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Abstract

Background: Understanding the information-processing capabilities of signal transduction networks, how those
networks are disrupted in disease, and rationally designing therapies to manipulate diseased states require systematic and
accurate reconstruction of network topology. Data on networks central to human physiology, such as the inflammatory
signalling networks analyzed here, are found in a multiplicity of on-line resources of pathway and interactome databases
(Cancer CellMap, GeneGo, KEGG, NCI-Pathway Interactome Database (NCI-PID), PANTHER, Reactome, I2D, and STRING).
We sought to determine whether these databases contain overlapping information and whether they can be used to
construct high reliability prior knowledge networks for subsequent modeling of experimental data.

Results: We have assembled an ensemble network from multiple on-line sources representing a significant portion of all
machine-readable and reconcilable human knowledge on proteins and protein interactions involved in inflammation.
This ensemble network has many features expected of complex signalling networks assembled from high-throughput
data: a power law distribution of both node degree and edge annotations, and topological features of a “bow tie”
architecture in which diverse pathways converge on a highly conserved set of enzymatic cascades focused around PI3K/
AKT, MAPK/ERK, JAK/STAT, NFκB, and apoptotic signaling. Individual pathways exhibit “fuzzy” modularity that is statistically
significant but still involving a majority of “cross-talk” interactions. However, we find that the most widely used pathway
databases are highly inconsistent with respect to the actual constituents and interactions in this network. Using a set of
growth factor signalling networks as examples (epidermal growth factor, transforming growth factor-beta, tumor necrosis
factor, and wingless), we find a multiplicity of network topologies in which receptors couple to downstream components
through myriad alternate paths. Many of these paths are inconsistent with well-established mechanistic features of
signalling networks, such as a requirement for a transmembrane receptor in sensing extracellular ligands.

Conclusions: Wide inconsistencies among interaction databases, pathway annotations, and the numbers and identities
of nodes associated with a given pathway pose a major challenge for deriving causal and mechanistic insight from
network graphs. We speculate that these inconsistencies are at least partially attributable to cell, and context-specificity of
cellular signal transduction, which is largely unaccounted for in available databases, but the absence of standardized
vocabularies is an additional confounding factor. As a result of discrepant annotations, it is very difficult to identify
biologically meaningful pathways from interactome networks a priori. However, by incorporating prior knowledge, it is
possible to successively build out network complexity with high confidence from a simple linear signal transduction
scaffold. Such reduced complexity networks appear suitable for use in mechanistic models while being richer and better
justified than the simple linear pathways usually depicted in diagrams of signal transduction.
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Background
Cells monitor their external environment, transmit infor-
mation across membranes, and make cell fate decisions
using multi-protein receptor-mediated signal transduction
networks [1] that represent the “perceptual” circuits of a
cell [2]. Many diseases are now understood to result from
disruption of cellular signal transduction cascades and the
proliferative, metabolic and differentiation programs they
control [3]. Signal transduction has traditionally been
represented as a series of discrete enzymatic cascades, a
simplification that is useful when the goal is to understand
the activities of individual proteins and protein complexes.
However, it is increasingly apparent that linear representa-
tions are insufficient, and that “canonical” signal transduc-
tion cascades are components of an interconnected web
of molecular circuitry that includes extensive cross talk
among different receptors [4-7]. Understanding the com-
putational capabilities of such networks, the disruptions
that accompany disease and the functions of potential
therapeutics would benefit greatly from network-level
models that incorporate detailed mechanistic information.
Mathematical models of cell signalling exist on a

spectrum in which a trade-off exists between scope and
molecular detail [8-11]. The information in Bayesian nets
or graphs assembled using mutual information, regression
or physical association is almost entirely topological. Such
models capture sets of interactions involving hundreds or
thousands of biomolecules and can reveal how disease pro-
cesses affect large sets of molecular [12] and cellular inter-
actions [13]. However, such models typically include little
mechanistic information and are of limited value in pre-
dicting the input–output behaviours of signalling cascades.
In contrast, dynamical models, constructed using differen-
tial equations, capture detailed information on protein-
protein interactions but are currently restricted to path-
ways involving a few dozen distinct biomolecules. We and
others have described a variety of approaches to pathway
modeling that attempt to combine broad scope and
detailed biochemical data. They typically convert inter-
action networks into computable models and then train
the models against experimental data [9,14-16]. Based on
these models, it seems likely large-scale interaction data-
bases represent the totality of all possible interactions that
might occur between biomolecules, ignoring important
cell- and context-specific differences. This arises because
interaction graphs invariably contain information compiled
under widely different conditions, from different cell types
and even different species. When large scale, interaction-
rich “prior knowledge networks” (PKNs) are converted into
models and compared directly to functional data, predict-
ive models specific to individual cell types or disease states
can be constructed [9,14] in which the number of edges is
significantly lower than in the starting PKN. Because miss-
ing interactions are hard to identify in this approach, it is
important to assemble PKNs that adequately cover the bio-
logical process under a study; typically, this is done by
hand. Manual approaches are biased and excessively re-
strictive in terms of the numbers of nodes and interactions
however, and automated approaches to PKN assembly are
clearly required.
Considerable effort has been put into collecting and col-

lating interaction data that might be used to create PKNs
for logical or kinetic modeling, but there exists no single
authoritative source: information is dispersed across a
multiplicity of databases that vary with respect to scope
and the type of information they represent [17]. Pathguide
(www.pathguide.org), which is intended to serve as a single
point of access to interaction data involving biomolecules,
links to over 300 on-line information resources [18]. High
throughput experimental platforms (such as yeast-two hy-
brid, or tandem affinity tag-coupled mass spectrometry),
result in large (and notionally “unbiased”) undirected
protein-protein interaction networks (PPIN) [19] but are
known to have high false positive and false negative rates,
with platform-specific biases, relatively poor reproducibil-
ity, and relatively small overlap between repeats [20].
Literature-based pathway databases (Protein Signalling
Networks: PSN [21]) potentially overcome this problem by
capturing information recorded in thousands of papers,
most of which involve mechanistic, hypothesis-driven
experiments. Such data contains directional (substrate-
product), and causal information (e.g. activation-inhibition
relationships) and could, in principle, capture virtually the
entire repository of published data on biomolecular inter-
actions [22]; the number of interactions continues to grow
as text mining algorithms get more sophisticated [23].
However, in the absence of a widely accepted semantic for
describing experimental methods, automatic text mining
cannot easily distinguish between co-association in text
and highly specific, mechanistic information. Expert cur-
ation should, in principle, result in more reliable informa-
tion, but it has recently been reported that the process is
remarkably imprecise, as interactions recovered from dif-
ferent databases are highly discrepant [22]. Directly com-
paring interaction databases and combining the best
features of each into a single compendium is made more
difficult by the fact that existing databases were developed
using different representations and formats. Standardized
languages do exist (BioPAX, CellML, SBML, and PSI-MI)
but none is as-yet universal [24].
In this study, we attempt to shed light on issues asso-

