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Biomarker robustness reveals the PDGF network
as driving disease outcome in ovarian cancer
patients in multiple studies
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Abstract

Background: Ovarian cancer causes more deaths than any other gynecological cancer. Identifying the molecular
mechanisms that drive disease progress in ovarian cancer is a critical step in providing therapeutics, improving
diagnostics, and affiliating clinical behavior with disease etiology. Identification of molecular interactions that stratify
prognosis is key in facilitating a clinical-molecular perspective.

Results: The Cancer Genome Atlas has recently made available the molecular characteristics of more than 500
patients. We used the TCGA multi-analysis study, and two additional datasets and a set of computational
algorithms that we developed. The computational algorithms are based on methods that identify network
alterations and quantify network behavior through gene expression.
We identify a network biomarker that significantly stratifies survival rates in ovarian cancer patients. Interestingly,
expression levels of single or sets of genes do not explain the prognostic stratification. The discovered biomarker is
composed of the network around the PDGF pathway. The biomarker enables prognosis stratification.

Conclusion: The work presented here demonstrates, through the power of gene-expression networks, the
criticality of the PDGF network in driving disease course. In uncovering the specific interactions within the network,
that drive the phenotype, we catalyze targeted treatment, facilitate prognosis and offer a novel perspective into
hidden disease heterogeneity.

Background
Cancer is a disease of genomic alterations: changes in
DNA sequence, epigenetic aberrations in DNA methyla-
tion and genomic variations in copy number together
underpin the development and progression of human
malignancies [1]. Causing more deaths than any other
gynecological cancer, epithelial ovarian cancer had an
estimated 21,550 new cases and 14,600 deaths in the
United States in 2009 [2]. Ovarian cancer strikes silently,
revealing no obvious symptoms until late in its course,
leading to late stage diagnosis [3]. The best therapy for
ovarian cancer remains undetermined. Patients with
well-differentiated tumor stages IA, IB show good prog-
nosis and surgery is sufficient, but for patients with
more advanced stages, optimal treatment after surgery
has not been completely defined; most patients receiving

aggressive therapy display poor prognosis, questioning
the real impact of treatments on the biology of the
tumor [4]. A better understanding of the biology of
advanced ovarian cancer may help improve the treat-
ment for patients with more advanced tumor stages.
Identification of cellular factors that drive the prognosis
may provide a key to novel treatment. [5]. Systems biol-
ogy approaches hold the promise of substantially
improving the current state-of-the-art in medicine by
clarifying distinctions between multiple disease states
and enabling the underlying molecular causes of a dis-
ease to be identified [6-8].
One of the most comprehensive efforts in molecular

characterization of cancer in general and ovarian cancer
in particular is The Cancer Genome Atlas (TCGA) [1].
The types of data provided through TCGA, for over 500
patients, are expression abundance through microarrays,
DNA methylation and copy number variation data.
DNA methylation plays an important role in the
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development of cancer and other diseases owing to its
ability to control and silence gene expression through
the interaction of methylcytosine binding proteins with
other structural components of chromatin, which makes
DNA inaccessible to transcription factors through his-
tone deacetylation and chromatin structure changes
[9-11]. Somatic copy number variations are extremely
common in cancer. Deletions and amplifications contri-
bute to alteration in the expression of tumor suppressor
genes and oncogenes. By studying these changes and
their versatility, we can find targets for sophisticated
therapeutics approaches [12,13].
In this work, we analyzed methylation, copy number

and gene-expression data for 511 ovarian cancer
patients from The Cancer Genome Atlas database, and
gene-expression data from two additional datasets
obtained from the Duke University Medical Center
[14,15], to determine molecular concomitants of disease
outcome. As a first step, we determined the list of genes
whose expression levels stratify patients into groups
with distinct prognoses. However, when we verified the
molecular behavior of these genes in other, unrelated,
datasets, the gene signature obtained was utterly unsuc-
cessful in achieving prognostic stratification. In addition,
we performed gene set signature analysis in order to
find sets of genes whose expression patterns correlated
with survival, no overlapped signature was found. We
therefore addressed the issue from a different perspec-
tive and utilized well-documented connectivity and hier-
archy of signaling networks in cells to see if
modifications in network behavior could be more closely
associated with phenotype than the simple expression of
single genes. The results we show here demonstrate that
such network modifications indeed stratify patient prog-
noses according to the molecular characterization of the
tumor.
Further, and perhaps most importantly, the specific

