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Redox balance is key to explaining full vs. partial
switching to low-yield metabolism
Milan JA van Hoek1,2,3 and Roeland MH Merks1,2,3,4*

Abstract

Background: Low-yield metabolism is a puzzling phenomenon in many unicellular and multicellular organisms. In
abundance of glucose, many cells use a highly wasteful fermentation pathway despite the availability of a high-
yield pathway, producing many ATP molecules per glucose, e.g., oxidative phosphorylation. Some of these
organisms, including the lactic acid bacterium Lactococcus lactis, downregulate their high-yield pathway in favor of
the low-yield pathway. Other organisms, including Escherichia coli do not reduce the flux through the high-yield
pathway, employing the low-yield pathway in parallel with a fully active high-yield pathway. For what reasons do
some species use the high-yield and low-yield pathways concurrently and what makes others downregulate the
high-yield pathway? A classic rationale for metabolic fermentation is overflow metabolism. Because the throughput
of metabolic pathways is limited, influx of glucose exceeding the pathway’s throughput capacity is thought to be
redirected into an alternative, low-yield pathway. This overflow metabolism rationale suggests that cells would only
use fermentation once the high-yield pathway runs at maximum rate, but it cannot explain why cells would
decrease the flux through the high-yield pathway.

Results: Using flux balance analysis with molecular crowding (FBAwMC), a recent extension to flux balance analysis
(FBA) that assumes that the total flux through the metabolic network is limited, we investigate the differences
between Saccharomyces cerevisiae and L. lactis that downregulate the high-yield pathway at increasing glucose
concentrations, and E. coli, which keeps the high-yield pathway functioning at maximal rate. FBAwMC correctly
predicts the metabolic switching mode in these three organisms, suggesting that metabolic network architecture is
responsible for differences in metabolic switching mode. Based on our analysis, we expect gradual, “overflow-like”
switching behavior in organisms that have an additional energy-yielding pathway that does not consume NADH (e.
g., acetate production in E. coli). Flux decrease through the high-yield pathway is expected in organisms in which
the high-yield and low-yield pathways compete for NADH. In support of this analysis, a simplified model of
metabolic switching suggests that the extra energy generated during acetate production produces an additional
optimal growth mode that smoothens the metabolic switch in E. coli.

Conclusions: Maintaining redox balance is key to explaining why some microbes decrease the flux through the
high-yield pathway, while other microbes use “overflow-like” low-yield metabolism.

Keywords: Metabolic switching, Genome-scale metabolic model, Flux Balance Analysis with Molecular Crowding,
Overflow metabolism, Redox balance, Escherichia coli, Lactococcus lactis, Saccharomyces cerevisiae

Background
One of the key steps in energy metabolism is to transfer
the energy carried by sugars, including glucose, to the
biological “energy currency” adenosine triphosphate
(ATP). The number of ATP molecules generated by

metabolizing one molecule of glucose—the ATP yield—
is one of the most basic measures of an organism’s
energy efficiency. One would perhaps expect that evolu-
tion has selected organisms for the ability to extract
energy from their food at optimal efficiency by maximiz-
ing ATP yield. Yet surprisingly, many organisms switch
between a high-yield pathway, e.g., aerobic respiration
that yields more than thirty moles of ATP per mole glu-
cose, and a highly inefficient, low-yield fermentation
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pathway that yields only two or three moles ATP per
mole of glucose. This effect is known as the Crabtree-
effect in the baker’s yeast Saccharomyces cerevisiae. S.
cerevisiae turns glucose into CO2 in aerobic, glucose-
limited conditions. But in abundance of glucose, glucose
is converted into ethanol [1], even if oxygen levels do
not limit aerobic metabolism. Many bacteria also use a
high-yield metabolic pathway in glucose-limited condi-
tions and a low-yield pathway in excess of glucose.
Examples are Escherichia coli [2], Bacillus subtilis [3]
and lactic acid bacteria, e.g., Lactobacillus plantarum
and Lactococcus lactis [4,5]. The effect is also found in
multicellular eukaryotes, including human cancer cells,
where it is called the Warburg effect [6]. Muscle cells
switch to low-yield metabolism during heavy exercise
[7], fermenting glucose into lactic acid. Why cells would
produce less ATP per glucose molecule than they can is
a long-standing question in biology [8-12].
Microbial species show remarkable differences in their

metabolic switching strategies. At low glucose concen-
trations and low growth rates, E. coli uses high-yield
metabolism, aerobically converting glucose into CO2

and water. At higher glucose concentrations and fast
growth rates, it redirects part of the glucose influx into
a low-yield fermentation pathway, keeping oxidative
phosphorylation fully active [2]. S. cerevisiae uses high-
yield, aerobic respiration at slow growth rates; at fast
growth rates it ferments most glucose into ethanol, and
downregulates aerobic respiration, keeping aerobic
respiration active at a much lower rate. Although L. lac-
tis does not have an aerobic respiration pathway, it still
performs a metabolic switch. At fast growth rates it
makes a full switch to lactic acid fermentation [4],
which yields about 50% less ATP than the higher-yield
mixed acid fermentation pathway, that produces for-
mate, acetate and ethanol.
A plausible explanation for metabolic switching is

