
Töpfer et al. BMC Systems Biology 2012, 6:148
http://www.biomedcentral.com/1752-0509/6/148

RESEARCH ARTICLE Open Access

Integration of time-resolved transcriptomics
data with flux-based methods reveals
stress-induced metabolic adaptation in
Escherichia coli
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Abstract

Background: Changes in environmental conditions require temporal effectuation of different metabolic pathways in
order to maintain the organisms’ viability but also to enable the settling into newly arising conditions. While analyses
of robustness in biological systems have resulted in the characterization of reactions that facilitate homeostasis,
temporal adaptation-related processes and the role of cellular pathways in the metabolic response to changing
conditions remain elusive.

Results: Here we develop a flux-based approach that allows the integration of time-resolved transcriptomics data
with genome-scale metabolic networks. Our framework uses bilevel optimization to extract temporal minimal
operating networks from a given large-scale metabolic model. The minimality of the extracted networks enables the
computation of elementary flux modes for each time point, which are in turn used to characterize the transitional
behavior of the network as well as of individual reactions. Application of the approach to the metabolic network of
Escherichia coli in conjunction with time-series gene expression data from cold and heat stress results in two distinct
time-resolved modes for reaction utilization—constantly active and temporally (de)activated reactions. These patterns
contrast the processes for the maintenance of basic cellular functioning and those required for adaptation. They also
allow the prediction of reactions involved in time- and stress-specific metabolic response and are verified with respect
to existing experimental studies.

Conclusions: Altogether, our findings pinpoint the inherent relation between the systemic properties of robustness
and adaptability arising from the interplay of metabolic network structure and changing environment.
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Background
The steady-state metabolism of microorganisms has
evolved to optimize growth under ambient conditions [1].
However, under suboptimal conditions or upon pertur-
bation, organisms must maintain homeostasis and adapt
their modes of operation to ensure viability [2]. Main-
tenance of homeostasis has already been addressed in
the context of studying system’s robustness [3,4]. The
underlying mechanisms stabilize a cellular function under
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changing conditions and often involve feedback control
[5,6]. In turn, adaptability refers to adjustment in sys-
temic properties (e.g., utilization of available nutrients)
in order to facilitate the transition between conditions.
The two properties—robustness and adaptability—do not
exclude each other since both arise from the necessity of
an organism to cope with its environment.
While robustness has been widely studied [4,7],

(metabolic) adaptability has not been systematically inves-
tigated, largely due to the lack of a precise formula-
tion and its global effects on the organism. Therefore,
any approach to capture and analyze adaptation-related
processes requires the consideration of a comprehensive
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network of metabolic pathways in order to capture the
complex interplay of network constituents.
Several approaches that integrate data with graph-

theoretic methods have been applied to obtain subnet-
works engaged under different conditions. For instance,
[8] uses transcriptomics data in combination with
protein-protein interaction networks to identify active
subnetworks that show levels in differential expression
for particular subsets of conditions. However, graph-
theoretic approaches neglect the stoichiometry of the
considered biochemical reactions. Thus, it is difficult to
relate the findings from these approaches to network
functionality and growth.
With the increasing availability and quality of genome-

scale metabolic models and high-throughput data,
constraint-based methods that integrate these data have
found broad applications. For instance, a genome-scale
metabolic model has been coupled with transcriptomics
data, based on Boolean logic, to improve flux predictions
[9]. Thereby, a flux is constrained to zero, if the respec-
tive transcript has not been observed. Another attempt
employs transcriptomics and proteomics data to derive
tissue-specific metabolic activity [10] and is based on a
trivalued logic to maximize the number of reactions in
the network that are consistent with the expression data.
To overcome the issue of selecting an arbitrary thresh-
old value in considering a gene “on” or “off”, a method,
referred to as MADE, was proposed. It employs the statis-
tical significance of changes in gene or protein expression
data between two cellular states to extract metabolic
models (subnetworks) that reflect the expression
dynamics [11].
While constraint-based methods usually provide solu-

