated and active
form. By using the pseudo-steady state assumptions the
differential equations representing the complexes [C1-
C3] can be eliminated:

C1 =
k1 ∗ X ∗ XP

(k2 + k3)
(B� 1)

C2 =
k5 ∗ Y ∗ XP

(k55 + k6)
(B� 2)

C3 =
k8 ∗ YP ∗ T
(k88 + k9)

(B� 3)

The unphosphorylated CPEB1 (Y) is related to phos-
phorylated CPEB1 (YP).

Y = YT − YP (B� 4)

Where, YT is the total amount of CPEB1. The aCaM-
KII molecules are either in free or in bound form, there-
fore, the total concentration of aCaMKII is given by
following equation.

XT = X + XP + 2 ∗ C1 + C2 (B� 5)

The differential equation representing the phosphory-
lated CPEB1 (YP) from R1-R6

dYP
dt

= −k7 ∗ YP ∗ P + k6 ∗ C2 − k8 ∗ YP ∗ T + k88 ∗ C3 + k9 ∗ C3 (B� 6)

By requiring a steady state
dYP
dt

= 0 and substituting

a =
k6 ∗ k5

(k55 + k6)
we get

YP =
a ∗ YT ∗ XP

(k7 ∗ P + a ∗ XP)
(B� 7)

Also from (B-1,B-2, B-3, B-4, B-5 and B-7) we can
obtain the value of X.

X =
XT − XP − N ∗ XP ∗

(
YT − a ∗ XP ∗ YT

k7 ∗ P + a ∗ XP

)

(1 + 2 ∗ M ∗ XP)
(B� 8)

Where, N and M are constants defined as

N =
k5

(k55 + k6)
,M =

k1
(k2 + k3)

As described in the result section the equation 2 is as
follows:

H(C3, XT) = k9 ∗ C3 − λ ∗ XT (2)

Substituting C3 from (B-3) in [2]

H(YP, XT) = k9 ∗
(

k8 ∗ T
k88 + k9

)
∗ YP − λ ∗ XT (B� 9)

Placing YP from (B-7) into (B-9)

H(XP, XT) = k9 ∗
(

k8 ∗ T
k88 + k9

)
∗

(
a ∗ YT ∗ XP

a ∗ XP + P7

)
− λ ∗ XT (B� 10)

Where, P7 = P*k7 and P4 = P*k4. Defining, U = (Ca+2)

4-CaM, b =
(
k9 ∗ k8 ∗ T
(k88 + k9)

)
and c = b*YT or

c = YT ∗
(
k9 ∗ k8 ∗ T
(k88 + k9)

)

We obtain

H(XP, XT) =
(

c ∗ XP

XP + P7/a

)
− λ ∗ XT (B� 11)

The equation 1 describes the rate of change of total
concentration of aCaMKII (XT) is obtained from the
balance between the new synthesis of aCaMKII and its
degradation. This equation is further transformed to the
approximate solution as shown by equation 4. Similarly,
from R1-R6 an equation representing the dynamics of
phosphrylated aCaMKII can be constructed.

dXP

dt
= −k1 ∗ X ∗ XP + k2 ∗ C1 + 2 ∗ k3 ∗ C1 − k4 ∗ XP ∗ P + k55 ∗ C2 + k6 ∗ C2

−k5 ∗ Y ∗ XP + k10 ∗ X ∗ U − k1010 ∗ XP

(B� 12)

The equation B-12 is further simplified in only two

variables i.e., XT and XP by placing the
dYP
dt

= 0 and put-

ting the values of X, C1, C2, Y, and YP from B-1 to B-8
and further simplifying we get the following expression.

XT = I1 + I2 + I3 + I4 (B� 13)

The I1,I2,I3 and I4 are defined as follows:

I1 = DI. ∗ XP./(a1. ∗ XP + a2) (B� 14)

I2 = [DI. ∗ XP.2./(k3. ∗ XP./2 + k3. ∗ a2./(2 ∗ a1))] (B� 15)

I3 = XP (B� 16)
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I4 = XP. ∗ YT./(k6./d1 + XP./k7) (B� 17)

The expression in B-14 to B-17 are defined as k7 = k7
*P, k4 = k4 *P,a1 = (k3 *k1 )./(k2 + k3 ) a2 = k10 *U, DI =
k4 + k1010 , d1 = (k6 .*k5)./(k55 + k6)
The expression of B-13 gives us a function where XT

= f(XP), It is almost impossible to invert this function to
get XP = f-1(XT)so we numerically approximated it
through function fitting.
Equation B-12 with the aid of equation B1-B 13 can

be transformed to following polynomial in terms of XP.