“overflow metabolism”. It assumes that organisms only
switch to low-yield metabolism if the high-yield pathway
is operating at maximum rate and cannot process any
more molecules [13,14]. The remainder would then spill
into the low-yield pathway. This explanation requires
the low-yield pathway to operate at a faster rate than
the high-yield pathway, which is likely the case [8,15,16].
Thus overflow metabolism plausibly explains concurrent
use of high-yield and low-yield pathways, as in E. coli.
However, a problem with overflow metabolism is that it
does not explain why organisms like S. cerevisiae or L.
lactis would partly switch off their high-yield pathways
at high growth rates.
Recent studies have suggested that the limited amount

of metabolic enzymes fitting inside the cell may be key
to low-yield metabolism [12,17,18]. Simply because cells
can host only a finite number of metabolic enzymes,

they may need to trade off investment into the bulky
enzymatic machinery required for low-throughput, high-
yield metabolism, or alternatively to invest into many
more “lean” glycolytic enzymes producing a high-
throughput, low yield metabolism. Thus, according to
this view, high glucose uptake rate should correlate with
low yield metabolism, and vice versa. Indeed, this is
observed in comparative studies of metabolism in yeast
species of the Saccharomyces clade [19] and in compara-
tive studies of glucose metabolism of various bacterial
species [20].
If cells need to trade off fast metabolism and high-

yield metabolism, then why do we still observe overflow
metabolism, as in E. coli? We address this question by
comparing the optimal metabolic switching strategies of
L. lactis, S. cerevisiae, and E. coli as predicted by a gen-
ome-scale computational model. These three organisms
use different pathways to metabolize glucose. In Figure
1 a simplified reaction scheme of the most important
glucose degrading pathways in these three organisms is
presented. E. coli can use oxidative phosphorylation, lac-
tate fermentation, ethanol fermentation and acetate fer-
mentation. L. lactis can use mixed-acid fermentation,
producing formate, acetate and ethanol, or lactate fer-
mentation. S. cerevisiae can use oxidative phosphoryla-
tion, ethanol fermentation and acetate fermentation.
To predict the metabolic switches these three organ-

isms can perform, we make use of a variant of Flux Bal-
ance Analysis (FBA), a method that calculates fluxes
through metabolic networks given constraints on the
network and given an objective function to maximize.
By maximizing growth rate, FBA often correctly predicts
cellular metabolism, including uptake, excretion and
growth rates of cells [2,21]. However, because the glu-
cose uptake rate is fixed in these simulations, growth
yield (defined as the growth rate divided by the glucose
uptake rate) is effectively maximized [16]. Therefore,
FBA cannot satisfactorily predict low-yield metabolism.
For this reason, we use an extension of FBA, Flux Bal-

ance Analysis with Molecular Crowding (FBAwMC)
[17,22]. In contrast to FBA, FBAwMC calculates the
optimal flux distribution through a metabolic network
under the physiologically-plausible constraint that only a
finite number of metabolic enzymes fit into a cell.
Because each of the enzymes has a maximum turnover
number (kcat), molecular crowding naturally results in a
constraint on the total metabolic flux through the net-
work:

∑
cifi ≤ Vprot, (1)

with fi being the flux through reaction i, Vprot the
volume fraction of macromolecules devoted to meta-
bolic enzymes and ci the “crowding coefficient” of
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reaction i. The crowding coefficient of reaction i is
defined as the volume that needs to be occupied with
enzymes to reach unit flux through reaction i and is

given by ci ≡ Mvi
Vbi

,where M is the cell mass, V the cell

volume, vi the molar volume of the enzyme catalyzing
reaction i, and bi a variable describing the proportional-
ity between enzyme concentration and flux through
reaction i [22]. Intuitively, the crowding coefficient can
be seen as the protein cost of a reaction: enzymes with
low crowding coefficients have small molecular volume
or catalyse fast reactions. FBAwMC correctly predicts
low-yield metabolism: e.g., growth curves of E. coli
[17,22], and the Warburg effect in cancer cells [18].
Therefore, FBAwMC is well suited for our aim: to unra-
vel the metabolic differences between microbes that
decrease the flux through the high-yield pathway at high
growth rates and those that keep the high-yield pathway
always fully active.
Because crowding coefficients for most metabolic