tions that optimize a certain objective, elementary flux
modes (EFMs) capture the whole spectrum of metabolic
steady states of a given network. An EFM is defined as
a minimal set of reactions that can operate at steady
state [12]. EFM-based analysis have been applied to study
robustness [13] and explore structural properties of new
pathways [14]. Although promising attempts for enumer-
ating subsets of EFMs, identifying pathways in genome-
scale metabolic networks [15,16], as well as for sampling a
given number of EFMs [17] have been proposed, the prob-
lem of combinatorial explosion restrains the computation
of EFMs to networks of moderate size [18].
Flux-based, i.e., constraint- and EFM-based, approaches

have proven useful in characterizing stationary metabolic
states of an organism. However, the adaptation of
metabolism to changing conditions is a temporal process,
and the state of the organism strongly depends on the time
scale after the perturbation. Therefore, in order to capture
adaptation-related processes, it is necessary to develop
and apply a computational method which allows the inte-
gration of time-series data, uses the advantages of flux-

based methods, and overcomes some of the shortcomings
of the briefly reviewed approaches.
Here we present a novel method, which we term

Adaptation of Metabolism (AdaM), to identify reactions
and pathways that enable system adaptation upon exter-
nal perturbation. AdaM integrates time-series transcrip-
tomics data with flux-based bilevel optimization to extract
minimal operating networks from a given large-scale
metabolic model. The minimality of the extracted net-
works enables the computation of EFMs for each time
point. These sets of EFMs are in turn used to character-
ize the transitional behavior of the network as well as of
individual reactions (see Figure 1). The theoretical frame-
work is applied to recently obtained transcriptomics data
for cold and heat stress from E. coli [19] and is compared
to MADE. Our findings reveal differences in response
patterns for the two investigated conditions and charac-
terize (de)activation patterns associated to temperature
stress. The model-based and data-driven predictions are
verified with respect to results from the existing experi-
mental studies. Finally, our results are used to posit novel
hypotheses related to temperature-associated metabolic
adaptation processes.

Methods
Weighting of reactions
Transcriptomics data are used to weight reactions that are
catalyzed by the enzymes encoded in the respective genes.
To determine pathways that contribute to the metabolic
state of the organism, we consider reactions, that are
not only temporally activated upon the changed environ-
mental condition, but also reactions that are constantly
active. Therefore, we combine information obtained from
the analysis of differential expression as well as the gene
expression levels themselves. The significance of differen-
tial behavior, is captured by the p-values from a differential
expression analysis. These values are transformed into
their corresponding z-scores, whereby a larger z-score
denotes a higher significance that the respective gene is
differentially expressed. To capture the gene-activation
state we determine a gene-specific threshold. To this end,
we perform bimodal distribution analysis for each gene
over the available conditions and all time-points. Due
to the transient (de)activation upon perturbation, genes
often show a bimodal distribution in expression values
[20], indicating an active and an inactive state. For a gene
whose distribution of expression values is a poor match to
the bimodal distribution, we use the expression median as
a threshold (cf. Additional file 1). Based on these values,
we define the weight w of a gene as follows:

w = I · z + ξ − ϑ

ϑ
, (1)

where z denotes the z-score, ξ is the expression value, and
ϑ is the determined threshold value. The trivalued indica-
tor I takes values of 1, -1, or 0 if the gene is differentially
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Figure 1 Schematic depiction of the computational approach. A genome-scale network and time-series transcriptomics data are used to
extract time- and condition-specific minimal networks. Data for different environmental conditions are analyzed to weight genes based on
differential expression and bimodal distribution analyses. The gene-reaction annotation of the network reconstruction is used to map the weights
onto the metabolic model. A minimization approach is applied to extract minimal networks. EFM analysis is conducted on the minimal networks,
and the resulting sets of EFMs and the derived fractional appearance profiles are employed to characterize the transitional behavior of the network
and of individual reactions, respectively.

up- or down-regulated, or shows no differential behavior,
respectively. The first term in Equation (1) refers to the
differential expression, while the second one combines the
normalized difference between the expression value and
the gene-specific threshold.
We determine weights for transcriptomics data from the

cold and heat stress and the control conditions spanning
seven time points (0 - 90 min) and map them onto the
genome-scale metabolic network reconstruction of E. coli
K-12 [21]. If a reaction is annotated with several genes,
the AND rule, which accounts for protein complexes, is
replaced by using the lowest weight. Moreover, we use the
sum of weights if the genes encode isoenzymes and are
connected by the OR rule [22]. With this setting, 81% of
the reactions in the network can be weighted by experi-
mental data (cf.Additional file 1). Furthermore, annotated

genes, for which the corresponding gene data are miss-
ing, are assigned themedian weight of all annotated genes.
Reactions that are not associated to a gene in the used net-
work are assigned the median weight over all annotated
reactions.

