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Abstract

Background: Cells process signals using complex and dynamic networks. Studying how this is performed in a context
and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-
specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but
formalisms that can take advantage of these features to build models of signaling are still comparatively scarce.

Results: Here we present CellNOptR, an open-source R software package for building predictive logic models of
signaling networks by training networks derived from prior knowledge to signaling (typically phosphoproteomic)
data. CellNOptR features different logic formalisms, from Boolean models to differential equations, in a common
framework. These different logic model representations accommodate state and time values with increasing levels of
detail. We provide in addition an interface via Cytoscape (CytoCopteR) to facilitate use and integration with Cytoscape
network-based capabilities.

Conclusions: Models generated with this pipeline have two key features. First, they are constrained by prior
knowledge about the network but trained to data. They are therefore context and cell line specific, which results in
enhanced predictive and mechanistic insights. Second, they can be built using different logic formalisms depending
on the richness of the available data. Models built with CellNOptR are useful tools to understand how signals are
processed by cells and how this is altered in disease. They can be used to predict the effect of perturbations
(individual or in combinations), and potentially to engineer therapies that have differential effects/side effects
depending on the cell type or context.
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Background
Cells receive and interpret information through complex
signaling networks. The correct processing of signals is
essential and frequently altered in diseases [1-3]. Signaling
networks arise from the highly dynamic and context spe-
cific assembly of a large variety of molecular species [3].
It is increasingly recognised that including these features
is essential to take our understanding of the functional-
ity of signaling pathways to the next level [4]. Knowledge
about signaling networks has accumulated over the years
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in databases and literature [5-10]. The vast majority of
this information is static and not context-specific, and
provides limited insight into the system’s response to per-
turbations such as ligand stimulation or drug treatments
[4,11-13].
Gathering medium to high-throughput signaling data

is becoming more feasible as proteomic technologies are
getting more mature [14]. Perturbation data (such as
chemical inhibitors, stimuli, knock-downs, etc) can be
used to generate network models using reverse engineer-
ing methods [14-16]. These methods typically consider
all possible topologies. Thus, they require large amounts
of data and scale-up poorly. Furthermore, the resulting
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networks are limited to interactions between perturbed
and measured nodes. These are typically only a sub-
set of the nodes involved in a pathway. Therefore, such
models are not as biologically interpretable as a net-
works based on prior knowledge from literature and other
sources.
We recently introduced a method that integrates liter-

ature and perturbation data to overcome the shortcom-
ings of both [11]. By training prior knowledge networks
(PKNs) against experimental data, this method produces
models shown to achieve significantly better predictive
power than untrained models. The model building pro-
cess is implemented through the use of a logic formalism.
Logic models have the ability to capture cause-effect rela-
tionships while staying conceptually and computationally
simple, thereby allowing for appreciable scalability [17]. In
its simplest implementation, Boolean logic [18], species
are described as either ON or OFF. Relationships between
species are described using logic gates that specify the
state of each node given the state of its parents [19]. This
captures dependencies between components in a system
without the requirement of detailed mechanistic knowl-
edge [17]. Logic models have been shown to be useful
tools to study signaling and regulatory networks [17,19-
23]. A number of tools exist tomanipulate, create and sim-
ulate such models [24-32], and the approach described in
[11] complements them by automatically generating mod-
els trained to data. This allows researchers to generate
models of signaling that can answer biological questions
in their specific system of interest. However, the method
in [11] was limited to Boolean logic steady state repre-
sentation of the system under investigation, and was only
available in a closed-source package for the MATLAB
environment.
We present here a tool that implements the meth-

ods in [11] in an open source R/Bioconductor package
(CellNOptR). CellNOptR extends the methods presented
in [11] to various published and unpublished logic for-
malisms through a suite of additional R packages that
are integrated with the CellNOptR package. These logic
formalisms include Boolean steady-state, Boolean multi-
ple steady-state, Boolean discrete time, steady-state fuzzy
logic and logic-derived ordinary differential equation
(ODE) representations of the system. This set of pack-
ages forms an integrated, open source, robust and easily
extendable platform for training logic models of signal-
ing networks. CellNOptR can also be used via a graphical
user interface through the Cytoscape plugin CytoCopteR.
We illustrate the application of CellNOptR to a simu-
lated example showing the advantages of having multi-
ple logic formalisms available. We then show how the
package can be used to study early and late response
of a human hepatocellular carcinoma cell line to several
cytokines.

Implementation
The CellNOptR approach
CellNOptR (for Cellular Network OptimizeR) implements
the method introduced in [11] in the R language, as a Bio-
conductor [33] package. This method derives a Boolean
logic model from a ”prior knowledge network” (PKN, i.e.
a network obtained from literature or expert knowledge)
and trains it against perturbation data. A CellNOptR anal-
ysis comprises the following steps (see Figure 1): (i) import
of the network and data, (ii) processing of the network,
(iii) training, and (iv) reporting the results of the analysis.

Import of network and data
CellNOptR takes as input two flat text files. The first one is
a prior knowledge network (PKN) describing signed and
directed interactions between proteins as a graph (cur-
rently Simple Interaction File (SIF) format, which can be
opened in Cytoscape). The second file contains biochem-
ical data relating to the changes in the modification state
(typically phosphorylation) of proteins following stimula-
tion under various conditions. By ”conditions” we refer to
combinations of stimuli and inhibitors targeting nodes in
the network. This data is represented in the simple tab-
ular MIDAS (Minimum Information for Data Analysis in
Systems biology) format introduced in [34] (see Figure 1).
The package then performs normalisation of the data for

logic modeling, a feature described in [11] and previously
implemented in a separate MATLAB package, DataRail
[34]. Briefly, the data is normalised between 0 and 1
by computing a fold change relative to a control. This
fold change is transformed through a Hill function and
multiplied by a penalty for signals close to background.
The penalty is the ratio of each value to the maximum
measurement for the readout considered, transformed
through a saturation function. It is important to note that
the data is not discretized but just normalised between 0
and 1.