pathway we highlight as network signature can be car-
ried over to new datasets. That is, the same network
behavior associates patients with outcome, regardless of
specific batches of experimental procedures. Merging
datasets from different studies bridges biases, leads to
identification of robust survival factors [16] and eases
concerns about the instability of mRNA data [17,18].
Applying tests that predict clinical outcome for patients
on the basis of RNA abundance in their tumors is likely
to affect patient management increasingly, heralding a
new era of personalized medicine [7].
The single gene approach has proven useful in differ-

ent types of cancer. Established research has shown (e.
g.) the connection between MYC and prognosis out-
come. High expression levels of MYC correlate closely
with poor prognosis in many types of cancers [19-21]. It
has been demonstrated that MYC alone can stratify

patient groups and it shows a significant p-value in a
Kaplan-Meier analysis. Here, however, we found that
the single gene approach does not sustain ratification in
multiple datasets. In contrast, we demonstrate the ability
of a molecular network to serve as a biomarker. By
identifying the particular subnetworks that are targeted
by genomic aberrations and by demonstrating their phe-
notypic power through their ability to stratify patient
groups, we come closer to identifying a biological pro-
cess that drives the disease. We emphasize that within
the network we identify here; it is not possible to detect
single molecules on which phenotypic stratification can
be based. Only the combined effect of the relationships
among the genes, the measure of their co-dependency
through the different pathway metrics we use, drives the
phenotypic classification.

Results and discussion
Kaplan-Meier (KM) survival analysis enables quantifiable
metrics to be associated with disease outcome. KM ana-
lysis, a well-established method, is often used in clinical
and basic research to identify biomarkeres that may
improve survival rates. In ovarian cancer datasets, owing
to the disease course, other phenotypes (stage, pharma-
ceutical regiment, environmental parameters, etc.) are
usually absent, and disease outcome is often the only
strong phenotype available.
The work presented here was performed in three

manners: single-gene based, gene-set based and network
based.

Genome wide, single gene based survival analysis
For the single-gene based approach, we retrieved
mRNA expression levels for the collection of genes
sampled via microarrays used in TCGA (see further
details in Methods). We then iterated across the list of
22,777 genes represented on the array.. Each gene was
classified using K-means clustering into two groups
(K = 2) according to its expression levels. Thus, low
expression levels of a specific gene would affiliate
patients to one group, while higher expression levels
would affiliate them to the other. We thereby gener-
ated unique patient groups, per each gene. Next, we
used the classification data along with the clinical out-
come data to generate 2,2277 KM curves. That is, the
gene-expression-based classification into distinct
groups was used as the basis for the KM curves and
associated p-values. The result of this genome-wide
process was a set of p-values, one for each of the
genes covered by the microarray (all known genes in
the human genome). 1634 genes were found to have
significant log-rank p-value in patient stratification.
The lists of genes and their corresponding p-values are
given in Additional file 1 Table S1.
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This procedure was performed first on the TCGA
dataset and subsequently on the two additional datasets
(Duke set #1: 105 significant genes, and Duke set #2:
249 significant genes). The reason for the repeated pro-
cedure was to find a robust set of genes, able to stratify
survival in each of the unrelated datasets. 11 genes over-
lapped between the TCGA dataset and Duke set #1, 16
genes overlapped between the TCGA set and Duke set
#2, and only four genes overlapped between Duke #1
and Duke #2 sets.
Although we could find specific sets of genes with sig-

nificant p-values in each dataset (see Figure 1a), these
gene sets do not overlap across all three datasets. Not
even one gene within the gene sets demonstrated
robustness across multiple studies.
Gene set enrichment analysis (GSEA) has become a

conventional tool for analyzing gene-expression micro-
array results. It looks at groups of genes and tries to
determine whether the members of the group distribute
randomly throughout the entire reference list [22].
GSEA is used here to test whether the genes we found
in each dataset randomly distribute among all 579 path-
ways or enrich specific pathways. We used GSEA on the
sets of genes we found to stratify prognosis.
Contrary to the gene-set based analysis, in which the

analysis focused on finding sets of genes that their com-
bined expression values could stratify the patients into
survival groups, here we focused on the entire collection
of significant genes in every dataset in order to find
enrichment to pathways. This was done in order to
reject any biases in the single gene analysis, meaning to
verify that the genes found in all three sets in the single
gene analysis do not enrich the same pathways.
We found that of the 1,646 genes identified via the

TCGA dataset, 51 pathways were enriched and had sig-
nificant p-values. The 105 genes in the second dataset
significantly enriched 24 pathways. Out of the 249 genes
in the third dataset, 16 pathways were identified. Again,
the intersection of significantly enriched pathways from
the three datasets resulted in an empty set. This result
strengthens our hypothesis that single-gene-expression
levels miss a valuable perspective on the complete
process.