Data-driven network reduction—themin-max problem
In the following, we develop a formulation of the prob-
lem whose solution yields the minimal network of largest
weight, quantifying the compliance with the data. More
formally, we determine the minimal number of reactions

that maximize
N∑
j=1

wj · vj, where wj and vj are the weight

and the flux of reaction j, respectively. The problem can
be cast as a bilevel mixed-integer linear program (MILP),
Equations (2)-(8), where each reaction j is assigned a
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Boolean variable yj ∈ {0, 1}. If yj = 0, reaction j does
not carry any flux and is not included in the network; if
yj = 1, the reaction carries flux in the range determined
by the flux boundaries (Equation (6)). The outer optimiza-
tion level seeks to minimize the number of reactions in
the network (Equation (2)), while fulfilling the inner con-
straints. The inner problem definition is a modification of
the standard flux balance analysis (FBA) [23] formulation
(cf. Equation (4) and Additional file 1). However, instead
of biomass production, the objective function maximizes
the sum over weighted fluxes (Equation (3)).
A further constraint on the fluxes is imposed by

demanding that a fraction fmin of the maximum biomass
production fmax of the complete network is achieved
(Equation (5) and [24]). This requirement is based on opti-
cal density data from the same experimental setup, which
indicate a growth rate of about 10 to 30% of the growth
rate under ambient conditions (cf. Additional file 1).
To account for the medium (modified MOPS minimal
medium) on which the cell cultures were grown, con-
straints on the exchange reactions are taken from [21]
and only inorganic compounds and glucose are allowed to
enter and exit the system.
To reduce the computational complexity, we seek to

reduce the number of integer variables. To this end, we
distinguish between indispensable reactions, which make
up most of the biomass production and dispensable reac-
tions, which have a negligible contributions to growth.
To define these two groups, we delete, one by one, every
reaction and performed FBA on the perturbed network. If
the resulting biomass production remains above a defined
threshold (99%), we consider the reaction dispensable
for the organism’s viability under ambient conditions (for
robustness of the findings, see the Results section). Reac-
tions that are considered indispensable are not assigned
a Boolean variable. Altogether, we obtain the following
formulation

minimize
N∑
j=1

yj

yj

subject to maximize
N∑
j=1

wj · vj (Inner)

vj
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

subject to
N∑
j=1

Sij · vj = 0

N∑
j=1

cj · vi ≥ fmin

0 ≤ vj ≤ vmax
j · yj, ∀j ∈ D

0 ≤ vj ≤ vmax
j , ∀j ∈ N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

yj = {0, 1}, ∀j ∈ D (Outer),

where Sij is the stoichiometric coefficient of metabolite
i in reaction j, cj is the contribution of vj to the objec-
tive function and vmax

j is the upper boundary on vj, while
D and N denote the reactions that are dispensable and
indispensable, respectively.
Although we investigate time-series data, the program

formulation employs a the quasi-steady-state assumption
(Equation (4)). We assume a separation of the time-
constants at which transcriptional and metabolic regu-
lations take place. This is justified by the evidence that
changes taking place on the metabolic level are gen-
erally much faster (seconds) compared to those taking
place on the transcriptional level (minutes) [25]. In other
words, enzyme dynamics occurmore quickly compared to
changes in gene expression.
To solve the min-max MILP, it is transformed from a bi-

level to a single-level MILP. This procedure employs two
steps: (1) finding the dual for the inner linear program
[26] and (2) removing the occurring bi-linear terms [27]
(cf. Additional file 1).

Fractional appearance of reactions in EFMs
The reduced size of the networks allows the computa-
tion of sets of EFMs for the time- and condition spe-
cific minimal networks. It has already been shown that
the importance of a reaction for network functional-
ity can be characterized by the number of EFMs in
which it is involved [13]. Extending this concept to the
time domain, we define the fractional appearance Xij of
a reaction i at time j as the ratio between the num-
ber of elementary modes involving reaction i and the
total number of elementary modes at time j: X(i, j) =
Nr. of EFMs including reaction i at time j

Nr. of all EFMs at time j . This definition allows to
characterize the temporal changes in network functional-
ity. A large fractional appearance of a reaction does not
only indicate its increased utilization, but also the activa-
tion of related processes, which result in an increased con-
tribution of this reaction to the overall number of EFMs.