enzymes are unknown, previous studies proposed a
range of strategies to estimate them. Beg et al. [22]
fitted an average crowding coefficient 〈c〉 in order to
obtain a good match between predicted and measured
growth rates. Shlomi et al. [23] obtained 15% of crowd-
ing coefficients from experimental data and assigned the
median of the known crowding coefficient values to the
remaining unknown crowding coefficients. Vazquez et
al. [17] sampled crowding coefficients randomly from a
range of physiologically-plausible values obtained from
on-line, biochemical databases, and presented averages
and variations of the metabolic fluxes predicted for a
large random sample of crowding coefficients.
Although the study of an estimated, specific set of

crowding coefficients or an average can provide some
insight, in reality metabolic networks may operate under
an entirely different set of crowding coefficients. There-
fore, in the absence of accurate, experimental estimates
of crowding coefficients, FBAwMC cannot decide on

one real situation. Studying growth yield predictions for
large samples of biochemically-plausible sets of crowd-
ing coefficients can give more robust insights into the
metabolic network than studies with single crowding
coefficient estimates, because it reveals what growth
yields are most plausible and what are the alternative
behaviors of the network.
Our analysis suggests that mechanisms to maintain

NAD+/NADH ratio are key to the metabolic differences
between the two types of metabolic switches. Organisms
in which both the high-yield and low-yield pathways
reduce NADH may downregulate high-yield metabolism
at high growth rates. If organisms have an additional
energy-yielding pathway that does not consume NADH
(e.g., acetate production in E. coli), it is optimal to keep
both the low-yield and high-yield pathways active at
high growth rates.

Results
Predicted yield distributions reflect metabolic switching
strategy
Using genome-scale stoichiometric networks of L. lactis
[24], E. coli [25], and S. cerevisiae [26] we first con-
firmed that our implementation of the FBAwMC
method reproduces the correct growth curves (Figure
2). Indeed, FBAwMC qualitatively reproduces both the
metabolic switch of S. cerevisiae and L. lactis and the
overflow metabolism of E. coli. Following Vazquez and
coworkers [17], crowding coefficients were chosen at
random from a distribution of crowding coefficients
based on published molar volumes (Metacyc [27]) and
turnover numbers (Brenda [28]). Thus the growth
curves that FBAwMC predicts are the average behavior
for 1000 randomly sampled sets of crowding coeffi-
cients. Figure 2 reports the average and standard devia-
tions of waste product formation or oxygen
consumption for the set of simulations resulting in low-
yield metabolism (growth yield < 0.3 gr dry weight/gr

A B C
Figure 1 Simplified reaction scheme for the 3 organisms studied. A. L. lactis; B. S. cerevisiae; C. E. coli.
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glucose). This represents 74% of all simulations for E.
coli, 44% for L. lactis and 32% for S. cerevisiae. As
reflected by the growth curves’ large variation, the opti-
mal growth curve that FBAwMC predicts depends
strongly on the particular sample of crowding coeffi-
cients used. Because a crowding coefficient ci reflects
the enzymatic cost of producing a metabolic flux fi, we
asked if the relation between crowding coefficient selec-
tions and the predicted optimal fluxes could yield new
biological insight.
Figure 3 shows the predicted, optimal growth yields at

unconstrained glucose influx for a sample of 1000 sets
of randomly selected crowding coefficients. Interestingly,
computationally obtained growth yields in L. lactis and
S. cerevisiae distribute bimodally, with only few simula-
tions predicting intermediate growth yields. By contrast,
the predicted growth yields of E. coli are distributed
more uniformly. Strikingly, the predicted growth yield
distributions for a random sampling of crowding coeffi-
cients correlate well with the organisms’ switching stra-
tegies: L. lactis and S. cerevisiae, which downregulate
their high-yield metabolism, display a bimodal

distribution of predicted growth yields, whereas E. coli,
which has overflow-like metabolism, displays a uniform
distribution of predicted growth yields.
The distribution of growth yields only gives informa-

tion of the metabolic behavior at maximal growth rates.
Next we tested if individual simulations show overflow-
like metabolism or not. Figure 4 shows a frequency dia-
gram of the reduction of the flux through the high-yield
pathway at maximal growth rate, as a percentage of the
maximal flux through the high-yield pathway. For E. coli
we observe that most sets of crowding coefficients lead
to little flux decrease through the high-yield pathway
(Figure 4C). However, for L. lactis, most sets of crowd-
ing coefficients produce a complete halt of the high-
yield pathway (Figure 4A). For S. cerevisiae, for 40% of
crowding coefficients the high-yield pathway is repressed
more than two-fold at high growth rates, whereas for
42% the high-yield pathway is reduced at most by 10%
(Figure 4B). Thus, at high growth rates FBAwMC pre-
dicts overflow-like metabolism in E. coli, whereas it pre-
dicts that the flux through the high-yield pathway is
likely to be downregulated for L. lactis and S. cerevisiae.