Interactome-Wide, gene set based survival analyses
Discovering biologically meaningful gene patterns is
highly important in analyzing genome-wide transcription
profiles. In order to identify transcriptional signature
that could predict survival rates we used the BRB-Array
Tool.
The BRB-Array Tool is an integrated software for the

comprehensive analysis of DNA microarray experiments
developed at NCI, Biometric Research Branch, Division
of Cancer Treatment and Diagnosis [23]. A Gene Set

Expression Comparison kit is part of the BRB-Array
Tool intended to find meaningful patterns in the data.
This analysis enables us to find gene sets of transcrip-
tion factor (TF) targets, gene sets containing genes
whose protein products share the same protein domains,
and gene sets with the same GO ontology annotation
[24]. Using this analysis, we looked for sets of genes
whose expression correlated with patient survival. Goe-
man’s Global Test, which was used here to determine
significance, is a score test for the association of the
expression profile of a gene set with survival time. Using
this test, it can be determined whether the global
expression pattern of a group of genes is significantly
related to the clinical outcome [25].. This analysis was
performed on all three datasets in order to find gene
sets that significantly correlated with survival. As in the
single gene analysis, we Identified here as well sets of
genes that significantly correlated with survival in each
dataset, but none of them overlapped between the three
datasets. Figure 1b-d demonstrates the results from (b)
the Go Ontology, (c) Protein Domains and (d) Tran-
scription Factors gene set analyses.

Interactome-Wide, pathway based survival analyses
The third approach was to utilized network graph struc-
ture. For that, we applied methods for merging expres-
sion data with network knowledge [26]. These methods
quantify expression behavior in specific sub-networks (i.
e. specific pathways or any other defined sub-network)
and produce two metrics: network activity and consis-
tency. In brief, a pathway’s activity is a measure of how
likely the interactions within a pathway are to be active
in a specific sample. A pathway consistency is a measure
of the compatibility between gene-expression abundance
in that sample and molecular description as detailed in
the pathway’s graph (meaning is the pathway behavior is
consistent with the graph structure). Further details are
given in the Methods section and in [26].
To apply this network-based methodology, we used

The PathOlogist [27] which is an automated Matlab
tool that uses gene-expression data(RMA levels) to
deduce pathway metrics. Each sample was thus re-repre-
sented using its pathway metrics. This representation
assigns 579 pathway metric scores (a score for each
pathway in the database) to each sample. Interaction
and pathway information was obtained from The
National Cancer Institute’s Pathway Interaction Data-
base (PID) [28]. We then clustered every pathway into
two group (according to pathway expression levels)
using K-means clustering and iterated across the set of
samples,, to assign KM p-values for each of the path-
ways in order to identify pathways and on the basis of
their expression levels we can stratify the patients into
two survival groups. This procedure allowed us to rank
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Figure 1 Venn diagrams demonstrate the overlap/lack of overlap between prognostic biomarkers. (a) Blue circles stand for the genes
identified as significant in stratifying patients into survival groups in TCGA. Red circles are genes identified in Duke set #1 and green circles are
genes identified in Duke set #2. The shared colored circles are genes shared between datasets. While some genes are shared between two
groups, none is shared among all three datasets. (b-d) Venn diagrams for the gene set signature analysis. In contrast, (e) shows the same
analyses performed via pathway metrics. One pathway (PDGF signaling pathway) is shared among the three datasets and demonstrates the
robustness of the pathway approach.
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each pathway, in a similar fashion to the ranking we
performed per each gene and for the sets of genes. This
entire collection of pathways and genes and their p-
values is available in Additional file 1 Table S1 and
Additional file 2 Table S2.
We then validated this set of pathways within the two