Processing of the network
The network is converted into logic models for training
with two pre-processing steps : (1) compression and (2)
expansion. In the compression step, species that are nei-
ther measured nor perturbed are removed if the logical
consistency of the network is not impaired, resulting in
a simplified network for training. This step is performed
because such nodes are not necessary for the correct
training of the model. However, starting from a PKN facil-
itates: i) identifying and preserving nodes whose presence
is necessary to maintain the logical consistency of the net-
work, ii) mapping the trainedmodel back onto the starting
network (thereby preserving the interpretability) and iii)
restricting the search to a set of interactions that are fea-
sible based on prior knowledge. In the expansion step,
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Figure 1 The CellNOptR framework. A. A CellNOptR analysis takes as input 2 text files: (1) a Prior Knowledge Network (PKN) as a SIF file [39], (2) a
dataset in the MIDAS format ([34], see Figure 4). The package then maps the data onto the PKN, processes the network and trains the resulting
model. CellNOptR outputs a series of HTML pages containing the summary of the analysis, hyperlinked to diagnostic graphs, and the trained
networks. Multiple logic formalisms can be used for the training. The CellNOptR package implements most of the workflow and the simplest
Boolean logic steady-state (1 or 2) approach. B. Only steps that are specific to a particular logic formalism are coded in add-on packages. CNORfuzzy
implements a constrained fuzzy logic steady-state approach [35]. CNORdt fits time course data using a Boolean representation of the states of nodes
and a synchronous update simulation scheme. CNORode fits detailed time course data by deriving and training continuous logic-based ordinary
differential equations. C. The choice of a logic formalism depends on the data at hand and the modeling goals: with no time course data, the user
can choose between the two steady-state implementations (CNORfuzzy and CellNOptR) based on the size of the network, richness of data and
suspected impact of partial effects. If very limited time course data is available, users can use the Boolean 2 steady-states implementation in
CellNOptR. With detailed time course data, one can choose between the Boolean discrete time implementation in CNORdt and the continuous ODE
based implementation in CNORode, mainly based on the complexity of the network and the richness of the data. For the networks, the following
color conventions are used: for nodes: green=stimulated, red=inhibited, blue=measured, dashed=compressed; edges (referring to the optimised
model): green=present at time 1, blue=present at time 2, grey=absent, dashed edge=compressed.

interactions are converted into all possible logic gates. For
example, if there is an edge from node B to A and node
C to A, the following gates are created: (i) B AND C →
A, (ii) B OR C → A, (iii) B → A, (iv) C → A. The ratio-
nale behind this step is that, although databases record
a potentially functional interaction between A and B and

A and C, it is rarely recorded whether these interactions
are independent or not (i.e. B and C are both required
to activate A, or only one of them), or even if any of
them are active in the specific context under investiga-
tion. Therefore, CellNOptR generates all these options
in the scaffold model (i.e. the compressed and expanded
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model that is used as a basis for optimisation) and uses the
training to data to discriminate among them.

Training
Next, the model is trained to data by searching for mod-
els (i.e. sub-models of the scaffold model, that include a
subset of the edges) that minimize a bipartite optimisation
function. The optimisation function weights the fit to data
(deviation between data and the output of the Boolean
logic model at steady state, in matched conditions) and
model size, according to equation 1.

θ(P) = θf (P) + α.θs(P) (1)

θf (P) = 1
ng

s∑
k=1

m∑
l=1

n∑
t=1

(BM
k,l,t − BE

k,l,t)
2 (2)

θs(P) = 1
vse

r∑
e=1

vePe (3)

In equation 1, P is a vector of length r (where r is the
number of edges in the scaffold) with a 1 when an inter-
action is included and a 0 if it is not. θf (equation 2) is the
mean squared deviation between model prediction (BM)
and data (BE) across the m readouts, n time points and s
experimental conditions (weighted by the total number of
data points ng). θs (equation 3) penalises the model size
by summing across the number of inputs (ve) of each edge
selected in model P and dividing by the total number of
inputs across all edges (vse = ∑r

e=1 ve). α is a tunable
parameter that balances the fit and size terms. The size
penalty ensures that redundant or unnecessary edges are
not included in the final model, such that simpler mod-
els are preferred over more complicated models if they
explain the data equally well. Note that the data does not
need to be discretized to compute the optimization func-
tion. Instead, the data can be normalized between 0 and
1 (see [11]), resulting in a penalty that depends on how
close the normalized data is to the Boolean state predicted
by the model. Thus, measurements that have intermedi-
ate values (and we are therefore less certain if they are ’on’
or ’off’) have a smaller weight on the penalty associated
with a mismatch with the Boolean output of the model.
The search through model space is performed using a
built-in genetic algorithm. It is possible for the user to
choose which edges they want to be included in the search
(e.g. if part of the model structure is known with cer-
tainty, see the package vignette) but by default all edges
are included in the search space.CellNOptR keeps track of
all models explored during the search and reports a fam-
ily of models within a tolerance (given by the user) of a
value of the objective function θ . Indeed, multiple models
with the same or very similar scores are typically found,
which cannot be discriminated given the experimental
evidence [35]. The choice of a tolerance level is non-trivial

and depends largely on the experimental error. Indeed,
as our confidence in the data increases, our tolerance
regarding how closely the model have to reproduce the
data decreases. Given a chosen tolerance level, CellNOptR
reports, for each edge, the frequency of models within the
tolerance limits that include the edge. This allows users
to investigate the effect of the tolerance on the solution
models, given the data at hand.