ciated with using interaction databases as prior knowledge
networks for modeling experimental data by systematically
assembling and comparing pathway and protein inter-
action information from multiple sources. We focus on
inflammation-associated signal transduction due to its
ubiquity, clinical importance and extensive coverage in the
literature. Inflammatory signals activate a wide range of

http://www.pathguide.org


Table 1 Pathway databases used to extract gene lists

Database Version/date Pathways Inflammation Genes Format

GeneGO 01.2010 700+ 59 804 Excel Table

PANTHER v6.1 165 15 1,025 SBML

NetPATH 01.2010 20 13 625 BioPAX/SIF

Reactome v35 1081 4 173 BioPAX/SIF

NCI-PID 01.2010 104 28 459 BioPAX/SIF

KEGG 01.2010 1000+ 9 564 GPML

Macrophage 2010 1 1 195 Excel Table

SUMMARY 128 2,361 Excel Table
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intracellular enzymatic cascades, and many devastating
diseases are directly caused by or linked epidemiologically
to chronic or inappropriate inflammation; we reasoned
that having accurate network resources of inflammatory
pathways would be advantageous in the study of these dis-
eases [25]. We report the compilation of interactome data
involving inflammation-associated genes and interactions,
and the conversion of these data into a standardized for-
mat comprising a mixed directed and undirected graph
that retains resource-specific annotations, is based on
Simple Interaction Format (SIF) and that can be analyzed
systematically. The resulting ensemble meta-database of
inflammatory networks represents a significant subset of
the totality of machine- accessible human knowledge on
pathways involved in inflammation. In terms of topology,
the ensemble network displays the power law distribution
and bow-tie architecture anticipated for signalling net-
works. However, we find pathway annotations to be highly
inconsistent between sources, even for intensively studied
pathways such as EGF signaling. It is very difficult to sys-
tematically extract focused signalling sub-networks from
interaction graphs due to discrepant notation and frequent
occurrence of “bypass” edges that link molecules together
while skipping over essential intermediates (for example,
epidermal growth factor receptor, EGFR, as a necessary
component in EGF signal transduction). We therefore
present a heuristic approach for utilizing interactome data
that builds complexity out from linear graphs of signal
transduction circuits; however, additional and more
sophisticated approaches will be required if we are to ef-
fectively couple the world of large-scale interactions to
functional experiments.

Results
Ensemble approach to network construction
We used a two-step strategy to overcome the absence of
standard data formats, even among the most widely used
databases in PathGuide, and thereby compile an ensemble
meta-database of inflammation-associated signal transduc-
tion networks. First we compiled lists of genes involved in
inflammatory signalling (nodes) from seven of the most
widely used pathway databases: Cancer CellMap, GeneGo,
Kyoto Encyclopedia of Genes and Genomes (KEGG), Na-
tional Cancer Institute Pathway Interactome Database
(NCI-PID), PANTHER, and Reactome, and a curated
macrophage-specific signalling map (referred to here as
the “macrophage map” [26]). In these databases, each gene
is associated with one or more “pathways”. Since no uni-
fied pathway nomenclature exists, similar biological pro-
cesses are associated with different pathway labels in
different databases. For example "EGFR1 signalling path-
way" in NetPath (Additional file 1: Table S1, row 98) and
“EGF receptor signalling pathway” in Panther (row 110)
are labelled differently and therefore treated by a
computer as a different pathway even though we know in-
tuitively that they are likely to be similar.
In constructing the inflammation compendium we used

broad search criteria so as to include cytokines, interleukins,
chemokines, adipokines, cell adhesion molecules, extracellu-
lar matrix remodelling factors, rennin-angiotensin signalling
molecules, and components of fibrogenic and angiogenic
pathways. This generated a list of 2,361 genes that were com-
ponents of 128 non-unique pathways (summarized inTable 1
and detailed in Additional file 1: Table S1). We then identi-
fied seven interactome databases, partially overlapping with
the pathway databases, for which it was possible to extract
machine readable interactions in Cytoscape’s SIF [27] or
analogous tabular formats: a meta-database of protein-
protein interactions (PPI) (Interologous Interaction Data-
base; I2D) [28], an integrated text-mining meta-database
(STRING) [29] and five of the expert-curated databases listed
above (Cancer CellMap, GeneGo, NCI-PID, Reactome, and
Macrophage). From these databases 63,276 non-redundant
interactions were recovered (summarized in Table 2). The set
of 2361 genes and 63,276 interactions constituted our com-
pendium node-edge graph (Figure 1A) and is available as a
gene list and an edge list in SIF format amenable to Cytos-
cape import (Additional file 2: Tables S2 and S3).
Genes in the ensemble graph were annotated using

recognized HUGO Gene Nomenclature Committee
(HGNC) IDs and colloquial names, topological properties
(total and database-specific Degree, Betweenness and Cen-
trality; see below), and “function” as defined by GeneGo
ontology (Figure 1B). Edges were labelled with the data-
base(s) from which they were derived and all annotations
derived from the source databases; edges were also classi-
fied in terms of topology as positive, negative, or undirected
(Figure 1B) and in terms of function as direct (protein-pro-
tein interactions including phosphorylation, binding etc.)
or indirect (transcriptional, multi-step interactions, or un-
defined; Figure 1C). Topological and functional features of
the network can be used as filters to extract various types
of relevant biological information (i.e. to model immediate
early sign transduction events, one might chose to exclude
all indirect interactions and transcription factors).