(XP)4 + z12 ∗ (XP)3 + z13 ∗ (XP)2 + z14 ∗ XP = 0 (B� 18)

z1 = a ∗ c ∗ M ∗ k3 ∗ P7 (B� 19)

z2 = a ∗ c ∗ k10 ∗ U ∗ P7 (B� 20)

z3 = a2 ∗ c ∗ M ∗ k3 (B� 21)

z4 = a2 ∗ c ∗ F ∗ k10 ∗ U (B� 22)

z5 = 2 ∗ P4 ∗ M ∗ F + 2 ∗ M ∗ k1010 ∗ F + F ∗ M ∗ k3 (B� 23)

z6 = 2∗P4∗P7∗M+2∗M∗P7∗k1010+F∗P4+F∗k1010+M∗k3∗P7+F∗k10∗U+N∗M∗k3∗YT (B� 24)

z7 = P7 ∗ P4 + P7 ∗ k1010 + k10 ∗ U ∗ P7 + N ∗ k10 ∗ U ∗ P7 ∗ YT (B� 25)

z8 = a ∗ z5 (B� 26)

z9 = a ∗ z6 + P7 ∗ z5 − z3 (B� 27)

z10 = a ∗ z7 + P7 ∗ z6 − z1 − z4 (B� 28)

z11 = p7 ∗ z7 − z2 (B� 29)

z12 =
z9
z8

(B� 30)

z13 =
z10
z8

(B� 31)

z14 =
z11
z8

(B� 32)

Where, the coefficients z12,z13 and z14 are defined by
following expressions (B-19-B-32). The equation (B-18)
is obtained through further simplifying (B-13) such that
a fourth order polynomial is obtained in terms of XP.
This 4’th order polynomial has an analytical solution
because it has no zero order term and therefore has one

solution XP = 0, and the other solutions are the solu-
tions of a third order polynomial.

Results
Analysis of the model of aCaMKII synthesis through
polyadenylation
Our simplified model of a self-sustained polyadenylation
of aCaMKII-mRNA (Figure 1) is based on biochemical
interactions between a plasticity related kinase aCaMKII
and its translational regulator CPEB1 through a positive
feedback. This model of polyadenylation based transla-
tion of aCaMKII-mRNA (Figure 1) is composed of two
molecular components which interact through a closed
loop. 1) The aCaMKII protein which can be in two
states: inactive, and phosphorylated, active. 2) The
CPEB1 a translational regulator to regulate the polyade-
nylation, can be either in the phosphorylated or unpho-
sphorylated state. The phosphorylated CPEB1 promotes
the translation at pre-initiation phase through polyade-
nylation. Here, in this simple model we assume that
CPEB1 is phosphorylated only by active and phosphory-
lated aCaMKII. In this molecular scheme the aCaMKII
protein is removed at a certain degradation rate [27].
The synthesis of new aCaMKII protein regulated by
polyadenylation provides the necessary compensation
for the amount removed due to degradation. Our model
shows how the concentration of aCaMKII can be main-
tained at multiple levels despite the synthesis of new
molecules and removal due to protein degradation.
This system is described by a set of differential equa-

tion (Method A). We use notation in which CaMKII is
denoted as X, and phosphorylated aCaMKII as XP.
Similarly CPEB is denoted as Y and phosphorylated

CPEB1 as YP. On purpose we have chosen a simplified
version of these components, when compared to our
previous work [28] in order to gain intuition into the
behavior of the system while keeping the bistability. We
can easily show that for appropriate parameters this sys-
tem is bistable. However, gaining an intuitive under-
standing of this bistability is difficult even in this
simplified system, because the dimensionality is still too
large.
The two-state assumption of the aCaMKII is a signifi-

cant simplification compared to more realistic multi-
state models and was chosen to enable simpler analysis.
The synthesis of new proteins in our proposed molecular
model is controlled by the phosphorylated CPEB1 mole-
cules. The translation model is also a simplified represen-
tation of a complex molecular system. The aim of this
paper is to generate a much reduced dynamical model
that can nevertheless capture the qualitative behavior of
the system, and provide us with a more intuitive under-
standing of dynamical behavior of the system.
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One level of simplification is to set the derivatives of
the three complexes (C1-C3) to zero (Method B), to
obtain a pseudo steady state approximation, similar to
that used in the standard michaelis-menten approxima-
tion. This reduces our system to 3 dynamical equations,
and three functional expressions, as described by equa-
tions 1, B-6, and B-12. This approximation simplifies
the dynamics, and can be used to more easily find the
steady states of this system numerically. We can further
approximate this system by a single differential equation.
The key simplifying assumption required here is the fol-
lowing equation:

dXT

dt
= k9 ∗ C3 − λ ∗ XT (1)

Where, C3, as described by equation B-3 in the
method B, is the concentration of the phosphorylated
form of CPEB1, bound to the translation machinery, or
in other words the concentration of active translation
machinery available for producing new aCaMKII. Here
k9 is the forward rate of generating new aCaMKII. This
equation assumes that aCaMKII degrades at the same
rates both in free and bound forms. The XT in above
equation (Eq. 1) is the concentration of total aCaMKII.
In our detailed system of equations (Method A) we do
not assume the degradation of complexes. However, this

approximation holds if the relative concentration of
complexes at steady state is small.