Results
Time- and condition-specific minimal operating networks
For both, cold and heat stress, the minimal networks
include 416 to 427 metabolites interconnected by 480
to 486 reactions. The biomass production, as a result of
the constraint from the minimization approach, ranges
between 0.98 · 10−5 and 4.99 · 10−5 mol

g·DW−hr .

Comparison to networks extracted fromMADE
We compare the sets of reactions included in the time-
and condition-specific networks extracted by both AdaM
and MADE. We find that on average 66.6% of reactions
are shared between the extracted networks over all time
points and conditions, with larger average overlap for the
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heat condition of 67.2% (percentages with respect to the
smaller network, i.e., the network extracted by AdaM). In
addition, we determine the expected value of the overlap
between the networks extracted by MADE and a random
set of reactions of the same size as the networks extracted
from our approach. By considering 1000 repetitions, we
find this value to be 52.3%, thus confirming the similarity
between the two approaches. The results are summarized
in Tables 1 and 2.

EFM-based characterization of adaptability
The number of EFMs in the minimal networks ranges
between 1060 and 9582, which is small compared to other
metabolic network models of similar size [13,18]. The
extracted networks include only putatively active reac-
tions and no inactive alternative pathways, and thus cap-
ture a specific metabolic state of low flexibility. In the
following, the sets of EFMs are analyzed with respect to:
(1) robustness to variations in the network extraction pro-
cess, (2) stress adaptation of the network as a whole, and
(3) the transitional behavior of individual reaction.

Robustness of the optimization approach
We investigate the robustness of the approach with
respect to: (1) threshold variations for the optimization
approach and (2) slightly suboptimal networks. To address
the first aspect, we repeat the network minimization for
three different thresholds to distinguish between dispens-
able and indispensable reactions. In addition, we examine
three different values of minimal biomass production (i.e.,
1%, 10% and 20% of the optimal biomass in the original
network). To compare the results, we use the intersection
of reactions in the minimal networks for each time point.
The average overlap of reactions is 94.4% for cold and
94.3% for heat (with respect to the smaller network) when
comparing all possible parameter sets. When comparing
the average overlap of networks for different time-points,
we find it to be 94.1% for both cold and heat shock,
indicating bigger similarity for networks extracted with
different thresholds than for different time points.
To test the behavior of slightly suboptimal networks,

we add noise to the weights of 100 randomly selected

Table 1 Comparison of the network properties for the
time- and condition-dependent minimal networks for
AdaM andMADE

Metabolites Reactions EFMs

AdaM 416-427 480-486 1060 - 9582

MADE 545 658-806 †

original network 761 1075 †

Given are the number of metabolites and reactions for the networks extracted
by our approach and by MADE compared to the original network.
† Note that, with the currently available tools, only our approach extracts
minimal networks for which the full set of EFMs can be computed.

Table 2 Comparison of the network overlap for the time-
and condition-dependent minimal networks between
AdaM andMADE

Time in min Cold Heat Random

10 62.8 62.6

20 66.7 68.5

30 67.8 69.8

40 63.8 68.3

50 62.0 67.9

60 69.0 63.2

70 70.6 70.2

average 66.1 67.2 52.3

Given is the overlap in % of reactions included in the networks extracted by our
approach and by MADE with respect to the smaller network. The average value
for all time-dependent cold- and heat-shock specific networks are significantly
higher than the values for a randomly drawn set of reactions of the same size.

reactions. As a maximum noise level, we set 1% of the
total range of weights. We repeat the analysis for differ-
ent time points and threshold values, resulting in more
than 1000 network perturbations. Comparing the result-
ing sets of EFMs, we find an average overlap of 82.0% over
pairs of EFM sets. Therefore, the considered network per-
turbations together with variations in the used threshold
values confirm the robustness of the extracted networks
with respect to EFMs. Furthermore, this suggests that
EFMs can be used to develop time-resolved descriptors of
reactions’ contribution to network functionality.