Table 2 Pathway & interactome databases used to
identify edges between genes

Database Version/date Type Edges Graph type

i2D 1.7.1 PPIN 11,327 Undirected

STRING 8.2.1 Text mining 35,033 Mixture

GeneGo 01.2010 Curated 11,994 Mixture

Cell Map 01.2010 Curated 12,933 Mixture

NCI-PID 01.2010 Curated 14,58 Mixture

Reactome v35 Curated 6,930 Mixture

Macrophage curated 2010 Curated 504 Mixture

SUMMARY 64,276 Mixture

PPIN - protein-protein interaction network derived largely from high-throughput
experiments; Mixture – both directed & signed, and undirected edges.
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Pathway mapping reveals functional topology of
signalling networks
To ascertain whether the ensemble network is representa-
tive of previously analyzed interaction graphs we examined
a number of information theoretic and biological properties.
Complex biological and non-biological networks generally
1A

1C

Inhibitory Stimulatory Undirected
0

5000

10000

15000

20000

25000

30000

N
um

be
r 

of
 E

dg
es

Multipl

KEGG
GeneG

NetPA
NCI-PID

Reacto
PANTH

Figure 1 Ensemble network of inflammatory genes and interactions.
graph with 2,361 genes (nodes; color-coded by source, and size-coded by
comprising the network are functionally annotated using the GeneGo onto
functionally annotated as stimulatory, inhibitory, or undirected (C), and me
indirect (Non-PPI) (D), based on a combination of annotations from the va
have scale-free, or power law degree distributions (where
degree refers to the number of links per node). It has been
proposed that this structure arises from evolutionary pro-
cesses that confer robustness to random perturbations [30].
The network node degree (KT) for the ensemble network
graph (Figure 2A) and the specific databases from which it
was assembled (not shown) exhibited power law distribu-
tions although the ensemble network plateaued at the low
end around degree ~10. This likely arises from our focus
on highly annotated genes and multiple sources of data,
resulting in a particularly dense network (average degree,
KAVG=26.8) in which few nodes have few links.
The pathway annotation presented in Additional file 2:

Table S4 maps each of the 2,361 genes in the ensemble
graph onto the 128 pathways from which they were derived
(Tables 1 and Additional file 2: Table S1). Many genes were
included in multiple pathways and we therefore defined the
metric Pathway Maps as the number of pathways onto
which a given gene is assigned across all resources used in
ensemble construction. The power law structure reap-
peared in the distribution of Pathway Maps (Figure 2B),
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Figure 2 Distribution of structural and functional annotations in the Ensemble network. Distribution of node Degree (A) and Pathway Maps
(number of pathways a given gene is annotated as being involved in) (B). These two metrics are plotted against Betweeness (C and D respectively) for
all 2,361 genes comprising the network. The Pathway Maps vs. Betweeness distribution is separated into 3 regions; MapshiBT

hi, MapsloBT
hi, and MapsloBT

lo,
color-coded blue, red, and green respectively (D). Hypergeometric Z Scores quantify the enrichment of Kinases, Transcription factors, and Generic
binding proteins across the 3 respective topological regions. Z-Scores are first computed for the top 10 genes comprising the tip of the region (n= 10),
and the sample window (n/N) is then successively widened across the entire network, and scores iteratively computed to evaluate the distribution of
protein function vs. topology. Z-Scores greater than 2 correspond to P-values less than 0.05 (E).
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with the majority of genes (> 50%) being pathway-specific
and less than 0.1% mapping onto 40+ pathways.
Signal transduction networks have been proposed to

have conserved “bow-tie” structures in which a diversity of
inputs converges on a limited number of central signalling
nodes, which then fan out again to a diversity of down-
stream transcription factors and effector proteins [31]. Bow
tie architectures have been identified by inspection of
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individual biological networks [32-37] and we wondered
whether the architecture was also a present in the ensem-
ble graph. For all nodes we therefore computed Between-
ness (BT), the fraction of all shortest paths through a
network that pass through a given node. Betweenness
seeks to capture the importance of a node in transducing
signals and is highly correlated with Degree (Figure 2C). If
a bow-tie structure holds, one would expect nodes con-
necting to large number of pathways to have high Between-
ness (BT) and to therefore represent points of signal
integration. Plotting Pathway Maps vs. Betweenness (BT)
for all nodes, we see a positive correlation (Figure 2D).
We then asked whether genes with different functions

might lie in distinct regions of the Maps vs. Betweeness
(BT) landscape. The hypergeometic Z Score (see Methods
and Materials) was used to score GeneGo terms enriched
in regions of the landscape corresponding to MapsloBT

lo,
MapshiBT

hi, and MapsloBT
hi (Figure 2D). Starting at the tip of

each region, we scanned across the distribution of genes
and successively calculated Z-Scores for each functional
protein category (Generic Binding Proteins, Protein
kinases, Transcription factors; Figure 2E). The graph was
then divided into quadrants. We observed that “Generic
Binding Proteins” were enriched in the MapsloBTlo region
of the graph and corresponded to weakly connected genes;
examples at the lowest end (Maps=1, BT=0) include
CCM2 (cerebral cavernous malformation 2), CD96, and
CDH17 (liver-intestine cadherin). Cytosolic protein kinases
were highly enriched in the MapshiBT

hi region: the top ten
highest scoring proteins (Maps≥44, BT≥0.1%) consisted of
components of the Akt and MAP kinase cascades (e.g.
AKT1, MAPK1/Erk2, MAP3/Erk, SHC1, GRB2, PIK3R1/
Grb1, RAF1, MAP2K1/Mek, PIK3CA, and PIK3R2) con-
sistent with the fact that signalling kinases have many acti-
vators, many substrates, and are involved in multiple
pathways. However, receptor tyrosine kinases were not
enriched in the MapshiBT

hi region since they correspond to
inputs in the bowtie architecture. Transcription factors
were highly enriched in the MapsloBThi region, as they are
typically pathway-specific but densely connected genes (the
top 5 scoring genes in this were HNF4A (hepatocyte nu-
clear factor 4, alpha), POU2F1 (POU class 2 homeobox 1),
TBP (TATA box binding protein), GATA1 (GATA binding
protein 1), and NR3C1 (glucocorticoid receptor), all with
Maps=1, BT>0.47%). We conclude that the ensemble
graph does exhibit topological features consistent with
large-scale bow tie architecture.