Report
Finally, the results of the training are mapped to both the
prior knowledge and the scaffold network. The informa-
tion relating to the analysis run is then plotted, written
to file and condensed in a HTML report hyperlinked
to the various diagnostic plots. Networks are output in
Graphviz DOT format as well as SIF files with corre-
sponding attributes representing the status of nodes (com-
pressed, measured, inhibited, etc.) and the frequency with
which edges are selected in the family of solution models.

Simulation variants
This general approach is extended through a series of add-
on R packages that use parts of the CellNOptR method
but differ in their ability to handle time course data with
different levels of sophistication. CellNOptR implements
the simplest logic framework, where a Boolean steady
state approximation is used for simulation. CellNOptR
also contains a Boolean 2 steady-states method, appli-
cable when limited time resolved data is available and
one wishes to capture mechanisms acting on different
time scales. In addition, we offer three packages (see
Figure 1) that plug into the CellNOptR approach and per-
form model training based on: (i) single pseudo-steady
state data and a continuous representation of the state of
nodes using a constrained fuzzy logic approach (CNOR-
fuzzy)[35], (ii) coarse grained time resolved data and a
discrete time simulation using a Boolean synchronous
update scheme (CNORdt), and (iii) time course data and a
continuous state and time simulation using ordinary dif-
ferential equations derived from a logic model (CNORode)
[36]. Functions in the add-on packages implement alter-
natives for core functions or additional steps whenever the
handling of a more elaborate logic formalism requires it
(see Figure 1).

Languages and dependencies
All of our packages are written in R. In order to improve
computational efficiency, the core of CNORode is writ-
ten in C, using the standard R API as an interface. The
simulation engine of CNORode uses the CVODES library.
No compilation or code generation is required beyond
the building of the package. For the model and parame-
ter space search in CNORode, we give the option to use
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the R package genalg [37] or an R implementation of Scat-
ter Search [38] (available as part of the package MEIGO,
http://www.iim.csic.es/∼gingproc/meigo.html). We pro-
vide a user-friendly evaluation function that allows users
to easily plug in alternative search methods. We also
provide Python wrappers so that CellNOpR can be
run directly from Python (see www.cellnopt.org). Finally,
we provide a graphical user interface via CytoCopteR,
a Cytoscape [39] plugin. CytoCopteR uses the Cyrface
(http://sourceforge.net/projects/cyrface/) Cytoscape plu-
gin to interface with R and call our methods from
Cytoscape.

Results and discussion
Various simulation schemes allow to capture different
features of a system
Within the scope of logic models, various formalisms
can be used to represent relationships between nodes
and simulate a model. The choice of which logic for-
malism to use depends on the data set and the system
to be modeled (see Figure 1). In the next sections, we
present the different formalisms that are implemented
in the CellNOptR framework. We illustrate their advan-
tages and limitations on a simulated data set obtained
from a realistic toy example from MacNamara et al. [40]
that schematically represents the effect of Tumor Necro-
sis Factor α (TNFα) and Epidermal Growth Factor (EGF)
on the canonical p38, ERK, and NFκB pathways. The
model used to generate the simulated data (see Figure 2)
contains a slow negative feedback from ERK to SOS-1,
leading to a transient activation of ERK. This could for
example represent the expression of a phosphatase that
dephosphorylates SOS-1 and whose expression depends
on the activation of ERK. This model also includes a
negative feedback from NFκB to its inhibitor IκB, lead-
ing to oscillations of NFκB. This captures the observed
oscillations of nuclear NFκB, where the transcription fac-
tor is known to be maintained in the cytoplasm by its
inhibitor whose expression is activated by NFκB itself.
Finally, a partial activation of p38 is observed when
both EGF and TNFα stimulations are applied to the
model.

CellNOptR: Boolean logic at steady-state
The default CellNOptR method as described in [11] is
based on a discrete representation of time and state. For
the observed data, measurements are therefore acquired
at the rest state as well as at a characteristic time after per-
turbation (pseudo-steady state). The states of nodes in the
model are represented as Boolean values (ON/OFF). For
simulation, we use a synchronous updating scheme until
all nodes have reached a steady state. We compute the
state of each node at time t+1 as a function of the state of

its parents at time t (see equation 4), and check whether
this new state is the same as the one at time t.

xi(t + 1) = Bi(xi1(t), xi2(t), . . . , xi1(t)) ε{0, 1}, i = 1, 2, . . . ,N
(4)

In equation 4, the state of each species xi at time t + 1
is computed as a Boolean function B of the states at time
t of all nodes xiN upon which xi depends. Equation 4 is
applied simultaneously to all nodes in the model until
all xi(t + 1) = xi(t) or a maximum number of itera-
tions has been reached. Nodes that oscillate (because e.g.
of a negative feedback loop, see below) never reach the
steady state and are therefore penalized as mismatches to
experimental data. As can be seen in Figure 2, this means
that the basic CellNOptRmethod is unable to capture the
NfκB oscillations, as well as the partial activation of p38.
Because it only considers one time point, the model is also
unable to capture the transient activation of ERK. Conse-
quently, although it will detect an activating edge between
SOS-1 and ERK, it will not detect the negative feedback
between ERK and SOS-1. Nonetheless, provided that the
pseudo-steady state time point is appropriately chosen,
this very simple and computationally efficient approach
captures most of the links in this network.