additional data sets used previously [14,15]. Following
the same procedure, we found, for every dataset, a set of
pathways that stratify prognosis. These multiple compu-
tational procedures provide us with three sets of path-
ways, one for each dataset. Yet the results here were
very different from those in the single-gene-based and
the gene-set-based approaches. When we intersected the
three pathway sets, we found one significant pathway
that prevailed across the multiple data sets. Again, the
pathway was chosen for its statistical strength in prog-
nosis stratification (survival analyses). Yet no individual
gene member by itself showed any statistical power in
survival analyses. The combined effect of transcriptional
dependence, as expressed by the PDGF signaling path-
way, provides this statistical power. The PDGF signaling
pathway (Biocarta) showed consistent behavior across all
data sets and was the most powerful biomarker in its
ability to stratify prognosis very significantly. Figure 1e
demonstrates the results.
PDGF signaling pathway
The analysis revealed that higher levels of the PDGF
pathway activity are associated with lower survival rates.
Figure 2 gives KM curves, based on the pathway’s activ-
ity, across the data sets. To study the molecular charac-
teristics of this pathway further, we made use of the

intensive molecular features available through TCGA.
We analyzed the copy number and methylation profiles
of the pathway genes. We took an approach that statisti-
cally quantifies the bias within the set of genes, accord-
ing to their genomic modifications. This approach is
detailed in [29]. The method uses Fisher’s omnibus
[30,31] to assign a p-value to each sub-network accord-
ing to genomic events (such as copy number variation).
Pathways with a gene set enriched with genomic events
(across all 511 patients) are assigned lower p-values.
Using this metric, we found the PDGF pathway provides
highly significant p-values (P-value: 0.01) when consid-
ered from a copy number alterations perspective.
Figure 3 shows changes in copy number across genes in
this pathway; blue indicates amplification and red dele-
tion. The figure demonstrates that practically every
patient in the study had undergone change in copy
number in multiple genes in the pathway. The use in
this statistical test enables us to quantify the genomic
changes and to distinguish between changes that their
occurrences are above normality. To account for the
specific behavior of the gene content, we briefly discuss
their specific behavior in relevance to current findings.
Figure 4 outlines the pathway’s gene content and the
interrelations between genes according to the PID [28]
database: JAKs (Janus kinases) are a family of tyrosine
kinases associated with cytokine receptors. Upon recep-
tor activation, JAKs phosphorylate transcription factors
known as STATs and initiate the JAK-STAT signaling
pathway. Activation of this pathway has been implicated
in the pathogenesis of a variety of human malignancies;

p = 0.007

TCGA Dataset (511 pa ent)TCGA Dataset (511 pa ent)

Figure 2 Kaplan-Meier curves generated according to values of the PDGF pathway. Panel (a) shows the KM curve generated using the
TCGA dataset. Panels (b) and (c) show curves from Duke Dataset #1 and #2 respectively. Across the three panels, Group1 (blue line), which is
affiliated with better prognosis, shows lower pathway activity values and Group2 (green line) shows higher pathway activity values. The affiliation
of pathway metric levels with prognosis is highly robust in this case, as it shows low p-values and consistent behavior across datasets.
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this activation promotes acceleration of cell prolifera-
tion, up-regulation of survival factors, and activation of
antiapoptotic proteins [32,33]. ERK1 (extracellular signal
regulated protein kinase) mediates key events through-
out the cell. Recent studies have shown that persistent
activation of ERK plays a major role in cell migration
and tumor progression [34,35]. JUN is the putative
transforming gene of avian sarcoma virus 17 and is a
well-known proto-oncogene (when highly expressed it
becomes oncogenic). It is central to cellular signal trans-
duction and regulation of proliferation [36,37].
Careful examination of copy number alterations in the

PDGF pathway reveals interesting behavior. These speci-
fic genes demonstrate combined differential behavior in
the survival groups, as defined by the pathway’s activity
measure. Group1 (better survival and lower pathway
activity) contains frequent deletion of genes. This group
(group1) showed 17%, 4% and 20% deletion in JUN,
ERK1 and JAK1 respectively; in contrast, group2 (lower
survival rates and higher pathway activity) showed only
11%, 1% and 11% deletion percentiles respectively.
The deleted genes in this set are considered onco-