Cold and heat stress response show distinct temporal
behavior
To investigate the global properties of the transition, we
determine the similarity for consecutive sets of EFMs and
sets of dispensable reactions by using the Jaccard index.
Changes in the usage of EFMs as well as dispensable reac-
tions over time suggest adaptation-relation processes. The
results are illustrated in Figure 2, showing heatmaps of the
Jaccard index for cold and heat shock.
The values for the Jaccard index for consecutive sets of

EFMs for the minimal cold stress networks are slightly
lower (0.009-0.252) compared to those from the heat
stress networks (0.012-0.271). These changes in the usage
of EFMs, resulting from data-driven network extrac-
tion, can be regarded as changes in the distribution of
fluxes through the networks. Moreover, the values for the
Jaccard index for dispensable reactions remaining in the
minimal networks are similar for cold (0.697-0.759) and
heat stress (0.618-0.771), suggesting similar changes in
activation patterns of reactions.
Considering the patterns of change, for cold shock we

observe the first strong dissimilarity between sets of EFMs
between 0 and 20 min after stress application, indicat-
ing that the main metabolic response takes place in this
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Figure 2 Global characterization of temporal adaptation-related
networks. Transitional behavior of the metabolic network after heat
and cold stress perturbation. Heatmap of the Jaccard index from
(A) sets of EFMs and (B) sets of dispensable reactions included in the
minimal networks from consecutive time-points. A low Jaccard index
denotes dissimilarity.

time range. For heat shock, the onset of the response is
slightly shifted in time. These findings suggest that the
stress response for the two conditions takes place on two
slightly different time regimes. Such tendency can also be
observed when comparing the time course of the simi-
larities for the sets of dispensable reactions. In addition,
for both conditions, the peak in dissimilarity between sets
of EFMs occurs between 30 and 50 minutes. Between 50
and 90 minutes, both condition-specific networks exhibit
similarity with respect to their sets of EFMs and sets of
dispensable reactions, demonstrating that the system has
started settling in the new condition.

Fractional appearance of reactions in EFMs discriminates
two types of reactions
For ease of interpretation, we focus our analysis on the
50 reactions of highest fractional appearance for each
time-point. The union of these selected reactions over all
time points contains 71 and 76 reactions for the cold and
heat shock, respectively. Out of these, 43 are conserved
between the two stresses.
To gain general insights into the patterns of the frac-

tional appearance profiles of these selected reactions, we
determined the Kendall correlation τ (cf.Additional file 1).
The value captures (dis)similarities in the temporal usage

between reactions. A heatmap representation of the cor-
relation matrix is shown in the Additional file 1: Figure
S1. The results hint at the presence of different temporal
patterns apparent from the clustering.
The working hypothesis is twofold: Reactions that are

grouped together are expected to belong to the same path-
ways, or are regulated in a similar manner (e.g., by the
same allosteric regulator). Furthermore, groups of reac-
tions exhibiting mostly negative correlation towards other
reactions indicate different patterns of usage over time
and are probably stress induced.
To further investigate this hypothesis we cluster the

fractional appearance profiles of the previously selected
reactions (cf. Materials and Methods). The results of the
clustering are shown in Figure 3 (a full list of all clus-
tered reaction names can be found in the Additional file 1:
Table S2). The shape of the profile in each cluster suggests
two groups of reactions: those which are active across all
time points, represented by flat profiles, and those whose
usage changes during the progression of stress applica-
tion, exhibiting fluctuating patterns. More specifically, a
reaction which exhibits fractional appearance greater than
zero over all time points is considered to have a flat profile.
In contrast, a reaction which exhibits fractional appear-
ance of zero in at least one time point is considered to have
a fluctuating pattern. Depending on the employed cluster-
ing method, there could be clusters exclusively composed
of reactions showing flat or fluctuating profiles as well as
clusters containing reactions of both profiles. For instance,
for the clustering of fractional appearance profiles under
cold stress in Figure 3, we observe that clusters 1, 2, 4, and
6 consist only of reactions with fluctuating profiles, clus-
ters 7 and 9 of reactions with flat profiles, while clusters 3,
5, and 8 include reactions of both types of profiles.