CellNOptR(2t): Boolean logic at 2 steady-states
If, however, we wish to capture the transient activation
of ERK, we can do so using a previously unpublished
modification of the Boolean steady-state method which
is available in CellNOptR. This modified version uses
data collected at two separate time points (see Figure 2),
which are assumed to represent logical pseudo steady
states, resulting from mechanisms that operate at differ-
ent time scales. For example, this method could be used
to model immediate and fast receptor activation by post-
translational modification followed by propagation of the
signal and receptor desensitization depending on de novo
protein expression. Assuming two different time scales
allows us to train the model to the 2 pseudo-steady states
independently, thereby keeping the method computation-
ally efficient.
Using thismethodwe first train themodel using the data

at the first time (τ1) point just as above. In a second train-
ing step, we assume that some edges only become active at
the second time point (τ2), and therefore search through
the space of edges not included in the optimal model at τ1.
We simulate the model using the steady state of τ1 as an
initial state, with the added constraint that nodes receiv-
ing the input of a τ2 edge are locked to the state defined
by that edge. This is to avoid nodes in a negative feedback
loop never reaching a Boolean steady state, e.g. if protein
A activates protein B and B represses A, then when A is

http://www.iim.csic.es/~gingproc/meigo.html
www.cellnopt.org
http://sourceforge.net/projects/cyrface/
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Figure 2 Simulation schemes in the CellNOptR and add-ons packages. Adapted from [40]. This network is a simplified version of a realistic toy
example from [40], used to generate simulated data (triangles). We show a subset of the results of training this model to data using each of the logic
formalisms available through our packages (dashed red lines). The model contains canonical pathways downstream of EGF and TNFα. The data
includes: (i) a slow negative feedback from ERK to SOS-1 leading to a transient activation of ERK, (ii) a feedback from NFκB to its inhibitor IκB, leading
to oscillations of NFκB, and (iii) a partial activation of p38 under combined EGF-TNFa stimulations. The CellNOptR simulation scheme (Boolean, steady
state) captures the activation of ERK upon EGF stimulation (black edges EGF - SOS-1 - ERK) but not its transient nature. The Boolean with two steady
states version does capture the transient ERK activation (i.e. both the black path between EGF and ERK and the negative ’AND’ gate when both EGF
and ERK are activated, blue edges) but not the NFkB oscillations and p38 partial activation. With the discrete time updating scheme with Boolean
state from CNORdt, we capture both the transient activation of ERK and the NFκB oscillations(orange edges) but not the partial activation of p38.
CNORfuzzy implements a continuous representation of states but with a single steady state. Thus, it captures the partial activation of p38 (pink edges)
but not the behaviors of ERK and NFκB. CNORode is based on a continuous representation of both time and state, which captures the behaviors of
ERK, p38 and NFκB (green edges). Depending on the available data and the suspected behaviors to capture, different logic formalisms are more
appropriate. Dashed lines=time points used for steady states. Color of model edges: black=captured by all approaches, blue = CellNOptR(2t),
orange = CNORdt, pink=CNORfuzzy, green=CNORode.

active B is turned ON, which turns A OFF and then turns
BOFF and re-establishes the ON state for A, etc.With this
modified simulation procedure, in this example A would
turn B ON at τ1, then the negative feedback between B
and A would become active at τ2 and lock A permanently
to the OFF state (see [41]). As we can see on Figure 2, this
method captures the slow negative feedback between ERK
and SOS-1, with very limited additional computation cost.

CNORdt: Boolean logic for time course data
Steady state and multiple steady states methods are useful
first approximations to capture the dynamic behavior of a
system when limited time resolved data is available. How-
ever, when time courses are available, we can get further
insight by using methods that can fit such data. CNORdt
(for Cellular Network OptimizeR discrete time) fits time
course data using a synchronous updating scheme for
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the simulation (see equation 4), together with an addi-
tional model parameter, which defines the time step of the
Boolean synchronous simulation. In a synchronous updat-
ing scheme, all nodes are updated simultaneously at each
iteration of the simulation algorithm, such that the state
of each node at time t depends only on the state of its
parents at time t-1 [17]. The scaling parameter stretches
the time courses obtained by Boolean synchronous update
simulation to match the data as closely as possible. This
approach captures behaviors such as oscillations, tran-
sients and feedbacks, provided that they can be fitted with
a single scaling parameter across all reactions. Looking at
our toy example (Figure 2), we can see that CNORdt accu-
rately reproduces the transient behavior of ERK activation
and the oscillatory behavior of NFκB. Since CNORdt still
trains a Boolean logic model (i.e. only the structure of the
model is optimized), with only one additional parameter,
the training stays relatively simple and computationally
efficient.