genes and thus support tumor progression. Their dele-
tion is consistent with the observed differences in
survival rates. In addition, analysis of the correspon-
dence between gene expression, copy number variation
and methylation profile revealed differences between
the groups in three genes in the pathway. JUN, a
proto-oncogene, showed significant correlation (p <
0.05) between CNV and gene-expression levels in both
groups, but there was also a significant positive corre-
lation (p = 0.0145) between methylation and copy
number levels in Group1 (better survival); this correla-
tion was absent in Group2 (poor prognosis). This

positive correlation indicates that when Group1 gains
more copies of JUN it is also has higher levels of
methylation. This may indicate a mechanism that com-
pensates the amplifications in JUN by silencing JUN
with methylation. This mechanism can only be seen in
the better survival group, once again consistent with
the differences in survival rates. Two more genes that
showed differences in the triple profile between the
two groups are PLCG1 and STAT3. Both are involved
in intracellular signaling cascades and are known to be
involved in tumorigenesis, proliferation and cell survi-
val [38-41]. PLCG1 and STAT3 showed significant
positive correlations between CNV and gene-expres-
sion levels in both groups, but there were also signifi-
cant negative correlations (PLCG1 p-value = 0.035,
STAT3 p-value = 0.033) between the methylation and
gene-expression levels in Group2 (poor prognosis) and
not in Group1 (better survival). When those genes are
amplified, the methylation levels are low, meaning that
the patients concerned had gained active copies that
were not silenced by methylation. Furthermore, exami-
nation of gene-expression levels in Group1 demon-
strates a strong positive correlation between the
expression levels of Jun, a well-known proto-oncogene,
and FOS (Additional file 3 Table S3).
The PDGF signaling pathway has been extensively stu-

died and well characterized since PDGF was first
described in the 1970’s as a serum factor that promoted
the smooth muscle cell proliferation [42]. PDGF recep-
tors are expressed in 50%-70% of ovarian tumors, recent
studies on the PDGF signaling pathway in ovarian can-
cer suggests an over expression of the pathway due to
over expression in the PDGF receptor which initiate the
entire pathway. Thus, lead to the assumption that inacti-
vation of the PDGF signaling by novel approaches is
likely to have a significant impact in cancer therapy
[43-45]. The increased evidences to the over-expression
of the PDGF signaling together with its important role
in almost all aspects of cancer biology, including migra-
tion, apoptosis, angiogenesis and metastasis joins and
strengthen the results shown here and emphasizes the
importance of the PDGF signaling pathway in ovarian
cancer progression.
Ovarian cancer survival rates vary dramatically with

stage. Within any stage, however, differences are noted
in survival by age: younger women have better prog-
noses than older women, even after adjustment for the
general life expectancy of each age group (relative survi-
val) [46]. Moreover, among patients with suboptimal (>
1 cm residual disease) epithelial ovarian cancer, those
who have small diameter residual disease (< 2 cm) tend
to survive longer than those who have larger residual
disease. Among those with larger residual disease, dia-
meter does not affect prognosis appreciably [47].

Figure 3 CNV HeatMap of alteration in gene members of the
PDGF signaling pathway across 511 patients from the TCGA
database. Blue indicates amplification and red deletion. A closer
examination of the figure demonstrates that for each patient a
different non-empty set of genes is being targeted by genomic
alterations, but the pathway is targeted in one form or another
across the set.
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Figure 4 The PDGF pathway diagram taken from NCI’s Pathway-Interaction-Database (PID). Pathway members and the interactions
between them are used as the basis for the computational metric of pathway behavior. Interactions are quantified according to gene-expression
abundance and are iterated across the pathway.
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To confirm that stratification into groups as performed
here through pathway analysis is indeed based solely on
the metric and is not a recapitulation of clinical variables,
we performed additional analysis on the correlation
between the clinical measurements assessed and the

groups that emerged. This analysis revealed that the classi-
fication was indeed a consequence of pathway activity and
not a recapture of well-known clinical features, demo-
graphic features or disease history. Figure 5 shows clinical
measurement distributions in the two groups.