Defining
dXT

dt
= H(C3,XT) we have that:

H(C3, XT) = k9 ∗ C3 − λ ∗ XT (2a)

By using a pseudo steady state approximation on some
of the faster dynamical variables, we obtain (Method B)
that:

H(XP, XT) =
(

c ∗ XP

XP + P7/a

)
− λ ∗ XT (3)

Where the parameters ‘c’, ‘P7’ and ‘a’, are defined in
Method B. The parameter c is linearly dependent on YT,
and is inversely proportional to degradation rate l. It
shows that amount of total aCaMKII increases with
increase in translation (either due to increase in transla-
tion rate or concentration of translation machinery “T”)
and decreases with increase in degradation rate. The
Km1/2 of this process is P7/a and depends on phos-
phatses and dephosphorylation rate of CPEB1.
We call the first function of RHS of equation 3 the

synthesis function and the second one a degradation
function. We can rewrite equation 3 as

H(XP, XT) + G(XP) − F(XT) (4)

Figure 1 The simplified model of CPEB1 mediated polyadenylation of aCaMKII through a self-sustaining aCaMKII-CPEB 1 molecular
loop. The aCaMKII, molecule can be inactive, or active and phosphorylated state, while CPEB1 can be in unphosphorylated and phosphorylated
states. The aCaMKII molecule in both these states degrades with a certain degradation rate. The active and phosphorylated CaMKII
phosphorylate the CPEB1 molecule, which through polyadenylation of aCaMKII mRNA generates the new CaMKII molecule. Here, the synthesis
of new aCaMKII molecule is represented by a translation step (T) which, describe the multi-step translation process through a single biochemical
reaction R6 as described in appendix.
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Where, G is a synthesis function, and F a degradation
function, and the dynamics are then understood as a
balance between synthesis and degradation. If we can
derive a function that relates Xp to XT, i.e., XP = g (XT),
then equation 4 could be converted to equation of a sin-
gle dynamical variable:

H(XT) = G(g(XT)) − F(XT) = G’(XT) − F(XT) (5)

and we would have reduced the 6 coupled ODE’s to a
single ODE:

dXT

dt
= G’(XT) − F(XT) (6)

Although we have an exact expression for XT as a
function of XP [(Method B equation 13)], it is difficult
to analytically invert it to obtain an analytical expression
for XP = g ( XT). Instead it is easy to invert this numeri-
cally using a higher order polynomial fit.
Using this fit.

XP =
9∑
i=1

ai ∗ Xi
T = h(XT) (7)

The fitting performance of this equation is shown in
additional file 1, Figure S1.The solid black line in addi-
tional file 1, Figure S1 represents the original function
{Method B B-13}, while the dotted red line represents
the fit from equation 7. Thus we reduce the 6 differen-
tial equations to a single approximate ODE of the form
described in equation 6, where:

G’(XT) =
(

c ∗ h(XT)
h(XT) + P7/a

)
(8)

Here, the XP is obtained from fitting function 7 and F
(XT) is given by following equation.

F(XT) = λ ∗ XT (9)

In order, to gain some intuitive understanding of this
system we graphically plot the two terms in equation 6
(Figure 2a). The function G is shown as dotted red line
and F as solid blue line. This graphical representation
(Figure 2a) provides a very simple intuitive explanation of
the behavior of the system. The function G’ can be seen
as the synthesis function (a source) and the function F as
the degradation function (a sink). The intersections
between these two curves are the systems fixed points.
For low values of XT there is hardly any synthesis, and
degradation dominates, so the system converges to the
low fixed point at zero. At higher values of XT there is an
abrupt rise in the level of protein synthesis, which quickly
saturates. The cross between G and F in the quickly ris-
ing portion of G is the unstable fixed point, below it
degradation dominates and above it synthesis dominates,

and the level of XT increases until it reaches the third
intersection, which is the upper stable fixed point. Due to
the saturation of G, at higher levels of XT, degradation
dominates again, resulting in a convergence from above
to the upper stable fixed point. Changing the degradation
rate will simply change the slope of the F function, and
changing synthesis and activation parameters, will quan-
titatively change the shape of the G’ function.
Next we show the impact of changing some of the sys-

tem parameters on the steady state solution characteristics
of equation 6 (Figure 2b and 2c). Changing the degrada-
tion rate only affects the degradation curve (Figure 2b
solid blue line). As the degradation rate is increased from
slower (Figure 2b solid blue line 1) to much faster (Figure
2b solid blue line 4) the system moves from robustly bis-
table to a mono-stable system. Thus, at much faster degra-
dation the amount of CaMKII generated is not enough to
compensate for the loss due to large degradation rate
therefore, system has only lower stable steady state solu-
tion (Figure 2b solid blue line 4) as the CaMKII degrada-
tion rate is decreased a balance between new synthesis
and degradation is restored and system becomes a bistable
switch (Figure 2b solid blue lines 2-4). As the degradation
rate is decreased, and the system as shifts from mono-
stable to bistable, the lower fixed point does not change,
the value of XT at the unstable fixed point is increased,
and the value of XT at the upper fixed point first rapidly
increases and then plateaus (Figure 2b solid blue line
2,3,4).
Other parameters affect only the synthesis curve (G’).