Flat patterns represent indispensablemetabolic reactions
We first focus our analysis on reactions whose occurrence
in EFMs does not change as a result of perturbation, i.e.,
on clusters in which all fractional appearance profiles are
flat. Those reactions are grouped in cluster 7 and 9 in both
cold and heat stress (Figure 3).
In total, these clusters consist of 36 and 47 reactions

for cold and heat stress, respectively, of which 19 of these
reactions are conserved between the two stresses. These
reactions appear in 5 to 40% of all EFMs, which indi-
cates a major role for network functionality. To gain a
general overview of the higher biological processes of this
set of reactions, we perform GO term over-representation
analysis on their annotated genes (Additional file 1: Table
S3). The clusters show significant enrichment for many
processes crucial for cell growth, including amino acids
(e.g., homoserine, serine, methionine, and lysine) biosyn-
thesis, nucleotide, nucleoside and nucleobase interconver-
sions, amine biosynthesis, coenzyme and carboxylic acid
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A Cold: Fluctuating patterns: 2: Glycine Cleavage System, 3: L-threonine dehydrogenase, threonine synthase, aspartate-semialdehyde dehydrogenase,
transaldolase, 4: phosphoglycerate mutase, Flat patterns: 7: acetylornithine transaminase, aspartate kinase, L-serine transport, aconitase, acetylornithine
transaminase, adenylsuccinate lyase, aspartate kinase, purine-nucleoside phosphorylase (guanosine), pyrimidine-nucleoside phosphorylase (uracil), thymi-
dine phosphorylase, thymidine kinase (ATP:thymidine), UDP-N-acetylglucosamine 2-epimerase, UTP-glucose-1-phosphate uridylyltransferase, UDPglucose-
hexose-1-phosphate uridylyltransferase, trimethylamine N-oxide reductase, glutathione reductase, 9: trehalose transport via PEP:Pyr (PTS), enolase, L-serine
transport
B Heat: Fluctuating patterns: 2: Glycine Cleavage System, 3: L-threonine dehydrogenase, threonine synthase, transaldolase, 5: Ammonia exchange,
Flat patterns: 7: thymidine phosphorylase, aspartate kinase, 9: aconitase, adenylsuccinate lyase, trehalose transport via PEP:Pyr (PTS), enolase,
acetylornithine transaminase, L-serine transport, purine-nucleoside phosphorylase (guanosine), pyrimidine-nucleoside phosphorylase (uracil), thymidine
kinase (ATP:thymidine), UDP-N-acetylglucosamine 2-epimerase, UTP-glucose-1-phosphate uridylyltransferase, UDPglucose-hexose-1-phosphate uridylyl-
transferase, trimethylamine N-oxide reductase, glutathione reductase

Figure 3 Clustering of time-resolved fractional appearance profiles. Shown are the fractional appearance profiles of reactions over time. Under
both (A) cold and (B) heat shock, the selected reactions group into 9 clusters. Enzyme names discussed in the text are given. A complete list of all
enzyme names is given in the Additional file 1: Table S3. In both stresses clusters 7 and 9 represent metabolic reactions that are constantly active,
most of them crucial for viability. All other clusters represent reactions that undergo (de)activation and are likely involved in stress response.
Note: For better visualization, identical profiles are slightly shifted. Reference value is given by the profile appearing on the bottom.

metabolic processes as well as tricarboxylic acid (TCA)
cycle. The reactions can further be grouped according to
specific pathways.
Closer inspection reveals a group of 3 constantly used

reactions - aconitase, trehalose transport via PEP:Pyr
(PTS) and enolase, which belong to the central carbon
metabolism. The constant utilization of glucose uptake
system (PTS) is not surprising, since it is crucial for cul-
ture grown on this nutrient, as well as for the formation
of G6P and flux from PEP to pyruvate. Furthermore, this
reaction has also been shown to be constitutively active
under different nutritional perturbations in E. coli [28].
The second group contains reactions involved in

amino acid metabolism, a process crucial for pro-
tein synthesis. Those reactions include acetylornithine
transaminase, adenylsuccinate lyase, aspartate kinase,
and L-serine transport. Another group contains reactions
involved in nucleotides biosynthesis and degradation,
processes essential for transcription and replication,
including: purine-nucleoside phosphorylase (guano-
sine), pyrimidine-nucleoside phosphorylase (uracil), and
thymidine phosphorylase, as well as thymidine kinase
(ATP:thymidine). This group extends to three reactions
involved in amino- and nucleotide-sugar metabolism,
namely, UDP-N-acetylglucosamine 2-epimerase, UTP-