 

Mean = 60.37 
Std. = 11.565 
N = 349 

Age Distribution Group1 
 

Residual Disease Distribution Group1 
 

Grade Distribution Group1 
 

Stage Distribution Group1 
 

Age Distribution Group2 
 

Mean = 59.55
Std. = 11.219 
N = 162 

Residual Disease Distribution Group2 
 

Grade Distribution Group2 
 

Stage Distribution Group2 
 

Figure 5 

(a) 

(b) 

(d) 

(c) 

Figure 5 Distribution of clinical features in the two groups stratified by the PDGF metrics: (A) Age, (B) Diameter of residual disease, (C)
Stage, (D) and Grade distribution between the two groups. The figure demonstrates that the two groups display very similar clinical features.
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Conclusions
Over the past few decades, different genes have been
used, with greater or lesser success, as biomarkers for
prognostics. In the work presented here, by performing
genome-wide sequential analyses across all genes and
across all pathways, starting with TCGA and validating
in two additional datasets, we saw how the single-gene
approach fails to stratify patients robustly into prognos-
tic groups. By applying the same strategy but with a dif-
ferent metric, that of pathway modifications, we
identified one pathway that significantly and consistently
stratified prognosis across the TCGA set and the two
additional validation sets. In marked contrast, the
expression levels of the genes composing the pathway
did not provide valid prognosis stratification.
Methylation, copy-number variation and gene-expres-

sion have been established as molecular markers of
tumor formation. Here, by looking into these genetic and
epigenetic modifications in the PDGF pathway, we found
this pathway to be significantly targeted by changes in
copy number. Alterations in copy numbers may provide
a causal explanation of why this pathway is a valid classi-
fier. The expression level of a gene, in and of itself, fails
to produce similar results; it is only the combined, syn-
thetic, synergistic effects of subnetworks that identify
phenotype affiliation. By isolating specific subnetworks,
we were able to handle the NP-hard numeracy of net-
work interactions. Further analysis revealed specific inter-
actions at the core of the phenotypic clustering.
The lack in robustness of a single gene or even a set

of genes emphasizes the importance of the pathway
structure. While in a gene-set analysis every gene has
the same weight of importance, in a pathway analysis a
gene in calculated according to its location and contri-
bution to the pathway.
Interestingly, expression levels of FOS are often

higher in patients with a good prognosis than patients
with poor prognosis. Studies on the oncogenic func-
tions of FOS show it to be involved in the regulation
of tumorogenesis, leading to down-regulation of tumor
suppressor genes and eventually to invasive growth of
cancer cells [48,49]. In contrast, other studies have
shown FOS to act as a tumor suppressor gene. The
authors of a recent study on epithelial ovarian carci-
noma showed that reduction in FOS expression was
associated with significantly shorter overall survival
rates. They explained that the tumor-suppressor activ-
ity of FOS could be a pro-apoptotic function, which
might confer increased chemoresistance on tumors
with low FOS protein levels [50].
This JUN-FOS correlation was robustly present in

Group1 throughout the three datasets, but there was
no similar JUN-FOS correlation in Group2. This con-
sistent correlation in the better survival group and the

consistent lack of correlation in the second group lead
us to propose that the prognosis-related correlation is
highly significant and may indeed account for the dif-
ferences in survival. A positive correlation indicates
similar intracellular behavior: when JUN expression
levels are high, FOS expression levels are high (and
vice versa). That is, in well-controlled cases (better
prognosis), when JUN behaves as an oncogene (high
expression levels), FOS is highly expressed to suppress
and oppose JUN activity. This behavior disappears in
the poor prognosis cases, where this control mechan-
ism fails and the gene correlation falls. Owing to their
known close connection [51,52] and their opposite
functions in tumorigenesis, we assumed that the corre-
lation in the better survival group and the lack of cor-
relation in the poor prognosis group are not
coincidental and are strongly connected to the prog-
nostic outcome. In addition, the fact that neither FOS
nor JUN alone stratified prognosis consistently across
the three datasets supports the assumption that only
their co-behavior in the PDGF pathway can potentially
be a target for future therapeutics.
Our results demonstrate that pathway interactions are

either associated with improved prognosis by “helping” the
pathway counter the tumor, or with poor prognosis by
“breaking down” the pathway’s normal activity. Through
better understanding of the pathway mechanisms and the
interactions that undergo changes, we may find targets for
new treatments. The fact that the pathway we identified
did not correlate with age or tumor diameter and was
found in all three datasets strengthens the hypothesis that
this pathway is a core mechanism of the disease.
Recent study on the ovarian cancer dataset from the

TCGA found a 193-gene signature that predict overall
survival in the TCGA data and additional datasets [53].
Interestingly, the pathway presented here outperforms
the 193-gene signature in both the kaplan-meier p-value
in the TCGA database (p-value of 0.02 compare to
0.007 in our results) and the number of genes in the
prognosis classification (193 gene compare to 18 genes
in the PDGF pathway). The work presented here, along
with other studies, emphasizes the network unit as a
biomarker [54,55]. By making the transition from the
gene as the unit of phenotypic affiliation to the molecu-
lar network as the unit of analysis, we obtained highly
significant prognosis curves. Furthermore, this transition
to the process instead of the single agent facilitates the
discovery of a process-based classification.