One such example is parameter k5, which quantifies the
CaMKII mediated activation of CPEB1 (Figure 2c).
When this activation parameter is set at low value (Fig-
ure 2c dotted red line 4) the system has only lower
stable steady state solution. However, as the activation
rate of CPEB1 is increased, more active CPEB1 is avail-
able, which in turn stimulates new protein synthesis
thus shifting the synthesis curve in upward direction
(Figure 2c dotted red line 3,2,1) and shifting the sys-
tem from mono-stable to robustly bistable state.
If we are only interested in the steady states of this

system we can set all the derivatives to zero and obtain
the following forth order polynomial to describe the
steady states of the system:

(XP)4 + z12 ∗ (XP)3 + z13 ∗ (XP)2 + z14 ∗ XP = 0 (10)

Where, the coefficients z12-z14 are defined in method B.
The derivation leading to this result is explained in
method B. This equation is more precise than equation 6
because here we avoided the need to use the polynomial
fit for the inversion. However, this equation can only
account for the fixed points, and is unable to account for
system dynamics. This 4’th order polynomial shows that
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this system has 4 steady states, one is always at zero
because there is no zero order term. The signs of the
coefficients determine how many real solutions this poly-
nomial could have [29] and biologically we are only inter-
ested in positive real solutions.

Comparison of the different approximations to the full
model
Our aim here is to describe the behavior of the synthesis-
degradation loop (Figure 1) and the various approxima-
tions used to simplify it. We can integrate the dynamics
either using the full system of ODE’s (Method A, A1-A6)
or by using the reduced three dimensional systems
(Method B, equations 6, B-6, B12), or the approximate
one dimensional system (equation 6). The fixed points,
and their parameter dependence can be found either by
numerical bifurcation analysis of the full system (Method
A, A1-A6), the reduced three dimensional system (6, B-6,

B12), the approximate 1D system (equation 6) or by the
4’th order polynomial [10]. The first three methods can be
used for obtaining the system dynamics and the last
method only for the fixed points.
In order, to further compare the three dynamical equa-

tion methods we first analyzed the dynamical properties
of this system and then the steady state solution charac-
teristics of this loop with respect to certain system para-
meters. The dynamics of this system (Figure 3) is
analyzed with two different set of parameters. The first
set of parameters (Condition I) represent a case where
the approximation of equation 1 is a good aproximation
(Figure 3a), whereas the second set of parameters (Condi-
tion II) represents a case where this approximation does
not hold (Figure 3b). For condition I the approximation
holds since the amount of aCaMKII bound in biochem-
ical complexes is negligible, whereas for condition II a
significant portion is trapped in biochemical complexes.

Figure 2 The approximate analytical solution of aCaMKII-CPEB1 molecular loop. It is obtained through graphically locating all the steady
state solutions of single differential equation 1. This equation describes the rate of change of total concentration of aCaMKII (XT) and its
functional relation between the new synthesis and degradation of CaMKII. The steady state form of equation 1 is transformed into two functions
F (XT) and G (XT). The function F (XT) (solid blue curve) basically represents the net aCaMKII degradation, whereas the modified function
G’(XT) = G [g (XT)] (dotted red curve) represent the net generation of aCaMKII. (a) This analytical solution is developed by setting all parameters
as described in table 1. Graphs of both functions intersect at three locations which are characterized as steady state solutions of equation 1 and
provide the approximate analytical solution. The upper steady state solution is located at XT = 95, while the unstable solution is located at XT =
9.4, and lower steady state solution at XT = 0.0001. (b) The effect of degradation rate on analytical solution. Four different degradation rates are
selected l = 0.00006 s- (solid blue line #1, bistable system), l, = 0.0001 s-1 (solid blue line #2 bistable system), l = 0.0003 s-1(solid blue
line #3 bistable system) and l = 0.0006 s-1 (solid blue line #4 mono-stable system). (c) The effect of CPEB1 activation parameter k5 on
analytical solution. Four different values of CPEB1 activation are selected k5 = 0.00001μM-1.s-1 (dotted red line #1, mono-stable system), k5 =
0.00006μM-1.s-1 (dotted red line #2 bistable system), k5 = 0.0001μM-1.s-1 (dotted red line #3 bistable system) and l = 0.0072 μM-1s-1 (dotted
red line #4 bistable system).
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We obtain these different conditions by setting the differ-
ent values of auto-phosphorylation parameter k3. For
condition I we set k3 = 500μM-1 s-1, whereas for condition
II we set this parameter at 0.5 μM-1 s-1. The values of all

the other parameters are identical in both conditions
(Table 1). For all these cases a 10 second (Ca+2 )4-CaM
pulse is used to provide the necessary stimulus to drive
system from the basal to the up-state.