Bow tie architecture results in functional clustering of
pathways
Many pathways share common signal processing elements
and we wondered whether this property was captured in
the ensemble network. As a corollary to the gene-centric
Pathway Map metric, we use the Jaccard Index (J(i,j)), a
metric of set similarity, to quantify the fraction of genes
common to two pathways i and j (see Methods and Materi-
als). Computing this pair-wise metric for all 128 pathways
produced a square symmetric matrix, represented as a
heatmap in Figure 3A, with rows and columns organized
via unsupervised hierarchical clustering. One would intui-
tively expect pathways with many common elements to
have functionally similar phenotypic annotation, a
phenomenon that has been demonstrated previously in a
limited and focused manner [38]. We confirmed that this
was true in a larger sense: functionally related pathways
clustered together with respect to the components they
contained, as revealed by dense orange/red regions along
the diagonal. Six distinct clusters are highlighted by way of
illustration and labelled as I through VI. Cluster I represent
a set of growth factor Receptor Tyrosine Kinases (RTKs for
EGF, FGF, HGF, PDGF, and Endothelins) that share many
components, particularly the PI3K/Akt and MAP kinase
cascades (e.g. PI3KCA, AKT1, MAKP1, MAP2K1, HRAS,
GRB2); many of these pathways converge on the oncogenic
transcription factor ELK1. Cluster II represents Interleukins
IL2-9 that co-activate the PI3K/Akt, MAPK Kinase and
JAK/STAT cascades (e.g. MAPK1, AKT1, JAK1, STAT3).
Cluster III is an intriguing mix of interleukins and RTK
ligands (IGF, VEGF, PDGF, LEP, IL4, IL2, IL9, IL10, IL17,
IL23) that fall together because they activate both PI3K/
Akt and NFκB pathways (e.g. PI3KCA, AKT1, NFKB1,
RELA). Cluster IV consists of renin-angiotensis signalling
events (ERK, STAT, AKT, ROS-dependent) and WNT5A;
these pathways have in common an ability to activate
phospholipase Cβ (PLCB1-4). Cluster V consists of the
WNT pathway which is annotated differently in various
databases but always includes wingless ligands (WNT1-3,
5A, 7A) frizzled receptors (FZD1-9), low density lipopro-
tein receptor-related protein 5 (LRP5), and intracellular sig-
nalling molecules such as glycogen synthase kinase 3 beta
(GSK3B) and β-catenin (CTNNB1). Cluster VI contains
pro-apoptotic death ligands (TNF, TRAIL, FASL, and
APRIL/TNFSF13) that share an interaction with TNF re-
ceptor associated factors (TRAF2,3), Fas -associated death
domain (FADD), Bcl-2 (BCL2), and caspase 8 (CASP8).
Despite problems with inconsistent nomenclature, we con-
clude that clustering pathways by the Jaccard Index
uncovers core signal transduction cascades shared between
differing pathways. The analysis provides further evidence
of a bow tie structure, in that diverse extracellular ligands
activate combinations of a few highly conserved cascades
(PI3K/AKT, MAPK/ERK, JAK/STAT, NFKB, and apoptotic
cascade). Finally, the data suggest interesting differences
and similarities among receptors: clustering of growth fac-
tors (EGF, FGF, HGF, PDGF) with each other is expected,
but inclusion of Endothelins, which function via G protein-
coupled receptors, is less obvious as is co-clustering of six
interleukins with growth factors such as IGF, PDGF etc.



Figure 3 Pair-wise similarity matrix of literature-defined pathways. The Jaccard index (a similarity metric) between all pairs of 128 pathways
represented as a hierarchically clustered heatmap (A). For brevity, source databases are indicated by number: GeneGo [1] KEGG [2], NCI-PID [3],
NetPATH [4], PANTHER [5], and Reactome [6]. The GeneGo database [1] sub-categorizes pathways based on the use of alternate downstream
effectors, as indicated in the labels. 7 dense pathway clusters are highlighted via black circles and labelled I through VII. Focusing on 4 extensively
studied pathways (EGF, TGF-β, TNF-α, and Wnt; B through E respectively), Jaccard index matrices for the same pathway as defined in different
database sources. Note the high level of discordance between alternate sources.
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Further analysis of similarities in network properties involv-
ing these proteins may uncover whether co-clustering
arises from physiologically meaningful cross-talk.
While many databases contain representations of “canon-

ical” signalling pathways, it is not clear how consistent the
definition of pathways is. To examine this we focused on 4
extensively studied, and presumably well-defined signalling
pathways lying downstream of Epidermal Growth Factor
(EGF), Transforming Growth Factor-β (TGF-β), Tumour
Necrosis Factor-α (TNF-α), and Wingless (Wnt; Figure 3B-
E). We observed remarkably poor agreement (consistently
less than 10%) among different databases regarding path-
way components. Note that the GeneGo database sub-
categorizes some pathways based on the use of alternate
downstream effectors (e.g. TGF-β signalling into ROS,
SMAD, PI3K, and MAPK-dependent branches), and these
sub-categorizations are in closer agreement than the path-
ways as defined in different sources. Thus, what constitutes
a “canonical” pathway is database specific. This inconsist-
ency in annotation may reflect underlying biology, in that
signal transduction events are often context-dependent, or
it may reflect the absence of a controlled vocabulary (as
noted above). Regardless, such complexities are rarely
accounted for in databases (except perhaps the macrophage
PSN) or in large-scale analysis of protein networks. This
raises a significant problem for mechanistic modeling, since
in the absence of objective measures of database bias or re-
liability it is not clear which genes/proteins to include for
modeling or experimental measurement.

Variable pathway annotation is a significant contributor
to inconsistencies between interactome databases
Inconsistencies across databases with respect to which
genes lie in which pathways led us to examine the
consistency with which molecular interactions (edges)
were present among 7 different interaction databases.
We defined the Edge Weight (KE) as the number of data-
bases in which a specific interaction from the ensemble
graph was present in each of the databases from which
it was assembled. We observed that KE followed a
power-law relationship across 63,276 interactions with
the majority of interactions (> 80%) specific to one data-
base and fewer than 0.1% appearing in ≥ 6 databases
(Figure 4A). Performing a similar analysis on a compil-
ation of protein-protein interactions derived from mul-
tiple high-throughput sources (the Interologous
Interaction Database - I2D) in with the Edge Weight
(KI2D) is defined as the number of protein-protein inter-
action databases containing a given revealed a similar
distribution (Figure 4B). Inconsistency with respect to
the inclusion of edges is therefore a conserved feature of
both pathway and interaction databases [20,39].
To analyze this issue further we focused on the degree

of agreement in edges among the 7 interactome
databases. The Edge Consistency (CE) was defined as the
fraction of edges in database i also found in database j
and involving genes shared between the two databases
(see Methods and Materials). Performing pair-wise ana-
lysis produced a square, non-symmetrical matrix repre-
sented as a hierarchical clustered heatmap in Figure 4C
(x- and y- axes corresponding to databases i and j). We
observed a wide range of consistencies among pairs with
values ranging from 16% to 82%. Edges from the curated
Macrophage and CellMap databases were the most con-
sistent (CE >50%) with the other five databases in the
analysis. Paradoxically, Macrophage and CellMap were
not very consistent with each other (CE= 6.6 and 15%).
This may reflect differences in the cell types under con-
sideration: macrophages in the Macrophage PSN and
tumor cells in CellMap. Edges from the NCI-PID and
Reactome databases were also fairly consistent across
sources (30% and 43% respectively) but the most com-
prehensive interactome databases (GeneGo, I2D, and
STRING) were significantly less so (21- 31%). By com-
paring Edge Weight and Edge Consistency we conclude
that the most significant source of inconsistency among
databases involves the ways in which pathways are anno-
tated and gene sets assembled; this is primarily a failure
of biological understanding rather than computational
procedures and emphasizes the importance of bringing
more data to bear on network maps.