Figure 2 FBAwMC growth simulations, compared with experimental data (discs). The best fitting simulation is indicated with a solid line,
the mean and standard deviations with dashed lines. Experimental data are indicated with black dots. We scaled the growth rate of the
simulations and the experimental observations to the maximal growth rate. Mean and standard deviations are calculated from all simulations
that switch to low-yield metabolism at high growth rates (yield < 0.3 gr dry weight/gr glucose). A. L. lactis, data from Thomas et al. [4]; B. S.
cerevisiae, data from Hoek et al. [29]; C. E. coli, data from Varma and Palsson [2].

Figure 3 Distribution of growth yields predicted by the model with 1000 randomly selected sets of crowding coefficients. A. L. lactis; B.
S. cerevisiae; C. E. coli. Dotted vertical lines indicate experimental growth yields for high and low growth rates [2,4,29].

van Hoek and Merks BMC Systems Biology 2012, 6:22
http://www.biomedcentral.com/1752-0509/6/22

Page 4 of 10



Acetate excretion makes E. coli use overflow-like
switching
What could explain that S. cerevisiae and L. lactis down-
regulate high-yield metabolism at high growth rates,
whereas E. coli uses overflow-like metabolism? Because
we sampled from sets of prokaryotic crowding coeffi-
cients for E. coli and L. lactis, and from a eukaryotic
dataset for S. cerevisiae, we first checked if the species-
specific sets of crowding coefficients were responsible
for our observations. We performed simulations with
the E. coli network using the eukaryotic set of crowding
coefficients and vice versa, and found that this did not
affect our results. Therefore we conclude that the key
difference between the three models is in the species-
specific topology of the metabolic networks and their
behavior in the presence of crowding, not in the specific
values of crowding coefficients.
A key difference that sets E. coli apart from L. lactis

and S. cerevisiae is shown in Figure 1. After converting
glucose to pyruvate, L. lactis and S. cerevisiae either
convert it into a waste product (ethanol) or further
metabolize pyruvate to yield extra ATP. L. lactis con-
verts two acetyl-coA into acetate and ethanol in parallel
to retain redox balance, gaining (at most) one additional
ATP per mole glucose. S. cerevisiae feeds pyruvate into
the citric acid cycle and oxydative phosphorylation,
gaining (at most) twenty-eight additional ATP and two
GTP per mole glucose. Interestingly, E. coli has three
choices: it can convert pyruvate into the waste product

ethanol, it can metabolize pyruvate in the citric acid
cycle, or it can gain one extra ATP in the conversion of
acetyl-coA into acetate.
Although acetate production is a “cheap” way—in

terms of the number of enzymes required—to produce
additional ATP from pyruvate, it poses an additional
challenge to E. coli. During formation of waste products
(i.e., lactate or ethanol) the NADH produced in glycoly-
sis or in the conversion from pyruvate to acetyl-coA is
reduced back to NAD+. Thus such waste product for-
mation is a “fast” way to restore a sufficiently high NAD
+/NADH-ratio. Acetate production does not restore the
NAD+/NADH-ratio, so acetate production might deplete
the available NAD+ in the cell. So, E. coli might keep
oxidative phosphorylation running at fast growth rates
(and consume oxygen) in order to profit from the extra
ATP yield in acetate formation and restore the NAD
+/NADH ratio.
This analysis suggests that, if E. coli ferments glucose

into lactate or ethanol, its oxygen consumption will be
reduced. We therefore studied the excretion patterns
belonging to different sets of crowding coefficients more
carefully. We found that, if a set of crowding coefficients
results in acetate fermentation, without any ethanol or
lactate fermentation, the cells continue to consume oxy-
gen consumption during the switch. If a set of crowding
coefficients results in lactate or ethanol fermentation,
the consumption of oxygen is often reduced (Figure 5).
Of the fraction of simulations of E. coli in which oxygen
consumption is reduced during the metabolic switch
(see Figure 4C) most produce ethanol and lactate, not
acetate (data not shown). Thus, together these simula-
tions are in agreement with the fact that E. coli needs to
consume oxygen as an external electron acceptor during
acetate fermentation in order to maintain a sufficiently
high NAD+/NADH ratio [30]. If E. coli is genetically
engineered to eliminate the TCA cycle and all NADH-
reducing fermentation pathways (i.e., the strain cannot
produce lactate or ethanol), it needs dissolved oxygen to
grow [30].
To further confirm the hypothesis that at high growth

rates overflow metabolism is optimal in E. coli due to
acetate excretion, we blocked acetate excretion in the
FBAwMC model of E. coli (by setting the maximum
efflux to zero) such that acetate production stalled, and
recalculated the distribution of optimal growth yields.
As Figure 6 demonstrates, in this simulation experiment
the growth yields become bimodally distributed over the
crowding coefficient samples, suggesting that E. coli can
switch bimodally. Also, there are more sets of crowding
coefficients that result in a decrease in flux through the
high-yield pathway (Additional file 1: Figure S1). Appar-
ently, after blocking the route for producing one extra
ATP, it again becomes optimal to restore the NAD