CNORfuzzy: constrained fuzzy logic at steady-state
A main limitation of Boolean logic models is that they are
limited to ON/OFF representations of the activation levels
of species in a model. This means that subtle effects and
partial activations such as the activation of p38 in Figure 2
cannot be captured. Such phenomena require a continu-
ous representation of nodes states, which is possible using
fuzzy logic models as introduced in [35] and implemented
in the MATLAB package CellNOpt-cFL. In CNORfuzzy,
the relationships between nodes are defined as transfer
functions linking continuous values of the inputs of each
gate to continuous values of the outputs of each gate:

xi(t + 1) = B̂i(xi1(t), xi2(t), . . . , xi1(t)) ε[ 0, 1] , i = 1, 2, . . . ,N
(5)

In eq. 5, the Boolean function from eq. 4 is replaced by
a transfer function B̂i that maps the continuous value
(bounded between 0 and 1) of input nodes at time t to
continuous values of an output node xi at time t + 1. In
our implementation, transfer functions are limited to a
defined set of Hill functions, hence the use of the term
”constrained” fuzzy logic. Using normalized Hill func-
tions ensures the consistency between the fuzzy logic
values and the Boolean logic values when species are set
to the extreme values of 0/1, and limits the number of
parameters to be trained for each gate [35]. Training and
simulation of the model in CNORfuzzy is very similar to
the Boolean steady state optimization in CellNOptR. The
difference is that we need to train both the topology of the
model and the parameters of the transfer function asso-
ciated with each gate. Given the added complexity of the

optimization step, it is followed by refinement and reduc-
tion steps that fine-tune the parameters of the transfer
functions and reduce the complexity of the model topol-
ogy (see [35]). As we can see on Figure 2, CNORfuzzy
accurately captures the partial activation of p38, as well as
the activation of ERK and, to some extent, the activation of
NFκB. However, being a steady-state method, it is unable
to capture ERK inactivation and NFκB oscillations.

CNORode: logic-based ordinary differential equations
CNORode (for ordinary differential equations) further
refines the handling of time and state through a continu-
ous representation of both variables. This is achieved by
deriving a set of ordinary differential equations (ODEs) for
each model species:

ẋi = 1
τi

(Bi(xi1, xi2, . . . , xi1) − xi1) ε[ 0, 1] , i = 1, 2, . . . ,N (6)

In equation 6, the Boolean updating function is replaced
by a continuous activation function Bi for the production
of xi and a first order decay term, divided by a time con-
stant τi. For each species in the Boolean logic network, the
ODE derived satisfies the condition that if the input of the
gate to that species are Boolean (i.e. when species states
tend to the limit 0 or 1), then the ODE for the species con-
sidered returns a value that is consistent with the value
returned by the corresponding Boolean logic gate. The
formalism used to derive the logic based ODEs was devel-
oped by [36] and is also implemented in the MATLAB
toolbox Odefy [31]. For the optimization, CNORode gen-
erates a file that takes both discrete inputs that define
the structure (optimized using one of the other above-
mentioned methods) and continuous input values that
correspond to the parameters of the ODEs (thatCNORode
aims to optimize). CNORode then trains the parameters
of the equations to fit the data, using a choice of two
stochastic, global optimization algorithms (a genetic algo-
rithm or Scatter Search [38], as stated above). We can see
in Figure 2 that CNORode accurately captures all of the
dynamic features of the system at hand, i.e. the negative
feedback between ERK and SOS-1, the negative feedback
loop between NFκB and IκB, and the partial activation of
p38 upon EGF and TNFα combined stimulations.
However, compared to the methods previously men-

tioned, this method requires: (i) the optimization of more
parameters, therefore limiting the scalability, and (ii) the
availability of detailed time resolved data.

Case study: application of CellNOptR to a study of signaling
in liver cancer
We illustrate the Boolean 2 steady-states CellNOptR
method by applying it to a real data set. We use phospho-
rylation measurements (subset of the data in [1]) obtained
from a human hepatocellular carcinoma cell line (HepG2)
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at 30 and 3 hours after perturbation with combinations
of selected small molecule inhibitors. The experiment was
designed to study the early and late response of tomultiple
inducers of inflammation, innate immunity and prolifer-
ation (see Additional file 1 for a full description of the
readouts and perturbations; note that species are referred
to in capital letters if the Uniprot identifier is used and in
small letters if a colloquial/collective name is used). We
use one of the variants of the Prior Knowledge Networks
(PKN) that was used to analyze the data from [1] at 30
minutes in [11]. We extend the previous analysis [11] to
include the data from [1] at 3 hours (see supplements).
As described, CellNOptR first pre-processed the PKN

according to the data. Once compressed and expanded,
the model contains 109 interactions. After training at τ1,
between 24 and 27 edges are selected (based on 3 separate
optimization runs, see Additional files 2 and 3), leading to
an average training score of 0.031 (vs 0.066 for an empty
model and 0.084 for the starting PKN-derived model).
In this case, the empty model performs better than the
starting PKN-derived model because many data points
are close to 0, implying that many edges from the start-
ing network are probably not functional in the context
under investigation. Therefore, not turning any node ’ON’

actually achieves a better score than including all the edges
(of which the vast majority are activating). After training
at τ2, between 3 and 7 additional edges are selected, lead-
ing to an average optimization score of 0.094 (compared
to an average of 0.124 if random edges are selected). Addi-
tional file 4: Figure S1 contains an example of a trained
model and the corresponding data fit. We observe that
the training does improve the fit of the model to data sig-
nificantly at both time points compared to the starting
PKN (t test p value < 6.10 − 6 for τ1 and 0.03 for τ2).
The improvement at τ2 is not as drastic as the one at τ1,
likely because the PKN was designed for early events and
therefore might not include all necessary prior knowledge
edges to capture events happening at later times.
Nonetheless, the resulting trained models recapitu-