Canonical pathway annotations represent “fuzzy”
modules
It is widely claimed that biological networks exhibit modu-
larity [40] but it is not clear whether modularity can be
discerned in large network graphs. To address this ques-
tion, we defined the Total Pathway Connectivity (PT) for
each of the 128 annotated pathways in our ensemble
graph as the sum of all degrees (K) for genes included in a
pathway. This can be divided into the total degree of in-
ternal edges (PIN), which connect 2 genes within a particu-
lar pathway and the total degree of external edges (PEX)
that connect genes inside and outside a pathway. PIN and
PEX correspond roughly to “canonical” vs. “cross-talk”
interactions. The simplest definition of a network module
is a group of nodes in which the number of internal inter-
actions is greater than the number of external interactions
(PIN/PT≥ 0.5) [41,42]. More mathematically complex defi-
nitions have been proposed but they are limited in that
they assume a given node is assigned exclusively to one
module [43,44] a property that is inconsistent with inclu-
sion of many genes in in multiple pathways (Pathway
Maps> 1; e.g. AKT1, MAP2K1, STAT3, NFKB1). We
therefore computed the fraction of internal edges for each
pathway (PIN/PT) and compared it to the value expected
by chance (EIN/ET) given a random assignment of genes to
pathways (Figure 5A). The distribution of PIN/PT across
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the 128 pathways was significantly right-shifted compared
to the randomized control (P< 10-18) implying that
literature-defined pathways in the ensemble graph display
a higher degree of modularity than would be expected by
chance alone. However, PIN/PT peaked at ~5% and had a
maximum value of ~25%, implying that none of the litera-
ture defined pathways met the simplest definition of
modularity (PIN/PT< 0.5). Thus, the vast majority of inter-
actions in the ensemble network constitute “cross-talk”.
It seemed possible than the process of creating an en-

semble network might obscure modularity found in indi-
vidual databases. We therefore asked whether the degree
of modularity differs between databases. We defined Path-
way Modularity (M) as a metric to compare observed
modularity (PIN/PT) to what would be expected by chance
(EIN/ET) (see Methods and Materials); M=0 corresponds
to a random distribution of internal and external edges,
while M=1 corresponds to two-fold more (%100 increase)
internal edges than would be expected by chance. The
modularity M was calculated for pathways as defined in
each of the 6 pathway databases based on interactions
drawn from the ensemble network or from 7 constituent
interaction databases. The resulting 6x8 matrix is repre-
sented as a hierarchically clustered heatmap in Figure 5Bi,
and the statistical significance of the metric is represented
as corresponding matrix of P-values in Figure 5Bii.
We observed that pathways and interactions derived

from the same database consistently showed high M
scores (1.15 to 1.48) but the highest values for M were
observed when pathways and interactions were drawn
from different databases. For example GeneGo pathways
display a higher value for M on interactions drawn from
CellMap and STRING (M= 1.65, 1.91) than on GeneGo
interactions (M= 1.47); Reactome pathways had higher
Modularity on STRING, GeneGo, and I2D interactions
(M= 1.71 to 4.85), than on Reactome (M= 1.15).
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Moreover, the pattern of clustering clearly reveals large
differences in Modularity between databases. Modularity
(M) of GeneGo and NCI-PID pathways are particularly
significant (P < 10-14 and 10-5 respectively, corresponding
to PIN/PT values of 1.7 and 1.6), while PANTHER path-
ways display essentially no significant degree of modular-
ity (P= 0.04 to 0.97, corresponding to PIN/PT values of
−0.14 to 0.26). Compared to the ensemble network
(P= 10-18 at PIN/PT= 0.05) these are very broad range of
values. Differences in Modularity score between data-
bases may reflect different areas of emphasis and differ-
ent types of curation. For example, the NCI-PID
database (M= 1.48) was developed specifically around
protein signal transduction, for which we might expect
significant modularity, while NetPATH and PANTHER
include downstream transcriptional circuits which are
probably more interwoven. We conclude that individual
pathway databases exhibit “fuzzy” modularity [45] that is
statistically significant but still involves many “cross-
talk” interactions.
Representation of mechanism in the ensemble network
A key goal of this paper was to create a prior knowledge
network that would represent a relatively unbiased start-
ing point for kinetic or logic-based modeling of inflam-
matory and receptor-mediated signal transduction. To
see whether this might be possible starting with the en-
semble graph, we focused our attention on EGF, EGF re-
ceptor, and downstream cytosolic signalling proteins; the
EGF pathway is clinically important and has been sub-
jected to extensive experimental and computational ana-
lysis [46-51]. Gene sets comprising EGF signalling from
6 of the pathway databases were compiled, and directed
protein-protein interactions (protein binding, phosphor-
ylation, etc.. . .) were mapped from the 7 interactome
databases. We limited the analysis to directed edges, as
these are the most helpful in building mechanistic mod-
els involving enzyme-substrate relationships. To identify
sets of interactions linking the extracellular ligand EGF
to the intracellular kinase MAPK3 (ERK), a key step in
immediate-early signal transduction, we searched for
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shortest paths connecting EGF to MAPK3 in each of the
6 interactome databases and the Ensemble network
(Figure 6Ai). Ensemble paths comprise edges that can
derive from multiple databases; EGF!CAV1 from NCI-
PID, and CAV1!MAPK3 from GeneGo, for example.
Edges contained in the shortest paths for specific data-
bases were in many cases also found in other databases.
Focusing on GeneGo for example, the EGF! SMAD3
edge is also present in the NCI-PID database, and the
SMAD3!VIM and VIM!MAPK3 edges are both
N
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indeed likely to be multiple routes by which signals from
EGF are propagated to downstream regulators, is not
plausible that every route represented in the ensemble
database actually exists. Moreover, since all of known bio-
logical activities of EGF require binding to transmembrane
ErbB receptors (EGFR is identical to ErbB1), the existence
of direct interactions between EGF and ITGB4 and other
intracellular proteins is highly improbable. Instead, these
molecules are known to be phosphorylated/dephosphory-
lated via kinases and phosphatases activated by EGF, in-
cluding MAPK [52], SHP2 [53], ERK [54], and EGFR [55]
respectively. Short pathways (ranging from 2 to 4 steps)
that omit the requirement for EGFR in EGF activity or
RAS in MAP3K activation are examples of “bypass inter-
actions,” interactions that are present in network data-
bases but that are biochemically highly implausible.
To determine the frequency of such potential “bypass