Figure 4 Flux decrease through the high-yield pathway,
relative to the maximum flux through the high-yield pathway.
This is a measure of the decrease in flux through the high-yield
pathway during the metabolic switch. As in Figure 2, we only report
simulations that resulted in low-yield metabolism, with yield < 0.3
gr dry weight/gr glucose. Dashed lines indicate experimental values.
A. L. lactis, reported is decrease in formate production rate, data
from Thomas et al. [4]; B. S. cerevisiae, reported is decrease in
oxygen uptake rate, data from Hoek et al. [29]; C. E. coli, reported is
decrease in oxygen uptake rate, data from Varma and Palsson [2].
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+/NADH ratio by producing the alternative waste pro-
ducts lactate or ethanol. This model observation agrees
with experiments by De Mey et al. [31] who report
increased lactate and ethanol excretion after reducing
the carbon flow to acetate.
To confirm that an additional ATP-producing path-

way can indeed lead to an additional optimal growth
mode, we developed a simplified metabolic network
model [16], illustrated in Figure 7A. The simplified
model has five reactions that represent glycolysis, lac-
tate/ethanol excretion, acetate excretion, the TCA-cycle,
and oxidative phosphorylation. Using FBAwMC we pre-
dicted the optimal yields for a sample of crowding coef-
ficients. In this model, we found four metabolic modes
(Figure 7B). After knocking out the acetate pathway, we
found only two metabolic modes, a high-yield and a
low-yield pathway (Figure 7C). Thus, also in this simpli-
fied model, acetate production introduces intermediate-
yield metabolic modes.

Discussion
We have computationally compared metabolic switching
at high growth rates in E. coli with L. lactis and S. cere-
visiae. E. coli shows overflow metabolism, meaning that
at high growth rates it increases its metabolic rate by
activating low-yield metabolic pathways in addition to
the high-yield oxidative phosphorylation pathway.
Instead, L. lactis and S. cerevisiae show metabolic
switching: they suppress the flux through their high-
yield pathways at high growth rates, relying mostly on
low-yield metabolism. Our analysis suggests that a key
difference between the two groups is the number of
metabolic pathways yielding ATP, and the effect of
these pathways on the NAD+/NADH-ratio. L. lactis and
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Figure 5 Acetate fermentation vs. lactate and ethanol
fermentation in E. coli. Histograms of the decrease in oxygen
uptake rate, relative to the maximum oxygen uptake rate. A.
Simulations that result in acetate fermentation (without lactate or
ethanol fermentation); B. Simulations that result in ethanol or lactate
fermentation.

Figure 6 Metabolic switching in model with blocked acetate
excretion. Distribution of growth yields predicted by the modified
metabolic model with blocked acetate excretion of E. coli with 1000
randomly selected sets of crowding coefficients. Inset: growth yields
calculated with original metabolic network of E. coli.

Figure 7 Simplified network model of acetate production in E.
coli. A. Simplified metabolic network. Reaction 1: glycolysis, reaction
2: acetate excretion, reaction 3: lactate/ethanol excretion, reaction 4:
TCA-cycle, reaction 5: Oxidative phosphorylation; B. Growth yield
distribution of the full simplified network; C. Growth yield
distribution in simplified model with blocked acetate excretion.
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S. cerevisiae have two alternative pathways, an efficient,
high-yield pathway—glycolysis followed by mixed acid
fermentation or oxidative phosphorylation—and an inef-
ficient, low-yield pathway—glycolysis followed by lactic
acid or ethanol production. In both the low-yield and
high-yield pathways, the NADH resulting from glycolysis
is oxidized back to NAD+. In addition to lactate and
ethanol fermentation and oxidative phosphorylation, E.
coli has a second low-yield pathway: the conversion of
pyruvate to acetate. This pathway yields one extra ATP
over lactate fermentation, but it does not oxidize
NADH, so the NAD+/NADH-ratio must be restored
elsewhere. Our model suggests that in this case it is
optimal to keep oxidative phosphorylation running,
instead of calling in low-yield pathways to reduce
NADH, e.g., lactate production.
To test the idea that acetate production is the cause of