Figure 3 The dynamic characteristics of aCaMKII-CPEB 1 molecular loop. These characteristics are developed through three alternative
models. First model is based on differential equations A1-A6 (Full model, represented by solid red line (up state) and solid blue line
(down state)). Second model is based on differential equation 1, B-6 and B-9 (Reduced model, represented by dotted red line (up state)
and dotted blue line (down state)). Third model is based only on a single differential equation (equation 6) (Single differential equation
model, represented by dotted black line (up state) and dotted blue line (down state)). System moves from down to up-regulated state
through a 10 second application of (Ca+2 )4-CaM pulse. The dynamic simulations are carried out with two different set of parameters. For one
set of parameters the dynamic from three alternative models converge to same upper and lower steady states (a). In this case the dynamics
converge to same upper steady state at XT = 95 and lower steady state at XT = 0.0 For second selection of parameters the dynamic results from
three alternative models does not converge to same upper steady state (b) although the lower steady state remains the same for all three
models. Here, the dynamics from full model converge to upper steady state at XT = 360 and lower state at XT = 0.0001 (Figure 3 b, solid red
line (up state) and solid blue line (down state)), whereas the dynamics from reduced model (dotted red line (up state) and dotted blue
line (down state)) and single differential equation model (dotted black line (up state) and dotted blue line (down state)) converge to
upper steady state at XT = 95 and lower state at XT = 0.0001.

Table 1 The numerical values of different parameters of bistable molecular loop.

Parameter Description Value/Range

l1 CaMKII degradation rate (In-active state) [0.0001 (sec-1)] 0.001-0.00002(sec-1)

l2 CaMKII degradation rate (Active, phosphorylated) [0.0001 (sec-1)] 0.001-0.00002(sec-1)

k1 Association rate constant (Ca+2)4-CaM/CaMKII binding 0.0011 (μM- 1sec-1)

k2 Dissociation rate constant CaCaM.CaMKII 14 (sec-1)

k1 Association rate constant CaMKIIAP/CaMKIIAP binding 0.085; (μM-1 sec- )

k2 Dissociation rate constant CaMKIIAP.CaMKIIAP 0.143 (sec-1)

k3 Rate constant for Phosphorylation 500 (sec-1)

k4 Rate constant for CaMKIIAP dephosphorylation 0.0012 (sec-1)

k5 Association rate constant CaMKIIAP/CPEB1 binding 0.0072;(μM-1sec-1)

k55 Dissociation rate constant CaMKIIAP .CPEB1 20(sec-1)

k6 Rate constant for CPEB1 Phosphorylation 0.962(sec-1)

k10 Association rate constant (Ca+2)4-CaM/CaMKII binding 0.001 (μM 1sec-1)

k1010 Dissociation rate constant CaCaM.CaMKII 0.8 (sec-1)

k7 Rate constant for CPEB1 dephosphorylation 0.012(sec-1)

k8 Association rate constant PCPEB/E binding 0.08(μM- 1sec-1)

k88 Dissociation rate constant PCPEB1.E 10(sec-1)

k9 Synthesis Rate of New CaMKII molecule through polyadenylation 0.08(sec-1)

Xbasal Basal concentration of CaMKII 0.0001 μM
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For condition I the dynamics from all three alternative
models converge to same upper and lower steady states
(XT = 95 for upper steady state and XT = 0.0001 for
lower steady state Figure 3a. The full model is repre-
sented by solid red line (up state) and solid blue line
(down state). The various dashed lines present the lower
dimensional approximations. We see that even though in
condition I the steady state behavior is well approximated
by the reduced systems, the dynamics are not. By setting
derivatives to zero and replacing some dynamical vari-
ables by functions we have produced reduced dynamics
that are faster than the full model dynamics. These types
of approximations can produce reasonable dynamics if
there is a clear separation of time scales, in which case
setting the derivatives of the fast dynamics to zero causes
only minor differences in the dynamics. Here, although
degradation is the slowest dynamical variable, other pro-
cesses such as dephosphorylation can also be slow, and
therefore there is no clear time scale separation. For con-
dition II (Figure 3b) even the steady state behavior of the
systems is not well approximated by the reduced
equations.
Next, we analyze the dependence of the steady state

solution of this loop on different system parameters. This
is similar to what we do in Figure 2, but here we show the
full bifurcation diagrams resulting from a change in para-
meters. We also compare cases where the approximations
used are appropriate or not. First, we select the degrada-
tion rate (l) of aCaMKII as a bifurcation parameter. Here,
degradation represents the removal of aCaMKII either by
general cellular degradation pathway or by diffusion from
a certain specific location e.g., active synapses. We ana-
lyzed the effect of degradation parameter on the character-
istics of polyadenylation loop under the two different set
of parameters (conditions I and II). We show results of
this analysis in Figure 4. On the left we show the G’ and F
functions (Figure 4a,c), and on the right the complete
bifurcation diagrams in terms of l (Figure 4b,d). Figures 4
a, b are for condition I and 4 c, d is for condition II.
We show the F functions for two different values of l,