interactions” we asked how many different routes link EGF
to a downstream node. In general this is an NP-hard prob-
lem, but, by setting an upper limit on path length the prob-
lem is computationally tractable. We calculated the total
number of alternate paths connecting EGF to MAPK3 for
the ensemble and each constituent database for path
lengths of 1 through 8 (Figure 6Aii). The number of alter-
nate routes was observed to increase exponentially with
path length. At a path length of 4, there existed 146 alter-
nate routes connecting EGF to MAPK3 via the Ensemble
network, and within 8 steps, > 100 alternate paths are
found in all databases. Mechanistic considerations suggest
the actual path length to be ~8 steps corresponding to
ligand-receptor binding, assembly of intracellular signaling
complexes, activation of Ras, followed by phosphorylation
of Raf, MEK and then Erk (MAPK3; http://en.wikipedia.
org/wiki/MAPK/ERK_pathway; Figure 6B). The fraction of
paths that pass through EGFR (and are therefore biochem-
ically plausible) varies by path length, but for the ensemble
this stabilizes at approximately 20%. We can thus defini-
tively classify at least 80% of the alternative pathways as
being bypass edges, and thus of little utility in a mechanis-
tic model. To ensure these results were not unique to the
EGF signalling network, we performed the same analysis
on the 3 pathways analyzed in Figure 3C-E; TGFB, TNF,
and WNT, using SMAD4, NFKB1, and GSK3B as down-
stream sentinel nodes (Additional file 1: Figure S1). The
results were similar in all cases; while canonical receptors
and pathway components are recurrently identified, many
other pathways linking ligands to downstream transducers
were found in all databases and the total number of paths
increased exponentially with path length.
It is not obvious how we should discriminate compu-

tationally among different representations of EGFR sig-
nalling without imposing prior knowledge. If we
consider the probable origins of many of the bypass
interactions in the EGF sub-network we can appreciate
why they are difficult to eliminate: a paper claiming that
EGF activates SMAD3 does not necessarily mention the
involvement of EGFR since this information is implicit.
Indeed, it is probable that the more nearly canonical a
biochemical step (EGF acts via EGFR), the less likely it is
to be mentioned in the contemporary literature. Thus,
some of the highest likelihood interactions are under-
weighted in databases even though the statement “EGFR
activates SMAD3” in no way contradicts the claim that
EGFR is a required intermediary. Because of the large
number of alternative routes, we conclude the signalling
pathways as they are commonly understood in the litera-
ture are topologically non-identifiable in interaction
databases given current experimental technologies and
practices. While computational methods are available for
reducing network complexity based solely on topology
[56], we do not yet have the large-scale experimental
data sets needed to weed out the direct interactions
from the indirect ones in graphs such Figure 6Ai; in-
deed, even when the methods are available [9,57] it is
not obvious whether it is worth spending the effort sim-
ply to rediscover highly studied mechanisms.
In an attempt to build a network for EGF signalling rich

in relevant interactions, we sought to merge network in-
formation with a more conventional linear map of signal
transduction. We first defined an EGF minimal scaffold as
the generally accepted reaction sequence EGF!EGFR!
GRB2! SOS1!HRAS!RAF1!MAP2K1 (MEK)!
MAP3K (ERK), while recognizing that there is demon-
strably more complexity to this pathway, particularly at
the level of receptor and MAPK signalling. All scaffold
interactions were found in> 3 databases, significantly
enriched for high weight edges (P=2.7 × 10-8, hypergeo-
metric test). We then used the scaffold to identify interac-
tions between successive nodes (Figure 6b). We sought a
minimal expansion in the map by searching for links be-
tween these components separated by one intermediate
node. 14 additional molecules were identified, mediating
multiple feed-back and feed-forward loops, as well as po-
tential bypass interactions. These also serve as points of
“cross-talk” to other pathways, including growth factors
(i.e. VEGF, PDGF, FGF, HGF, WNT, TGFB), chemokines,
interleukins, interferons, death receptors (FAS, APRIL),
cell adhesion, insulin, and toll-like receptors (TLR) (see
Additional file 2: Table S4 for complete pathway maps). In
many cases, these new interactions make sense: Fos is acti-
vated by EGF and is plausibly represented as being part of
a feedback pathway, Protein kinase C is also activated by
EGF, and multiple MAPK family members are involved in
regulation of MAPK3. This approach, in which a seed
scaffold is first defined and then a series of interactions 2
or more links out added to build out a more complete net-
work may serve as a heuristic approach to adding com-
plexity in a step-wise manner to linear pathway models.

http://en.wikipedia.org/wiki/MAPK/ERK_pathway
http://en.wikipedia.org/wiki/MAPK/ERK_pathway
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An automated approach to performing such an expansion
starting with a seed and adding interaction data has re-
cently been described [58] and could presumably be
extended to include a filter for particularly problematic by-
pass edges (ligands acting without receptors for example).
Discussion
The goal of this work was to create and analyze an ensem-
ble database that represents the superposition of machine-
readable knowledge on the topologies of inflammatory
networks in humans as a prelude to more detailed net-
work analysis and mathematical modeling. Different sub-
sets of on-line resources can be queried for gene names
and interactions and we show that it is possible to com-
bine this data into a single SIF-compliant protein inter-
action network rich in information and amenable to
Cytoscape import. Interactions vary in type with some
directed and signed and others undirected and unsigned,
depending on the source of data. The average number of
interactions per node in the ensemble network is high (de-
gree ~27) and it displays a power law degree relationship.
The ensemble network also exhibits evidence of a bow-tie
structure in which a multiplicity of pathway-specific
receptors feed into a smaller set of highly interconnected
intracellular kinases and signalling molecules which then
output onto a larger collection of pathway-specific tran-
scription factors and effectors. Overall, genes from 128
pathways are present in the final network but the majority
of genes (> 50%) are pathway-specific with fewer than
0.1% mapped onto 40+ pathways. The set of highly repre-
sented genes includes many of the cytosolic kinases lying
in the middle of the bow-tie structure (PI3K/AKT,
MAPK/ERK, JAK/STAT, NFκB).
A striking feature of the databases from which the en-