overflow metabolism in E. coli, we blocked acetate fer-
mentation in the FBAwMC model. The distribution of
predicted growth yields became more bimodal, and the
proportion of cells that downregulated their high-yield
pathway increased. Should we hence expect E. coli to
downregulate its high-yield pathway at high growth
rates, if its acetate production pathway were blocked
experimentally? Note that FBAwMC predicts optimal
growth rates. Thus it predicts the growth rates for
organisms that have already evolved towards optimality.
Our results would therefore suggest that mutated E. coli
strain with blocked acetate fermentation would evolve
downregulation of its high-yield pathway after selection
for growth rate in cell culture experiments.
Our model results suggest that restoring the redox

balance is key in metabolic switching, agrees with
experimental observation. Vemuri et al. [32] overex-
pressed both NADH oxidase (NOX) and alternative oxi-
dase (AOX) in S. cerevisiae and found that glycerol (for
NOX) or ethanol formation (for AOX) were diminished.
In another study, Vemuri et al. [33] increased oxidation
of NADH by overexpressing NOX in E. coli and studied
the effect on overflow metabolism. They found that
overexpression of NOX strongly diminished acetate
fermentation.
To check whether our model is consistent with these

experiments, we mimicked them in the FBAwMC mod-
els for E. coli and S. cerevisiae. We introduced the reac-
tions that NOX and AOX catalyze to the metabolic
model and enforced a lower bound on their fluxes to
mimic the effect of overexpression. We performed simu-
lations of S. cerevisiae with ten thousand sets of crowd-
ing coefficients, of which only 110 crowding coefficient
selections resulted in excretion of both ethanol and gly-
cerol. We went on with these sets of crowding coeffi-
cients, because they best mimicked the wild-type
phenotype that Vemuri et al. [33] used. The simulated

overexpression of NOX or AOX reduced excretion of
ethanol and glycerol in practically all of these 110 simu-
lations (Table 1). Thus, in agreement with experiments,
the FBAwMC model of S. cerevisiae suggests that exces-
sive NADH breakdown reduces ethanol and glycerol fer-
mentation. In the FBAwMC model of E. coli we found
that increased oxidation of NADH could either result in
a decreased or in an increased production of acetate,
depending on the selection of crowding coefficients.
Thus, the experiments of Vemuri et al. [33] do not cor-
roborate nor falsify our model. The reason is that
FBAwMC identifies optimal fluxes. In E. coli, during
acetate fermentation some NADH is formed in the con-
version of pyruvate to acetyl-coA. During NOX overex-
pression, the cells must boost NADH production to
maintain optimal growth; this can be done either using
the TCA-cycle or using acetate fermentation. Depending
on the crowding coefficients, either way is optimal.
The computational results presented in this paper are

contingent on two underlying, biological assumptions of
FBAwMC that may limit the applicability of our
approach to strains growing in well-mixed, nutrient-rich
lab conditions: a) evolution optimizes cells’ growth rates
instead of yields, and b) a solvent constraint (i.e., the
number of enzymes “fitting” inside the cell) puts selec-
tive pressure on cells to evolve mechanisms to rapidly
produce or remove enzymes for alternative metabolic
pathways [22]. Thus FBAwMC implicitly assumes that
evolution has shaped cells to make the optimal choice
between alternative metabolic pathways.
The optimality assumption is not necessarily correct

in all environments. Apart from the fact that evolution
does not always lead to optimality [34], game theory
suggests that spatial or seasonal environments favor
maximization of growth yield [35,36]. Optimization of
growth rate, as implicitly assumed in FBAwMC, is more
likely applicable to homogeneous, non-seasonal environ-
ments, i.e., a chemostat [35,37]. Thus our simulations
apply primarily to laboratory strains, which are adapted
to well-mixed, nutrient-rich laboratory conditions. For
natural strains, the maximization of growth yield that
standard FBA assumes might be better applicable [20].
The second key assumption of FBAwMC, namely that

cells have evolved regulation mechanisms to activate
production of enzymatic machinery for the pathway