where “1” denotes l = 0.0001s-1 and “2” denotes l =
0.0003s-1. By this method we can graphically locate the
values of XT at the fixed points. For condition I the upper
stable steady state at XT = 95, while the lower and unstable
steady state are at XT = 0.0001 and XT = 9.4 when degrada-
tion rate is set at 0.0001 s-1 (curve “1”, Figure 4a). As the
degradation rate is increased to 0.0003 s-1 (curve “2”, Fig-
ure 4a) the new solution is located at XT = 31 (upper stable
steady state), XT = 0 (lower stable steady state) and XT =
9.2 (unstable steady state). Numerical bifurcation diagrams
(Figure 4b) are developed through tracking the steady state
behavior of all three levels of simplification with respect to
the degradation rate of aCaMKII. The solutions contained
in these bifurcation diagrams are tracked through a

numerical bifurcation package [30], for the 6 and three
dimensional models, by simply finding the cross-over in the
one dimensional model, and by finding zeros of a polyno-
mial in the polynomial approximation. The four bifurcation
diagrams are nearly identical for the entire range of degra-
dation parameter. In contrast, to these results when simula-
tions are carried out with second set of parameters
(condition II) the steady state solution characteristics of full
scale model (Figure 4d dotted blue line represent the
bifurcation diagram based on full model) does not
match either with the three state reduced model or single
equation model or the polynomial model (Figure 4d solid
blue lines represent the bifurcation diagrams based on
reduced three differential equation and a single equa-
tion model). What these results also indicate is that the
most significant approximation made here is in equation 1,
and it fails when the conditions of this approximation are
not met.
We also analyzed the steady state solution characteristics

of this molecular switch with respect to CPEB1 activation
parameter k5. First, the simulations are implemented with
parameters from condition I (Figure 5, a, b) and then with
condition II (Figure 5, c, d). Here, again the steady state
solution characteristics of the full scale model do not
match (Figure 5d dotted blue line represent the bifurca-
tion diagram based on full model, whereas solid blue
lines represent the bifurcation diagrams based on
reduced three differential equation and a single equa-
tion model) with reduced versions when condition two is
implemented, however, with parameters representing the
condition one there is a complete match (Figure 5b dotted
blue line represent the bifurcation diagram based on
full model, whereas solid blue lines represent the bifur-
cation diagrams based on reduced three differential
equation and a single equation model).

Discussion
We have postulated that a translation-activation loop can
form a bistable switch that could explain the mechanism
for maintaining long term memories. Here, we explore a
specific case of this hypothesis composed of a positive feed-
back loop between aCaMKII and its translation regulator
CPEB1. The possibility of a positive feedback loop is con-
firmed by two previous experimental observations (a) phos-
phorylation of CPEB1 regulates the synthesis of aCaMKII
molecules through polyadenylation of aCaMKII-mRNA
[20] (b) aCaMKII phosphorylates the CPEB1 molecule
[25,26]. Thus, both the aCaMKII and CPEB1 interact
through a closed loop. Based on the elementary enzyme
kinetics (Method A) the dynamics of this loop can be char-
acterized through a high dimensional system of ordinary
differential equations. One can study the characteristics of
such a system by numerically integrating these differential
equations and with different initial conditions and kinetic
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rate parameters, and extensively search for the possibility
of a two distinct stable steady states. This procedure itself
is very tedious, time consuming and inaccurate.
Here, we develop a systematic approach to reduce the

dimensionality of a high dimensional ODE based model
of aCaMKII-CPEB1 molecular loop. Our simplification
strategy is devised such that the essential features of full
scale model are preserved. This simplification process is
based on introducing the two key approximations. 1. The
synthesis-degradation curve (equation 1) and 2. The fit-
ting function curve (equation 7). Through these approxi-
mations the full scale model is reduced to three lower
dimensional models. (a) A three dimensional model com-
prising of equations 6, B-6, and B12. (b) A one dimen-
sional model (equation 6), (c) A one dimensional fourth
order polynomial based model (B-18). We can extract the
fixed point solution characteristics of this system from all

three reduced models however, only reduced model (a)
and (b) can provide the dynamical characteristics of this
system. Since, during the simplification process it is pos-
sible to loose some features therefore, it would be logical
to compare the performance of these three reduced mod-
els with a full scale model of this loop.
Our results show that the key to performance of three

reduced models in locating fixed points of the system is
the approximation introduced through equation 1. Since,
in this approximation the CaMKII bound in biochemical
complexes also degrade along with free CaMKII, which is
in contrast to full scale model. Thus, for parametric condi-
tions where the amount of bound CaMKII is negligible the
three reduced models yield matching results to full scale
model. However, for conditions where there is a non-neg-
ligible amount of bound CaMKII the results of three mod-
els are not matching with full model. Interestingly,