semble was assembled is that they are highly inconsistent
with respect to the number of nodes and the number and
identities of the interactions for a given node. For example,
more than 80% of the interactions in the ensemble were
specific to one database and fewer than 0.1% appeared in
six or more databases (the remaining exhibited a power-
law relationship to frequency). We find the root of this in-
consistency to lie in the wide discrepancy in pathway
annotations between databases. Even when we focused on
highly studied pathways activated by EGF, TGF-β, TNF-α,
and WNT ligands, we observed remarkably poor agree-
ment (consistently less than 10%) regarding the constitu-
ents. What constitutes a “canonical” pathway therefore
appears to be database (or even expert) specific. Both at
the biochemical and phenotypic level, exogenous stimuli
are known to exhibit profound cell- and context-specific
effects [59]. Discrepancies in pathway annotations be-
tween databases may be reflective of this [22], but it is cur-
rently impossible to determine whether the primary
problem is real biological variation, the absence of suitable
controlled vocabularies or another technical problem.
Given extensive discussion about the “modularity” of

biological networks [60] we asked whether the ensemble
graph or the databases from which it was assembled show
evidence of modularity. The simplest way to define a mod-
ule is as a set of genes for which interactions among genes
within the set is more frequent than interactions with
genes outside of the set. Under these circumstances we
observed that only 5% of edges in the ensemble network
constituted intra-pathway interactions and the vast major-
ity of interactions therefore crossed pathways (potentially
representing sources of “cross-talk” and consistent with
data arising from high-throughput interaction screens for
components of MAPK, TGF-β, and TNF-α pathways [4-7].
Four obvious and non-exclusive explanations for this data
suggest themselves: (i) biological pathways represented in
the ensemble database are not modular in any meaningful
sense and instead comprise closely connected networks (ii)
we cannot easily identify modularity in large networks
through pathway annotation because the definition of these
pathways is highly subjective and variable from one data-
base to the next (iii) the ensemble network contains many
interactions that do not exist in reality (iv) modularity can
only be understood with respect to specific temporally-
restricted biological functions. The later possibility is the
most interesting: while it is true that the MAP kinase cas-
cade can be considered to be a component of a relatively
well-defined enzymatic pathway that transduces signals
from growth factor receptors to the cell nucleus, the
organization of this cascade changes over time as receptors
adapt and negative regulatory pathways are activated.
Moreover, in cells exposed to a different growth factor, ac-
tivation of the MAP kinase cascade can have very different
biological consequences.
While the degree of Modularity among the 128 path-

ways annotated in the ensemble network may be low, it
is statistically significant compared to what is expected
by chance. This may constitute a form of “fuzzy” modu-
larity, wherein diffuse and overlapping modules are inte-
grated with one another and the broader cellular
network, perhaps conferring flexibility in adapting to
complex environmental perturbations [45]. Moreover,
we observe a wide range in our statistical metric of
modularity between pathway databases (ranging from
P < 10-14 for GeneGo, to an average of P= 0.5 for PAN-
THER) reflecting the widely different curation standards.
Results emerging from cancer genome sequencing pro-
jects validate the concept of pathways as functional
modules. For tissue-specific and even clinically homoge-
neous cancer subtypes, thousands of diverse mutations
have been catalogued. However, the majority of muta-
tions can be mapped onto a limited number of canonical
signal transduction pathways (TP53/RB1, PI3K/AKT,
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Wnt, Hedgehog, and TGF-β). Moreover, mutations
within the same pathway are often functionally equiva-
lent (exclusive), and specific combinatorial patterns of
pathway activation/deactivation are required to induce
transformation [61-63]. Viewing pathways as functional
modules is thus a useful concept for integrating diverse
molecular data and reducing biological complexity to
simpler principles. The trick will be to learn to identify
these modules in interaction graphs, perhaps by imple-
menting automated network module detection algo-
rithms [42], and comparing how such a priori defined
modules overlap with annotated pathways.
Can pathway and interactome databases be used as tools

for modeling functional experiments in specific cell types?
Currently pathway databases are employed largely to gen-
erate static network maps for topological analysis and,
with high-throughput genomic, data to assist in the identi-
fication of meaningful co-variation [64]. Increasingly, how-
ever, it is becoming recognized that computable models
are crucial for the quantitative analyses of biological sys-
tems. The utility of computable models arises from their
ability to making predictions that can be tested experi-
mentally. A reasonable approach to building computable
input–output models would involve assembling a compre-
hensive scaffold of molecular interactions, converting the
scaffold into one or more models and then comparing the
models to various types of experimental data [10]. Qualita-
tive formalisms such as Boolean logic appear to be effect-
ive in this role [9]. Moreover, by focusing on relatively
restricted portions of interactions networks, it should also
be possible to inform kinetic models of mass-action bio-
chemistry [50,65]. In both cases, it is necessary to start
with complete topologies [66] and both errors and omis-
sions have profound implications for experimental design,
data analysis, and model development.
Using four exemplary signalling systems (EGF, TGFB,

TNF, and WNT), we show that downstream signalling
kinases are connected to extracellular ligands via hundreds
of alternative topologies, many of which are biochemically
implausible in that they do not involve transmembrane
receptors or the known topology of MAP kinase cascades.
We refer to these as “bypass” edges. A number of algorithms
are available for reducing such network redundancies and
idiosyncrasies using topology alone [56] or using experimen-
tal data [67]. These may represent a tractable way to initiate
model topologies in the absence of expert prior knowledge.
We illustrate an alternate heuristic approach for utilizing
interactome information to building out network complexity
from simple linear scaffold. Nonetheless, it is clear that add-
itional research is required in this area.

Conclusions
In summary, we have identified wide-ranging discrepan-
cies in how signalling pathways are defined between
different databases both with respect to molecular compo-
nents (nodes) and interactions (edges). Such discrepancies
are likely to arise both from biological factors, such as the
context-specific nature of cellular signal transduction, and
also technical problems such as the absence of controlled
vocabularies for defining what constitutes a particular
pathway. In addition, because of the way they are con-
structed, interaction databases contain large numbers of
bypass links that omit essential molecular dependencies,
such as a requirement for receptors in transducing the ac-
tivities of extracellular ligands. As a result, it is difficult to
identify well-known signal transduction pathways from
interaction databases. However by starting from small
“textbook” scaffolds, interaction databases can be used to
successively build out network complexity in a step-wise
manner. This generates the prior knowledge networks
from which cell and disease-specific models can then be
deduced using experimental data.