Table 1 Effect of NOX or AOX overexpression on low-
yield metabolism

NOX AOX

S. cerevisiae ethanol 96% 98%

S. cerevisiae glycerol 100% 97%

E. coli acetate 16%

We report the percentage of simulations that result in a decrease in acetate
fermentation (for E. coli) or ethanol and glycerol fermentation (for S. cerevisiae)
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giving optimal growth rate [22], relates closely to the
explanation proposed by Molenaar et al. [12]. Using a
minimal model of a self-replicator, they showed how a
trade-off between the metabolic efficiency of a pathway,
and the cost associated with producing the enzymes for
that payway, can lead to a switch in metabolic strategy.
Very recently, Zhuang et al. [38] proposed instead that
competition for membrane space between glucose trans-
porters and respiratory chain enzymes could be respon-
sible for the metabolic switch between respirative and
respiro-fermentative metabolism in E. coli. They intro-
duced an alternative extension of FBA to accommodate
for this effect. We anticipate that our results would hold
if we used Zhuang et al.’s modification of FBA instead
of FBAwMC. A requirement for our results is that the
sum of a set of key metabolic fluxes is constrained. In
FBAwMC this constraint is proposed to be due to the
limited enzyme solvent capacity in the cytosol [12,17].
Mathematically, Zhuang et al. [38] propose a very simi-
lar constraint, but argue it is due to competition for
membrane space between glucose enzymes and respira-
tory chain enzymes. In fact, the explanation proposed by
Vazquez et al. [17] may be more generally applicable,
because Zhuang et al.’s rationale would not hold if glu-
cose transporters and respiratory chain enzymes do not
share the same membranes as, e.g., in eukaryotes.

Conclusions
Why, at high rates, do some microbes use low-yield
metabolism in addition to the high-yield pathway—over-
flow metabolism—whereas other microbes downregulate
their high-yield pathways? Here we show that maintain-
ing redox balance is key to understanding overflow
metabolism in E. coli. Microbes that use low-yield path-
ways converting NADH back to NAD, including L. lactis
and S. cerevisiae, are expected to downregulate their
high-yield pathways at high growth rates. E. coli can get
one extra ATP using acetate secretion; doing so it must
keep the oxidative phosphorylation pathway running to
restore redox balance, giving rise to “overflow-like”
metabolism.

Methods
Flux balance analysis with molecular crowding
We have used FBAwMC [17,22] to predict growth,
uptake and excretion rates in S. cerevisiae, E. coli and L.
lactis, using the genome-scale metabolic models pub-
lished in [26,25] and [24], respectively. We downloaded
the E. coli and S. cerevisiae model from the BiGG data-
base [39]http://bigg.ucsd.edu/. The L. lactis model was
downloaded from the Supplementary Materials in Oli-
veira et al. [24].
FBAwMC assumes that the metabolic network is in

steady state

d−→x
dt

= S .
−→
f = 0, (2)

where −→x is a vector of all metabolites, −→
f is a vector

describing the metabolic flux through each reaction in
the network, and S the stoichiometric matrix. S is
defined as follows: if reaction i produces n metabolites
of type j, then Sij ≡ n ; Sij ≡ - n for consumption of
metabolite j; otherwise Sij ≡ 0. FBAwMC attempts to
find a solution F of Eq. 2 that maximizes an objective
function, given a set of constraints. In this study, we
always optimize for growth rate. We also incorporate
constraints on the individual fluxes:

flb,n ≤ Fn ≤ fub,n, (3)

where flb, n is the minimal flux and fub, n the maximal
flux through reaction n. Furthermore, a constraint on
the total flux through the network is added to account
for the limited amount of enzymes in any given cell,
given by

∑
cnfn ≤ Vprot. (4)

Here cn ≡ Mvn
Vbn

is the “crowding coefficient”, M the cell

mass, V the cell volume, vn the molar volume of the
enzyme catalysing reaction n and bn a parameter
describing the proportionality between enzyme concen-
tration and flux. For a derivation of Eq. 3 see Beg et al.
[22]. Vprot is a constant (0 ≤ Vprot ≤ 1) representing the
volume fraction of macromolecules devoted to meta-
bolic enzymes. We fit Vprot to the experimentally
observed growth rate and glucose uptake rate. Addi-
tional file 2: Table S1 lists the results of this fitting pro-
cedure. Interestingly, Vprot values are very similar across
different organisms, ranging from 0.15-0.2. Note that
Vazquez et al. [17] assumed that Vprot = 1, which we
believe is unrealistic, because not only metabolic
enzymes fill the cell’s cytoplasm. Linear programming
efficiently solves this problem, but the solution is not
necessarily unique.

Crowding coefficients
To obtain the crowding coefficients ci we adopted the
approach of Vazquez et al. [17]. The molar volume vi
can be estimated from the molar masses of the enzymes
using a specific protein volume of 0.73 ml/g. bi depends
on the concentration of metabolites and on the turnover
numbers of the enzymes (for example in a Michaelis-

Menten way, where b = Vmax
S

S+KM
,here, we would esti-

mate b = Vmax). Following Vazquez et al. [17], we con-
structed a distribution of crowding coefficients from
turnover numbers and enzyme masses. We obtained

van Hoek and Merks BMC Systems Biology 2012, 6:22
http://www.biomedcentral.com/1752-0509/6/22

Page 8 of 10

http://bigg.ucsd.edu/


turnover numbers from enzyme database Brenda [28],
enzyme masses from MetaCyc [27]. The distribution of
crowding coefficients we then obtained using the rela-

tionship ci ≡ Mvi
Vbi

.The turnover numbers and enzyme

masses used are given in Additional file 3: Figure S2.
As there is insufficient data for L. lactis we used E.