Methods
Gene Datasets
1. TCGA
All data were obtained from The Cancer Genome Atlas
(TCGA) database, available at http://cancergenome.nih.
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gov/. This dataset comprises molecular characterizations
from over 500 ovarian cancer patients. For each patient,
the database provides methylation, copy number and
microarray values. In addition, the following clinical
data variables were recorded for each patient: age,
tumor grade, tumor stage, vital status and tumor histol-
ogy. DNA methylation levels were quantified using an
Illumina Infinium HumanMethylation27 BeadChip,
which quantifies 27,578 highly informative CpG sites
located within the proximal promoter region of tran-
scription start sites of 14,475 consensus coding
sequences (http://www.illumina.com/products/infi-
nium_humanmethylation27_beadchip_kits.ilmn). The
BeadChip technology allows as little as 2.5% methylation
to be detected at a specific site. Furthermore, it can dis-
tinguish 17% differences in absolute methylation level
between samples. [56]. The methylation status of an
interrogated CpG site is determined by calculating the
beta value, defined as the ratio of the fluorescence signal
from the methylated allele to the sum of the fluores-
cence signals of both methylated and unmethylated
alleles [10]. The beta value is between 0 and 1, where 0
is fully unmethylated and 1 is fully methylated. In our
analyses, values over 0.5 were tagged methylated and
values below 0.5 were tagged unmethylated. CNV levels
obtained from the Human Genome CGH 244A microar-
ray. [57]. CGH arrays provide a means for quantitative
measurement of DNA copy number aberrations and for
mapping them directly on to genome sequences. A
value of 0 (log 2 ratio) indicates a normal state, 1 indi-
cates 2 copy gains and -1 refers to heterozygous dele-
tion. A standard threshold for copy number alteration of
>0.3 for amplification and < -0.3 for deletion was
applied as previously described by [58-60]. Gene-expres-
sion was quantified using an Affymetrix HT Human
Genome U133 Array Plate Set. The expression data
were normalized by quintile normalization to produce
RMA expression values from the Affymetrix CEL files.
All CEL files from all batches have been normalized
together to produce RMA expression values. This has
been done with the purpose of avoiding technical varia-
tion such as batch effect. RMA has been extensively
used in such studies and had become the de facto stan-
dard in normalizing Affymetrix mRNA expression data.
Further, to reduce any biases we performed two addi-
tional validations in additional data sets. TCGA consor-
tium have recently published a comprehensive work on
ovarian cancer data [53] in which they demonstrate a
substantial batch effect across Agilent and Affymetrix
Human Exon Arrays, which suffer from sever batch
effects. Yet, the Affymetrix U133A platform showed
only modest batch effects.
Gene expression in all three datasets was analyzed on

the normalized RMA expression data.

2. Duke university medical center dataset #1
The dataset is composed of gene-expression and clinical
information from 119 patients. All ovarian cancer sam-
ples were obtained at initial cytoreductive surgery from
patients treated at Duke University Medical Center and
the H. Lee Moffitt Cancer Center and Research Insti-
tute, who then received platinum-based primary che-
motherapy [15]. Gene-expression was quantified using
the Affymetrix Human Genome U133A Array.
3. Duke university medical center dataset #2
The dataset is composed of gene-expression and clinical
information from 42 patients. All ovarian cancers sam-
ples collected from the primary ovarian site were snap-
frozen at initial surgery prior to chemotherapy under
the auspices of Institutional Review Board-approved tis-
sue collection protocols [14]. Gene-expression was
quantified using the Affymetrix Human Genome U133A
Array.