Methods
Ensemble network construction
The 6 Pathway databases listed in Table 1 [GeneGo (www.
genego.com/), PANTHER (www.pantherdb.org), NetPATH
(www.netpath.org), Reactome (www.reactome.org), the Na-
tional Cancer Institute Pathway Interaction Database
(NCI-PID; http://pid.nci.nih.gov), and the Kyoto Encyclo-
paedia of Genes and Genomes (KEGG; www.genome.jp/
kegg)] were searched for inflammation-associated path-
ways, with inclusion criteria based on extensive literature
curation of ligands and processes involved in chronic in-
flammatory diseases (Additional file 2: Table S1). Gene lists
(Entrez IDs) for pathways meeting our criteria were down-
loaded and compiled into a master list, while maintaining
their sources (Additional file 2: Table S4). Gene Symbols
and official Identifiers were derived from the HUGO Gene
Nomenclature Committee (HGNC) database (http://www.
genenames.org/aboutHGNC.html), and the GeneGo ontol-
ogy was used to annotate protein functions (Additional file
2: Table S2). Human-specific Interactions between genes in
the master list were identified by searching the GeneGo,
I2D v1.7.1 (http://ophid.utoronto.ca/ophidv2.201), and
STRING v8.2 (http://string-db.org/) databases. The Cancer
Cell Map (CellMap: http://cancer.cellmap.org/cellmap),
NCI-PID, and Reactome pathways were downloaded as
SIF files from Pathway Commons (http://www.pathway-
commons.org/pc/). While many additional similar data-
bases exist, these arguably represent the most widely used,
and by extension presumed highest quality resources avail-
able. All of the databases considered represent long-term
collaborative efforts, maintained by full-time staff, regularly
updated, and supported by large academic institutes as well
as a commercial organization. GeneGo (Thompson
Reuters) is the sole commercial, pay-for-access database.
This was included so as to cover both publicly available
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and commercial resources. In addition, A manually-
curated network of molecular interactions involved in
macrophage activation (Macrophage) as defined in [26]
was downloaded from the Supplementary Information of
Raza et al. Molecules in these networks were converted to
their respective Entrez Gene IDs and filtered for genes in
the master list. Interactions involving molecular complexes
were combinatorially expanded to pair-wise gene interac-
tions, and only direct gene/protein interactions were con-
sidered. The 7 interaction sources were integrated as the
Ensemble network (Additional file 2: Table S3). The net-
work was visualized in Cytoscape v2.8 (www.cytoscape.
org).

Structural analyses
The Jaccard Index measures similarity between sample
sets, defined as the size of the intersection divided by
the size of the union of the sample sets. The Jaccard
Index between pathways i and j (J(i,j)) is thus defined as:

J i; jð Þ ¼ n i; jð Þ
N ið Þ þ N jð Þ � n i; jð Þ

Where n(i,j) is the number of common genes, and N(i)
and N(j) are the total number of genes in pathway i and
j respectively.
Similar to the Jaccard index, but accounting for vast

differences in database coverage, we define the Edge
Consistency (CE(i,j)) between databases i and j as :

CE i; jð Þ ¼ e i ; jð Þ
E ið Þ

Where e(i,j) is the number of common edges, and E(i)
is total number of Edges in database i between genes
also present in database j.
Betweeness centrality of a node is defined as the frac-

tion of all shortest paths in a network that pass through
it. The Betweeness centrality for all genes in the Ensem-
ble network was computed using the NetworkAnalyzer
Cytoscape plugin (http://med.bioinf.mpi-inf.mpg.de/
netanalyzer/).

Functional enrichment analysis
To examine the enrichment of protein functions within
topological regions of the ensemble network, we used
the hypergeometric Z-score, an easily computable metric
for assessing gene set enrichment [68]. The hypergeo-
metric Z-score is defined as:

Z ¼ r � n R
N

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n R

N

� �
1− R

N

� �
1− n−1

N−1

� �q

Where N = total number of elements (genes), R =
total number of positive elements (protein functional
categories), n = sample size, and r= number of positive
elements in the sample.
The metric is derived from the standard, or Z-score:

Z ¼ xi−μ
σ

Substituting the average (μ) and standard deviation (σ)
for the Hypergeometric distribution:

μ−
nR
N

σ ¼ nR N � Rð Þ N � nð Þ
N2 N−1ð Þ

Values greater or less than ±2 thus approximately cor-
respond to p-values ≤ 0.05.
Genes comprising the network are first rank ordered,

in this case based on Pathway Maps & Betweeness
scores. Starting at one end of the ranked gene list (either
MapsloBT

lo, MapshiBT
hi, or MapsloBT

hi) a sample (size n) is
assessed for enrichment of a categorical classification (in
this case, protein function designations Generic Binding
Proteins, Kinases, and Transcription Factors). The sam-
ple window (n/N) is then successively widened across
the gene set, and the score iteratively computed, eventu-
ally covering the entire set of genes. The Z-score can
was plotted as a function of the sample window size (n/
N), to examine the distribution of functional categories
within the network.

Pathway modularity
The Total Pathway Connectivity (PT) is defined as the
sum of all pathway gene degrees (K);

PT ¼
Xn
1

Ki

For n total genes associated with pathway i. Edges
comprising the Total Pathway Connectivity (PT) can be
divided into Internal (PIN) vs. External (PEX), defined as
edges which connect 2 genes within a pathway vs. edges
which connect a gene within the pathway to a gene out-
side of the pathway.

PT ¼ PIN þ PEX

Pathway Modularity (M) is defined based on the ratio
of internal to total pathway edges (PIN/PT) compared to
what would be expected by chance, given a completely
random association of genes to pathways. The expected
ratio of internal to total pathway edges (EIN/ET) for each
of the 128 pathways was determined by randomizing the
gene lists while maintaining the Pathway Maps for each
gene. The number of internal and total edges were then
counted for 100 randomizations, and the average values

http://www.cytoscape.org
http://www.cytoscape.org
http://med.bioinf.mpi-inf.mpg.de/netanalyzer/
http://med.bioinf.mpi-inf.mpg.de/netanalyzer/
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taken as the expected ratio (EIN/ET). These calculations
were performed using the Ensemble network, as well as
the 7 interaction database-specific networks. Pathway
Modularity is then given by:

M ¼
PIN
PT

� �
− EIN

ET

� �

EIN
ET

� �

Statistical significance of the Pathway Modularity
scores for each of the 6 pathway databases were assessed
by comparing the (PIN/PT) and (EIN/ET) distributions
using the non-parametric Mann–Whitney U test.

EGF pathway identification
The shortest paths connecting EGF to downstream con-
stituents were identified using Dijkstra’s algorithm, and
total number of paths computed using an iterative
depth-first search.
All analyses were performed using MATLAB R009b

software (The Mathworks, Natick, MA).
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