glucose-1-phosphate uridylyltransferase, and UDP-
glucose-hexose-1-phosphate uridylyltransferase.
Finally, we observe constant utilization of glutathione

reductase and trimethylamine N-oxide reductase. The
first can be understood by the fact that the ratio of
reduced to oxidized glutathione in E. coli is kept on a
high ratio, ensuring proper maintenance of reduced thiol
groups, protection against oxidative damage, and forma-
tion of deoxyribonucleotide precursors for DNA synthe-
sis [29]. The second is a part of the electron transport
chain.
The results of the functional enrichment analysis and

biological interpretation of the metabolic role of indis-
pensable reactions, showing flat profiles of fractional
appearance, supports our assumption that these reactions
constitute the most crucial part of the metabolic network.

Fluctuating patterns capture condition-specific temporal
response
Next we investigate reactions whose temporal appearance
in EFMs changes as a result of the applied stress. The
number of reactions showing such behavior is smaller
compared to that of reactions which are constantly
used. There are 35 reactions for cold stress and 29 for
heat stress.
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Over-representation analysis of biological processes
reveals that under cold stress cluster 2 is enriched for
catabolic processes, in particular, of amino acids, organic
acids, and coenzymes, followed by acetyl-CoA biosyn-
thetic process from pyruvate, and glycolysis. The reactions
in this cluster are excluded from the networks at 10 min
and peak with respect to their fractional appearances at
30 min. A prominent representative in this group of reac-
tions is the glycine cleavage system, which has been found
to be slightly affected by cold stress [30].
Cluster 3 is enriched for biosynthesis of the aspartate

family of amino acids (i.e., homoserine and threonine),
carbohydrate (glucose) catabolic process, and pentose-
phosphate shunt, among other more general GO terms.
The fractional appearance profiles for the included reac-
tions remain unchanged up to 30 min, after which the
reactions are excluded from the time-specific networks
to be reintroduced 50 min after application of the stress.
This cluster includes the reactions: L-threonine dehydro-
genase, threonine synthase, and aspartate-semialdehyde
dehydrogenase. This suggest that even some prominent
pathways, such as amino acid synthesis, are not con-
stantly kept at high level throughout adaptation to the
stress. Moreover, transaldolase appears to undergo the
same transition in fractional appearance, which is due to
the observation that, unlike in exponential growth, cells
facing cold stress transiently use this reaction to convert
two molecules of fructose-6-phosphate and one molecule
of 3PGA [19,31].
The coupling between the pentose phosphate pathway

and catabolic processes is also apparent in the enrichment
of GO terms in cluster 4. Here, the two considered reac-
tions are only present in the extracted networks for the
last time points. One of these reactions, phosphoglycer-
ate mutase, takes part in glycolysis, which together with
glucose consumption is reduced under low temperatures,
especially in the early time points after stress [30].
Under heat stress, cluster 2 consists of profiles where

the reactions are initially used, then excluded from the
network, and finally reintroduced. Over-representation
analysis demonstrates that catabolic processes involv-
ing amino acids, glyoxylate and coenzymes are enriched.
Interestingly, the reactions in this cluster are also grouped
together in cluster 2 under cold stress. However, it appears
that after initial usage of the glycine cleavage system
under heat stress, it is transiently shut down in a manner
opposite of that under cold stress.
Cluster 5 includes ammonium exchange which is down-

regulated after application of heat stress. This is in line
with the catabolic processes observed in cluster 2, sug-
gesting that protein synthesis is present to support main-
tenance of cell vitality without the need to sustain growth.
In addition, cluster 3 under heat stress has a high over-
lap with cluster 3 under cold stress. However, the patterns

of fractional appearance, as already observed for cluster 2,
show a different temporal behavior. We therefore suggest
the hypothesis that although same biological processes are
involved in adaptation to temperature stresses, the tempo-
ral usage in terms of (in)activation may slightly differ. The
activation pattern of these processes may further amplify
the effect of genes specific to cold/heat stress.