Pathway network interactions dataset
Network information was obtained from the National
Cancer Institute’s Pathway Interaction Database [28].
Gene-Expression analysis
Pathway Consistency and Pathway Activity metrics were
calculated according to [26] and [27,61]. These measures
treat the pathway as a network of interactions and give
the network a score based on the expression levels of
each of the genes in the interaction and on the quality
of the interaction. The analysis takes into consideration
the specific type of interaction (such as inhibition or
promotion).
The Activity is a measure of the likelihood that the

interaction occurs in the pathway. When taking a path-
way with two genes as input and one gene as output,
the algorithm calculates their probability of being in an
“up” state (by taking into account the expression levels
of those genes in all the samples). The activity of this
pathway is the probability that this interaction is
“active”, meaning the product of the probabilities that
the two genes are in the “up” state. The Consistency is a
measure comparing the expected vs. actual expression of
the interaction components, obtained by calculating the
probabilities of an (i) active interaction, (ii) that the out-
put gene is in an “up” state, and (iii) of the complemen-
tary event.
The probability of a gene to be either “up” or “down”

is calculated using its expression value (RMA adjusted)
in a sample, compared to the expression values of the
same gene in all other samples. To be able to accommo-
date a multitude of probability distributions, the algo-
rithm uses a gamma distribution as the template to both
“down” and “up” distributions form, and redefines the
problem as a mixture of two gamma distribution. The
suppressed form often follows an exponential
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distribution, which is one particular case of a gamma
distribution. The promoted state often follows a form
similar to a normal distribution, which may be approxi-
mated by a gamma distribution of a large mean. Per
every probe set measured by the microarray, the algo-
rithm fit the expression distribution into a mixture of
two gamma distributions. Additional file 4 Figure 1
describes the algorithm.
genomic pathways targeting analysis Targeting of

pathways by genomic and epigenomic alterations was
calculated according to [29]. Fisher’s omnibus test is a
well known test for detecting deviations from normal-
ity due either to skewness or kurtosis [30]. Applying
this statistical test in pathway analysis is a way of
determining whether the CNV and methylation status
of a pathway is above normal. Applying this analysis
on large-scale data enables researchers to extract path-
ways with significant alterations in CNV and methyla-
tion status. All genes in both copy number and
methylation datasets were matched to their corre-
sponding pathways. The probability for the pathway
alteration in every subject was calculated using hyper-
geometric function as follow:

Xi − The number of altered genes in a given patient in pathway i

Kj −Number of altered genes in patient j

M− Total number of genes tested

Ni −Number of genes in pathway i

p = F(x|M,K,N) = 1−
x∑
i=0

(
K
i

)(
M− K
N − i

)
(
M
N

)

The result is the probability of hitting up to x of pos-
sible K genes in N drawings. P-value for every pathway
was then calculated using Fisher’s omnibus test to estab-
lish pathways that go through significant targeting by
genomic and epigenomic alterations. Bonferroni correc-
tion for multiple hypotheses was applied and pathways
with p-value under 8.6356 × 10-5 (0.05/579 pathways in
analysis) were then chosen as highly targeted.

Survival analysis
Kaplan-Meier survival analysis was done on all gene and
pathway measurements in all three datasets [62],
through clinical data (Vital Status) to determine a path-
way’s and gene’s survival stratification power. This ana-
lysis was done in order to find genes or pathways that
could stratify prognosis in all three datasets.
All values (RMA of gene, and pathway activity and

consistency) were clustered using K-means clustering to
stratify the patients into two groups according to their
expression values (meaning patients with lower expres-
sion values clustered into group1 and patients with high
expression values clustered into group2). Kaplan-Meier

(KM) analysis was then performed on all genes and
pathways matrix (according to the k-means group and
the vital status). Genes and pathways that had significant
Kaplan-Meier p values (< 0.05) were then chosen as
good separators for prognosis. All the results were then
compared in all three datasets in order to identify over-
lapping genes and pathways.

Additional material

Additional file 1: Genes Kaplan-Meier p-value. The table presents the
gene symbol, gene probe and kaplan-meier log-rank p-value of all the
significant genes in the three datasets.

Additional file 2: Pathways Kaplan-Meier p-value. The table presents
the pathways name and kaplan-meier log-rank p-value of all the
significant pathways in the three datasets.

Additional file 3: FOS-JUN Correlation. The table presents the
correlations between FOS and JUN, which are eventually the pathways
output, in the two survival group. Group1, which correlates with higher
survival rates, shows stronger correlation between the genes.

Additional file 4: Pathway calculation algorithm pipeline. The figure
describes the calculation steps performed by the PathOlogist algorithm,
starting with the RMA gene-expression levels.
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