Figure 4 Steady state solution characteristics of molecular loop with respect to parameter l. This contain an analytical solution (a, c) and
numerical/analytical bifurcation diagrams (b, d). Approximate analytical solution is developed through graphing equation 6, whereas the
numerical/analytical bifurcation diagrams are developed through tracking the steady state behavior of all three models with respect to the
degradation rate. Two different set of parameters are compared. For first set of parameters the approximate solution and numerical/analytical
bifurcation diagrams from three alternative models converge to same upper, stable steady state solution branch (a, b). For the second set of
parameters the approximate solution and numerical/analytical bifurcation diagrams from three alternative models does not converge to same
upper, stable steady state and solution branch(c, d). The approximate analytical solution for first set of parameters (a) is located at two different
degradation rates (The solid blue line#"1” represent l = 0.0001s-1 and other solid blue line#"2” represent l = 0.0003 s-1 ). This method
locates the upper stable steady state at XT = 95, while the lower and unstable steady state are at XT = 0 and XT = 9.4 when degradation rate is
set at 0.0001 s-1 (curve 1). As degradation rate is increased to 0.0003 s-1 (curve 2) the new solution is located at XT = 31 (upper stable steady
state), XT = 0.0001 (lower stable steady state) and XT = 9.2 (unstable steady state). The numerical and analytical bifurcation diagrams for first set
of parameters (b) are developed through tracking the steady state behavior of all three models. Three bifurcation diagrams exactly match with
each other for the entire range of degradation parameter (dotted blue line represent the bifurcation diagram based on full model,
whereas solid blue lines represent the bifurcation diagrams based on reduced three differential equation and a single equation
model). The approximate analytical solution for second set of parameters (c) is also located at two different degradation rates (The solid blue
curve “1” represent l = 0.0001s-1, and other solid blue curve “2” represent l = 0.0003 s-1). This method locates the upper stable steady
state at XT = 95, while the lower and unstable steady state are at XT = 0.0001 and XT = 9.4 when degradation rate is set at 0.0001s-1 (curve 1).
As degradation rate is increased to 0.0003 s-1(curve 2) the new solution is located at XT = 31 (upper stable steady state), XT = 0.0001 (lower
stable steady state) and XT = 9.2 (unstable steady state). The numerical and analytical bifurcation diagrams for second set of parameters (d) are
developed. The bifurcation diagram from full model does not match with the bifurcation diagrams from reduced and single equation model.
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however the results of these three reduced models are
matching with each other. Here, this phenomenon of
CaMKII trapping in biochemical complexes is simply
modeled through an autophosphorylation parameter k3.
For the k3 set at lower values the amount of CaMKII
bound is large and thus leading to disagreements between
the results from full scale model and reduced models.
The analysis of this paper also provides some intuition

on the complex process of polyadenylation based transla-
tion. Here, through a systematic simplification process
we develop a single variable dynamical equation (eq. 6)
which shows that the change in total CaMKII concentra-
tion is due to a balance between protein synthesis and
degradation. At steady state this equation is composed of
two terms i.e., synthesis and degradation term. Thus, the
polyadenylation based switching is essentially due to a
balance between the synthesis of new proteins and degra-
dation of old ones. If the amount of synthesis is at much

faster rate then the degradation rate the balance will shift
towards single state high protein concentration, similarly
if the degradation rate is much faster then new protein
synthesis the balance will tip towards single lower state
of switch. So for reversible switching a balance should be
maintained between protein synthesis and degradation.
This equation also provides an easy method to analyze
the effect of other system variables on switching charac-
teristics. For example one parameter which could criti-
cally affect the polyadenylation switching is the CPEB1
activation rate through CaMKII i.e., k5. For larger value
of this parameter the new synthesis rate will increase and
at lower value the new synthesis rate will decrease.
In this paper, we simplify the high dimensional ODE

model of aCaMKII-CPEB1 loop in such a way that these
simplifications preserve the characteristics properties of
the full scale ODE model. By reducing the high dimen-
sional model to the minimal plausible scenario, we were

Figure 5 Steady state solution characteristics of molecular loop with respect to CPEB1 activation parameter k5. The parametric steady state
solution characteristics are developed through an approximate analytical solution (a, c) and numerical/analytical bifurcation diagrams (b, d). The
approximate analytical solution is developed through graphing equation 6, whereas the numerical/analytical bifurcation diagrams are developed
through tracking the steady state behavior of all three models with respect to k5. Two different set of parameters are compared. For first set of
parameters the approximate solution and numerical/analytical bifurcation diagrams from three alternative models converge to same upper, stable
steady state solution branch (a, b). For the second set of parameters the approximate solution and numerical/analytical bifurcation diagrams from
three alternative models does not converge to same upper, stable steady state and solution branch (c, d). The approximate analytical solution for first
set of parameters (a) is located at two different values of rate constant k5 (The dotted red curve “1” represent k5 = 0.0072 μM-1.s-1, second dotted
red curve “2” represent k5 = 0.0001 μM-1 .s-1 ). This method locates the upper stable steady state at XT = 95, while the lower and unstable steady
state are at XT = 0.0001 and XT = 9.4 when k5 is set at 0.0072μM