Discussion
Here we proposed a novel approach to investigate adap-
tation of metabolism upon external perturbation. Based
on experimental data we determine time- and condition-
specific minimal networks for which sets of EFMs can
be calculated. These sets are used to determine the
fractional appearance profiles of reactions. This integra-
tive profile combines information from transcriptomics
data, the underlying network structure, and biologically
meaningful flux distributions in a quasi steady-state; thus
it includes information which transcriptomics data would
never be able to reveal on their own.
The fractional appearance of reactions has already been

investigated with respect to the concept of robustness
[13]. Here we demonstrate that expanding this concept to
the time domain facilitates the distinction of two types of
patterns—flat and fluctuating. In light of the differences
as well as the overlap between the concepts of robustness
and adaptability, the reactions exhibiting fluctuating pat-
terns are the first candidates that drive the adaptation of
the system upon perturbation. Moreover, like transcript
data, the fractional appearance profiles can also be sub-
jected to clustering and enrichment analyses (with respect
to a chosen ontology). With the help of these analyses, our
approach allows the identification of adaptation-related
processes.
It must be noted that our proposed approach extracts

network for individual time points, without accounting
for their dependency in the time domain. However, since
the weighting of the reactions is conducted by using data
which already embed the temporal dependency, this also
extends to the extracted networks.
Since transcriptomics data do not necessarily reflect en-

zyme activities (due to post-transcriptional modification
and regulatory effects), we use the results from the analy-
sis of the expression data only as indicator for the activity
of the respective reaction rather that definite values. Fur-
thermore, the approach does not rely on a condition-spe-
cific objective function, e.g., biomass yield. Thus, it over-
comes one of the drawbacks of FBA, associated with the
selection of a suitable objective function, not only for
different but also varying conditions. Finally, compar-
ative analysis with MADE, a state-of-the-art method,
demonstrates high overlap between the extracted net-
works. However, in comparison to MADE, our approach
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results in consistently smaller networks amenable to EFM
analysis.

Conclusion
We applied our approach to time-resolved transcrip-
tomics data from heat and cold shock experiments in
E. coli. The predictions from the integration of the large-
scale metabolic networks with time-series data are in
line with observations and conclusions from existing
experimental studies. Moreover, analysis of the fractional
appearance profiles for heat and cold stress adaptation in
E. coli have generated interesting hypothesis to be vali-
dated in future experiments. Finally, the proposedmethod
and the presence of the two types of profiles, result-
ing from its application on a well-investigated model
organism, indicate the “tug-of-war” between the systemic
properties of robustness and adaptability necessary for
maintenance of major processes while settling in a new
metabolic state.

Additional file

Additional file 1: Supplementary Information.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
NT and ZN designed the study and wrote the manuscript. NT performed the
study. SJ, NT and ZN interpreted the results. All authors read and approved the
final manuscript.

Acknowledgements
The authors thank the Max-Planck society for financial support.

Author details
1Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of
Molecular Plant Physiology, 14476 Potsdam, Germany. 2ETH Zurich, Institute of
Molecular Systems Biology, 8093 Zurich, Switzerland.

Received: 1 May 2012 Accepted: 7 November 2012
Published: 30 November 2012

References
1. Varma A, Palsson BO: Stoichiometric flux balance models

quantitatively predict growth andmetabolic by-product secretion
in wild-type Escherichia coli W3110. Appl EnvironMicrobiol 1994,
60(10):3724–3731.

2. Leroi AM, Bennett AF, Lenski RE: Temperature acclimation and
competitive fitness: an experimental test of the beneficial
acclimation assumption. Proc Nat Acad Sci USA 1994, 91(5):1917–1921.

3. Kitano H: Biological robustness. Nat Rev Gene 2004, 5(11):826–837.
4. Larhlimi A, Blachon S, Selbig J, Nikoloski Z: Robustness of metabolic

networks: A review of existing definitions. Bio Syst 2011, 106:1–8.
5. Alon U, Surette MG, Barkai N, Leibler S: Robustness in bacterial

chemotaxis. Nature 1999, 397(6715):168–171.

6. Barkai N, Leibler S: Robustness in simple biochemical networks to
transfer and process information. Nature 1997, 387(6636):913–917.

7. Kitano H: Towards a theory of biological robustness.Mol Syst Biol 2007,
3:137.

8. Ideker T, Ozier O, Schwikowski B, Siegel AF: Discovering regulatory and
signalling circuits in molecular interaction networks. Bioinformatics
2002, 18(suppl 1):S233—S240.

9. Akesson M, Förster J, Nielsen J: Integration of gene expression data
into genome-scale metabolic models.Metab Eng 2004, 6(4):285–293.
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