late some important behaviors. For example, it correctly
captures a context-specific decrease in creb at τ2(see
Figure 3). The creb measurements increase at τ1 upon
IL1A stimulation but this stimulated state is sustained
at τ2 only if the signals going through KS6A1 (p90RSK)
and KS6A4/KS6A5 (msk1/msk2, which are indirectly
stimulated by IL1A) are both present (i.e. whereas an
OR gate between these two branches accurately cap-
tures the increase of creb at τ1, an AND gate better
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Figure 3 Subset of the results of a CellNOptR analysis on two time-point data from human hepatocellular carcinoma cells. The data
consists of phospho-proteomic measurements of 16 proteins in response to multiple inducers of inflammation, innate immunity and proliferation,
applied in combination with selected small molecule inhibitors [1]. This figure shows a simplified version of a small subset of the trained model
(blue nodes=measured, green=stimulated, red=inhibited; green edges=picked at τ1, blue edges=picked at τ2), along with the data associated with
the creb node (right, solid black line), overlaid with the simulation results (dashed blue line) for a selected set of conditions. The background color
indicates the goodness of fit of simulation results to data. We can see that the model captures the behavior of creb accurately: creb increases at τ1 if
either MP2K2/MP2K1 or p38 are activated (in this case, because both are downstream of IL1A, they are both activated in the absence of inhibitors
and presence of IL1A). This activation is maintained if both MP2K2/MP2K1 and p38 are activated, and is lost at τ2 (180 minutes) if only one of them is
activated (i.e. in this case if either is inhibited). This behavior is captured in the model by selecting an OR gate from MP2K2/MP2K1 and p38 to creb at
τ1, and an AND gate at time τ2.
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captures the behavior at τ2). If there is an inhibition
in either of these branches, creb does get activated at
τ1 but then decreases at τ2. This means that for the
creb signal to be maintained at τ2, the presence of both
KS6A1 and KS6A4/KS6A5 is required. Such a behav-
ior could, for example, be explained by a constitutive
dephosphorylation of creb that can only be counter-
acted by the presence of both signals from KS6A1 and
KS6A4/KS6A5. Sustained versus transient phosphoryla-
tion of creb following stimulation of the same receptor
(NMDA) was observed in neurons and was shown to
depend on the activity of the phosphatase Calcineurin
[42]. This type of behavior is particularly relevant when
studying diseases such as cancer. Indeed, sustained acti-
vation of transcription factors such as creb which are
normally tightly regulated through transient phosphory-
lation has been proposed to play a role in oncogenesis
[43]. This illustrates how our method captures dynam-
ics occurring at different time scales, using relatively large
scale models and only two time points. These features
could not be captured by a one time point steady-state
approach.

Providing a user friendly interface with CytoCopteR
Researchers who generate the kind of biochemical data
that is amenable to logic modeling might not be famil-
iar with R. Hence, we provide an intuitive and easy
to learn graphical user interface (GUI) to our methods
through a Cytoscape plugin, CytoCopteR. This results in
a point and click interface to our methods where users
can run the same steps as they would using an R script
but without having to write any code (see Figure 4).
Given that this is a front-end to the R algorithms, con-
sistency is ensured between the results obtained through
the GUI and those obtained through corresponding
scripts. This arrangement also enables continued devel-
opment of the methods and implementation in a single
platform (R).

Strengths of the CellNOptRmodelling platform
A range of tools exists for manipulating, creating and
simulating logic models (see Figure 5 for a more in
depth description). CellNOptR differs in that it focuses
on providing a method to systematically train models to
data. This is an essential feature because, by leveraging
imperfect and incomplete prior knowledge and dedicated
signaling data, it builds and simulates models that are
fitted to the data (thus cell type and context specific)
and achieves a higher predictive power [11]. This has
proven useful, for example, to obtain cell specific models
that reveal different wiring between cell-types, by train-
ing a network separately to data from different cell types
[44]. Because this is achieved with a simple modeling

framework, one can investigate large networks with rel-
atively sparse data compared to other formalisms for
modeling of signaling networks [12,17,45,46]. The mech-
anistic insight that can be gained is higher than in purely
data driven models, which can only capture relationships
between perturbed and observed variables (models built
using our pipeline also include intermediates).
The method described in [11], i.e. the Boolean sin-

gle steady-state implementation, was previously imple-
mented in a MATLAB toolbox, CellNOpt. CellNOpt was
also extended to constrained fuzzy logic as described
in [35]. However, the Boolean 2 steady-states, discrete
time and logic ODE variants are unique to the R imple-
mentation presented here. This extension is an essential
strength of CellNOptR since the toolkit presented here
uniquely covers a wide variety of different logic model-
ing methods adapted to different experimental scenarios
and modeling goals, all available within the same training
framework.