-1 .s-1 (curve “1”). As k5 is decreased to 0.0001 new solution is located at XT = 70
(upper stable steady state), XT = 0.0001 (lower stable steady state) and XT = 16 (unstable steady state). The numerical and analytical bifurcation
diagrams for first set of parameters (b) are developed through tracking the steady state behavior of all three models with respect to k5. The three
bifurcation diagrams are exactly matching with each other for the entire range of activation parameter (dotted blue line represent the bifurcation
diagram based on full model, whereas solid blue lines represent the bifurcation diagrams based on reduced three differential equation
and a single equation model). The approximate analytical solution for second set of parameters (c) is also located at two different values of rate
constant k5 (The dotted red curve “1” represent k5 = 0.0072 μM-1.s-1, second dotted red curve “2” represent k5 = 0.0001 μM-1.s-1). The numerical
and analytical bifurcation diagrams for second set of parameters (d) are developed through tracking the steady state behavior of all three models with
respect to k5. Full model bifurcation diagram does not match with reduced and single equation model.
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able to obtain a single algebraic expression that charac-
terizes the fixed points of these dynamics. We then used
these algebraic equations to develop the analytical bifur-
cation diagrams by perturbing the various parameters (l
and k5). Using this analytical expression we explain how
the loss of aCaMKII in synapses due to protein degrada-
tion is balanced by synthesis of new aCaMKII molecules.
This analysis explains how the pair of two molecules in
active and inactive forms and a synthesis based positive
feedback loop can lead to a bistable switch. On the basis
of these bifurcation diagrams we show that even the sim-
plified version of a polyadenylation based model of
aCaMKII can exhibits an up and down state and by per-
turbing these parameters the system can toggle between
an up and a down state. The activity induced increase in
total amount of aCaMKII can be maintained for long
period of time due to a balance between the new synth-
esis and degradation of aCaMKII molecule. As we set
equation 1 equals to zero the resulting equation 2
describe the steady state value of total amount of aCaM-
KII. It also shows that total concentration of CaMKII is
directly proportional to the amount of CPEB1 phos-
phorylated and is inversely proportional to the degrada-
tion rate. Therefore, when the fraction of CPEB1
phosphorylated is high the amount of CaMKII generated
through polyadenylation increases, which will out balance
the amount of aCaMKII removed through degradation
and there is a net up-regulation of aCaMKII concentra-
tion. Similarly this equation also explains that if degrada-
tion rate is too fast the compensation provided by new
synthesis of aCaMKII molecules will not be enough to
balance the loss of CaMKII due to degradation. Our sim-
plification captures the essential properties of protein
translation through polyadenylation. It shows that how
the activity induced signal converts the inactive form of
aCaMKII into active, which is further amplified through
an auto-phosphorylation loop. The active and phos-
phorylated aCaMKII in turn drives the synthesis of a
new inactive aCaMKII molecule, through phosphorylat-
ing the CPEB1. Here, all these steps are analytically pro-
ven as shown by the equations (B1-B9).
Apart, from the approximation introduced through

equation 1 another approximation is introduced into this
analysis when we tried to develop a single algebraic equa-
tion 6 based version of this system. In equation 6 we
developed an approximate function XP = g ( XT). In
order, to develop a completely accurate solution this func-
tion should be analytically developed, however, for this
system it was not possible to invert the highly non-linear
system of XT as a function of XP. Here, we developed the
approximate function XP = g (XT) through a fitting func-
tion routine in matlab. The approximate fitting function
proved to be very sufficient good in approximating both
the upper, lower stable steady state solution and unstable

steady state solution., however, it could not accurately
approximate the lower stable steady state solution.
The numerical values of different parameters of this

molecular loop are described in table 1. Many of these
parameters are extracted from previous observations based
on experimental and simulation work [16,19,20,25-34]. For
example parameters like aCaMKII degradation rates, cal-
cium/calmodulin binding and un-binding rate, rate para-
meters for aCaMKII auto-phosphorylation loop and rate
parameters describing the new synthesis of aCaMKII pro-
tein are taken from previous experimental and simulation
based observations [27,28,31-33], and [34]. Some other rate
parameters such as activation of CPEB1 through phos-
phorylated aCaMKII are obtained through parameters
scaling and matching the observed experimental dynamics.
The parameters of table 1 and bifurcation diagrams of
Figure 4 and 5 indicate that this molecular system is very
robust. For example the k5 parameter (describing aCaMKII
mediated activation of CPEB1) exhibits the bistable charac-
ter over a range of three orders of magnitude. This means
that even a small activation of CPEB1 through aCaMKII
will induce the bistable character to this loop and large
strength of aCaMKII activity inhibition is required to
reverse the up-state to down. This leads to interesting
observation where many of aCaMKII inhibitors are not
able to reverse the established L-LTP when applied during
the maintenance phase of memory formation [33]. The
reduced model of this work and full-scale model [30] can
make these predictions.

Conclusions
This study provides a systematic method to simplify,
approximate and analyze a molecular model of polyadeny-
lation loop. This model of polyadenylation loop is based
upon de-novo synthesis of new proteins & their activation.
The polyadenylation loop operates through a positive feed-
back loop between a protein and its translation factor.
This work shows how to extract low dimensional systems
that can be used to obtain analytical solutions for the fixed
points of the system and to describe the dynamics of the
system. The methods used here have general applicability
to the formulation and analysis of many molecular
networks.
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