coli crowding coefficients for this organism as well. The
turnover numbers, both for E. coli and S. cerevisiae var-
ied over orders of magnitudes. Importantly, a few
enzyme-substrate combinations had extremely low turn-
over numbers that effectively stopped the reactions.
Because these turnover numbers typically occurred for
non-metabolic reactions (e.g., DNA repair) or for non-
typical substrates of metabolic enzymes, we only used
turnover numbers of metabolic enzymes and for each
enzyme we only kept the highest available turnover
number and left out enzymes with turnover number
smaller than 0.01/s. We used wild-type turnover num-
bers if reported. The resulting distribution of crowding
coefficients for E. coli was similar to the distribution
found by Vazquez et al. [17] (see Additional file 4: Fig-
ure S3). For S. cerevisiae we found a similar distribution
as for E. coli (Additional file 5: Figure S4).

In silico growth experiments
We initiated each simulation with randomly select
crowding coefficients from the obtained distributions.
We assigned a crowding coefficient of 0 to non-enzy-
matic reactions. The COBRA Toolbox [40] was used to
perform FBAwMC in Matlab, with the GNU Linear Pro-
gramming Kit as linear programming solver http://www.
gnu.org/software/glpk.
The in silico growth media included the vitamins,

nucleotides and minerals required for optimal growth. For
the constraints on the reactions used in the simulations,
we refer to Additional file 6: Table S2. Because L. lactis
cannot synthesize many amino acids we must supply them
in the in silico growth medium. In order to ensure that
cells are not limited by amino acid uptake, we constrained
the maximal amino acid uptake rates to the biomass con-
tent of that amino acid multiplied by twice the (experi-
mentally observed) maximal growth rate. In this way, the
maximal amino acid uptake rate suffices for twice the
experimentally observed growth rate.
Matlab code to reproduce the simulations are included

in Additional file 7. The COBRA Toolbox [40] and a
linear programming solver are required.

Additional material

Additional file 1: Figure S1. Histogram of decrease in oxygen uptake
for E. coli, when acetate excretion is allowed (black) and knocked out
(red). When acetate excretion is knocked out, there are more simulations
that become fully high-yield, but also more that stop consuming oxygen.

Additional file 2: Table S1. Table describing the summary of fitting Vprot
to experimental growth rate and glucose uptake rate. For every
organism, we varied Vprot (volume fraction of macromolecules devoted to
metabolic enzymes) between 0 and 1 and performed, for each value of
Vprot, 1000 simulations with random sets of crowding coefficients. For the
simulations described in this paper, we used the value of Vprot that
minimized ((μmax, fit - μmax, obs)/μmax, obs)

2+((Gupmax, fit - Gupmax, obs)/
Gupmax, obs)

2. Here, μmax, fit, μmax, obs are the fitted and observed maximal
growth rate and Gupmax, fit, Gupmax, obs are the fitter and observed
maximal glucose uptake rate. In this table, Pineff indicates the fraction of
the 1000 simulations that exhibits low-yield metabolism, which was
defined as having a growth yield < 0.3 gr/gr glucose. Experimental data
is from Hoek et al. [29]; Thomas et al. [4]; Varma and Palsson [2].

Additional file 3: Figure S2. Excel file with turnover numbers and
enzyme masses used to calculate the crowding coefficients.

Additional file 4: Figure S3. Histograms of turnover numbers (1/s) (A)
and crowding coefficients (gram DW hr/mmol) (B) of E. coli. A. All
turnover numbers of E. coli in BRENDA (Chang et al. [28]); B. Crowding
coefficients resulting from all turnover numbers of E. coli in BRENDA
(Chang et al. [28]); C. Turnover numbers of E. coli used for the
simulations; D. Crowding coefficients of E. coli used in the simulations; E.
Turnover numbers as used in Vazquez et al. [17]; F. Crowding coefficients
as used in Vazquez et al. [17].

Additional file 5: Figure S4. Histograms of turnover numbers (1/s) (A,C)
and crowding coefficients (gram DW hr/mmol) (B,D) of S. cerevisiae. A. All
turnover numbers of S. cerevisiae in BRENDA (Chang et al. [28]); B.
Crowding coefficients resulting from all turnover numbers of S. cerevisiae
in BRENDA (Chang et al. [28]); C. Turnover numbers of S. cerevisiae used
for the simulations; D. Crowding coefficients of S. cerevisiae used in the
simulations.

Additional file 6: Table S2. Excel file describing, for every reaction, the
lower and upper bounds used in the simulations.

Additional file 7: Mini-website with Matlab code and instructions
for reproducing the simulations.
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