Future developments
We consider the existing version of CellNOptR as a robust
and flexible starting point for multiple developments. For
example, we are exploring alternative methods for data
normalization. The core of CellNOpt is the training to
data, and we are exploring multiple strategies for this,
including deterministic methods such as integer linear
programming [47,48] and answer set programming [49],
metaheuristics [38], and probabilistic frameworks [25].
While CellNOpt already covers multiple logic for-

malisms, we are exploring other variants, in particular
asynchronous simulation schemes for the CNORdt exten-
sion. This could lead to different results to those obtained
with the synchronous scheme, which could be particu-
larly insightful when handling single cell time course data.
Given the stochastic nature of an asynchronous update
scheme, when using population averaged data (as has
been the case so far) one needs to run the simulation
many times to generate a set of trajectories from which
a consensus can be obtained. This is considerably more
demanding computationally, and is not likely to provide
additional insight in most simple cases. In the case of the
example toy model from Figure 2, asynchronous simula-
tion where activation rules are fired at random did not
provide additional information (see Additional file 5). Dif-
ferent conclusions might be obtained when using larger
networks with more complicated feedback, or when infor-
mation is available regarding the order of firing of dif-
ferent activation rules. We are therefore currently work-
ing on making alternative simulation schemes available,
as well as faster versions of those (mostly based on C
implementations).
Another main area of development is the integration

of data-driven reverse engineering tools to find links



Terfve et al. BMC Systems Biology 2012, 6:133 Page 10 of 14
http://www.biomedcentral.com/1752-0509/6/133

A

B

C

Figure 4 Screenshot of CytoCopteR, the Cytoscape plugin for CellNOptR. Users can load or build a network in Cytoscape and load a matching
data set in the MIDAS format, i.e. a CSV file with a row for each condition/time combination, a ”TR:” column for each stimuli/inhibitor
(0=absent,1=present) and for each readout a ”DA:” column (time) and a ”DV:” column (measurement). CytoCopteR annotates the original network
with an overlaid color code on the edges and nodes (see subfigure A, left) reflecting the experimental (stimulated, inhibited, measured) and
pre-processing (compressed or not) status for the nodes. Users then train the model to data, currently using the Boolean steady-state
implementation in CellNOptR. The parameters for the training can be changed through explicit panels such as the one on subfigure B. Results of the
pipeline are reported as in CellNOptR, via a graph displaying experimental and simulated data overlaid (see panel C), plots of the evolution of fit
during the training process and diverse information of the training process (not shown). Furthermore, the scaffold network (after compression and
expansion of the original network) is represented as a cytoscape network, with the same overlaid color code (see panel subfigure A, right) and
weighting the edges according to their presence in the family of models retrieved.

missing in the starting network [15]. A main strength of
CellNOptR is also one of its weaknesses: the optimiza-
tion is constrained by the PKN. To address this limitation,
the plugin CNOFeeder allows to propose candidate links
based on areas of the data that are poorly captured by
the trained model, using multiple reverse engineering
methods [50].
Finally, we are working to make communication and

exchange of data and models to and from CellNOptR both
easy and consistent. A requirement towards this goal is
compliance to standards. We are currently working on
using the Systems Biology Graphical Notation (SBGN,
http://www.sbgn.org/) for visualization of models using a

standard set of symbols. Towards this end, we have devel-
oped the Cytoscape plugin CySBGN (http://sourceforge.
net/projects/cysbgn/), that we plan to integrate with
CytoCopter. Furthermore, we are developing, as part of
the CoLoMoTo initiative (www.colomoto.org) a qualita-
tive extension for SBML (http://sbml.org/Community/
Wiki/SBML Level 3 Proposals/Qualitative Models),
SBML-Qual. This extension will allow not only a smooth
exchange of our models with other logic modeling tools
with complementary features, but also automatic access
to resources for prior knowledge information that are
compliant with it, such as path2models (http://www.ebi.
ac.uk/biomodels-main/path2models). The CellNOptR

http://sourceforge.net/projects/cysbgn/
http://sourceforge.net/projects/cysbgn/
http://sbml.org/Community/Wiki/SBML_Level_3_Proposals/Qualitative_Models
http://sbml.org/Community/Wiki/SBML_Level_3_Proposals/Qualitative_Models
http://www.ebi.ac.uk/biomodels-main/path2models
http://www.ebi.ac.uk/biomodels-main/path2models
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Figure 5 Comparison with other softwares for logic modeling. Adapted from [19]. These methods can be distinguished by their treatment of
state and time. CellNetAnalyzer uses steady state analysis of logic models to better understand signaling and regulatory networks [24]. MetaReg [25]
defines the prior knowledge of a system as a multi-state probabilistic model that can be simulated and visualized. BooleanNet [26] allows for
synchronous and asynchronous simulations (as well as mixed approaches) and can also facilitate piecewise linear differential equations for a more
detailed time resolution. BoolNet [27] also allows for synchronous and asynchronous simulations, and includes functionalities to deal with
probabilistic Boolean networks where multiple transition functions can be chosen for each node. ChemChains is a software suite that allows for
synchronous and asynchronous updating [28]. GINsim offers a suite of simulations methods that incorporates a graph editor as well as various tools
to explore state transitions [29]. SQUAD [30] and Odefy [31] create continuous systems from logic models. Genetic Network Analyzer is a platform
for modeling genetic regulatory networks, using piecewise linear models to model continuous processes [32]. CellNOptR and its extensions
(CNORfuzzy, CNORdt and CNORode) cover steady state discrete and continuous modeling in both state and time. Note that because multi-state is a
generalization of binary, in principle all methods that handle multi-states also handle binary.

project is in continuous development and users can find
updates on the project website (www.cellnopt.org).

Conclusions
Understanding signal processing in cells is an essential
goal of biological research, not only for fundamental
reasons but also for its implications and potential appli-
cations in disease contexts. Modeling approaches are
particularly suited to this task because (i) signaling net-
works are complex systems assembled from the dynamic
and context-dependent interactions of many compo-
nents, and (ii) obtaining predictive as well as mechanistic
insights is extremely valuable in this context. CellNOptR
makes use of the complementarity between rich con-
text specific biochemical data and imperfect/incomplete
accumulated knowledge to build and train logic
models.
CellNOptR models are constrained by previous knowl-

edge but trained to data, making them both context
and cell line specific, thereby providing enhanced pre-
dictive and mechanistic insights. A key strength of the

toolkit formed by CellNOptR, CNORdt, CNORode and
CNORfuzzy is that it covers multiple logic modeling for-
malisms (Boolean steady-state, Boolean multiple steady-
state, Boolean time courses through synchronous update,
steady-state constrained fuzzy logic and continuous logic-
based ODEs). This allows users to choose between those
formalisms to best match the richness of their data
and their modeling goals. We believe that this choice
is greatly simplified by the availability of these meth-
ods in a common framework. One can also combine
formalisms: for example, train a large network to data
using the efficient multiple pseudo steady state method,
and then convert the resulting sparser model into an
ODE model and train it to time course data using
CNORode.
Our toolkit is implemented in the free and open source

R language and Cytoscape platform which benefit from a
large user community and already come with a wide range
of packages for biological data processing and analysis.
Users should therefore be able to use CellNOptR as part
of their own data processing pipeline, taking advantage

www.cellnopt.org
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of existing R/Bioconductor packages (e.g. for data nor-
malization, visualization etc.) and developing their own
custom-made functions as required. Finally, in order to
make our methods more accessible to non-programmers,
we provide a Cytoscape interface to the R implementation
as a plugin, CytoCopteR.

Availability and requirements
The main CellNOptR package is available on Bioconduc-
tor (http://www.bioconductor.org/packages/release/bioc/
html/CellNOptR.html) as well as the CNORdt, CNORode
and CNORfuzzy add-on packages. The CytoCopteR
Cytoscape plugin is available on www.cellnopt.org and
from the Cytoscape plugin manager. The simplest
CellNOptR method (Boolean steady state) and the
fuzzy logic methods are available in a MATLAB ver-
sion of the toolbox, also available at www.cellnopt.
org.
More details:

- Software name: CellNOptR (CellNetOptimizeR),
with plug in packages CNORdt (CellNetOptimizeR
discrete time), CNORode (ordinary differential
equations) and CNORfuzzy (fuzzy logic), and
Cytoscape plug in interface CytoCopteR.

- Project home page: www.cellnopt.org
- Operating system(s): platform independent
- Programming languages: R
- Other requirements: R (tested on 2.13 and above),

Cytoscape 2.x
- License: GNU-GPL, version 3 except CNORfuzzy

which is GNU-GPL version 2.

Additional files

Additional file 1: Experimental setting for the HepG2 analysis. HepG2
cells were stimulated with the above stimuli in combination with the
above-mentioned inhibitors in different combinations. The 16 species
mentioned here were then measured using a luminex assay at 30 minutes
and 3 hours post stimulation, leading to a total of 136 samples. All species
are mentioned with their Uniprot identifiers (capital letters) or common
name where applicable (small caps letters).

Additional file 2: Summary of results from 3 independent trainings
for the HepG2 example. Frequency of selection of each edge in the
scaffold model, across all models with a score within 10% of the best
scoring model, summarized across 3 independent training runs. The top
panel shows the summary for the edges at time 1and the bottom panel
shows the equivalent for time 2. For time 1, 13 edges are consistently
selected across most (> 80%) of the best performing model, and 24 edges
are picked in over 60% of the trained models. A partial redundancy in the
effect of some edges explains that a different combination of edges can be
picked across different models with limited impact on their scores. At time
2 (lower panel), 5 edges are consistently selected across over 50% of the
best scoring models. These lower numbers reflect the fact that the training
at time 2 relies on a single trained model as a starting point for both the
simulation and the edge search space. Therefore, the family of trained

models obtained for each of the training runs explore different search
spaces and have different initial conditions.

Additional file 3: Technical aspects of the HepG2 analysis. This file
provides additional information regarding this analysis, such as the
parameters used etc.

Additional file 4: Example of results for the HepG2 real data
application. A. Previous knowledge network used for this analysis. B.
Example of a trained model obtained in one of the optimization round,
with a subset of the simulation results obtained with this network (C). For
the networks the color codes are as follows: nodes: green=stimulated,
red=inhibited, blue=measured, blue with red stroke=measured and
inhibited, dashed stroke=compressed; edges (in the trained model in
panel B): green=selected at time 1, blue=selected at time 2, grey=not
selected in the trained model. In panel C, black continuous lines=data,
dashed blue lines=simulation results obtained with the model in B. The
background color reflects the goodness of fit of the model to data: green=
the chosen Boolean value is closer to the data than the opposite Boolean
value (the darker, the closer), red= the chosen Boolean value is further from
the data than the opposite Boolean value (the darker, the further).

Additional file 5: Exploration of an asynchronous updating scheme
for the CNORdt extension. This figure shows the results obtained by
training the toy model to data as in Figure 2 but using an asynchronous
updating scheme with random firing order of the activation rules, in
development for the CNORdt extension. We can see that asynchronous
updating adds no new information that is applicable to training the model
to data, in this case. For the same conditions as Figure 2, the asynchronous
plots show the fraction of simulations (out of 100) where each specified
node is switched on (y-axis) after each update of the network (x-axis). The
error bars show ± 1 standard deviation of the 100 simulations at each
iteration (only 1 in every 10 displayed). In the case of the above model,
negative feedback causes oscillations and oscillating nodes average ∼ 0.5.
All other nodes stabilize at 0/1. The synchronous plots use the same
simulator described in the main text under CNORdt, where all nodes are
updated at the same time t according to the state of their input nodes at t-1.
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