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Abstract

Background: A central idea in biology is the hierarchical organization of cellular processes. A commonly used
method to identify the hierarchical modular organization of network relies on detecting a global signature known
as variation of clustering coefficient (so-called modularity scaling). Although several studies have suggested other
possible origins of this signature, it is still widely used nowadays to identify hierarchical modularity, especially in the
analysis of biological networks. Therefore, a further and systematical investigation of this signature for different
types of biological networks is necessary.

Results: We analyzed a variety of biological networks and found that the commonly used signature of hierarchical
modularity is actually the reflection of spoke-like topology, suggesting a different view of network architecture. We
proved that the existence of super-hubs is the origin that the clustering coefficient of a node follows a particular
scaling law with degree k in metabolic networks. To study the modularity of biological networks, we systematically
investigated the relationship between repulsion of hubs and variation of clustering coefficient. We provided direct
evidences for repulsion between hubs being the underlying origin of the variation of clustering coefficient, and
found that for biological networks having no anti-correlation between hubs, such as gene co-expression network,
the clustering coefficient doesn’t show dependence of degree.

Conclusions: Here we have shown that the variation of clustering coefficient is neither sufficient nor exclusive for a
network to be hierarchical. Our results suggest the existence of spoke-like modules as opposed to “deterministic
model” of hierarchical modularity, and suggest the need to reconsider the organizational principle of biological
hierarchy.
Background
The high relevance between functional organization and
topological features has motivated the development of
statistical measures to characterize cellular networks. In-
creasingly, these measures reveal that biological network
organization is characterized by the power law of degree
distribution, the concept of modularity and the degree
correlations on connected nodes [1-3]. Networks with
high modularity have dense connections between the
nodes within same cellular functions but sparse connec-
tions between nodes in different functions. Furthermore,
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a central theory in biology is the hierarchical
organization of cellular processes, which means that
high-level processes are build by connecting low-level
ones [4,5]. For example, the process mitosis is composed
by several low-level functions, such as spindle assembly,
centrosome separation and chromosome alignment.
Consequently, it is reasonable to suppose that functional
modules of interest are hierarchically organized in the
same way, that small modules are combined into larger
modules and then further combined into even larger
ones. This complexity, therefore, poses great challenges
to researchers trying to understand the modularity struc-
ture of cellular networks.
To identify the hierarchical modularity of metabolic

networks, Ravasz et al. focused on detecting a “global
signature” of network architecture [6,7]. In Ravasz’s
. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:dapenghao@hotmail.com
mailto:lichuanxing@gmail.com
http://creativecommons.org/licenses/by/2.0


Figure 1 The degree distribution of two metabolic networks.
For each network (E.coli and S.typhi, colored by green and pink dot
respectively), the two largest super-hubs are pointed out.
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study, they revealed that for metabolic networks and for
certain hierarchical networks the clustering coefficient,
C(k), of a node follows a scaling law with degree k C
(k) ~ k-1. To explain this, they proposed a network model
which possesses both the power law of degree distribu-
tion and the scaling law of C(k). The starting point of
this network model is a small cluster of five fully con-
nected nodes; then creates four identical replicas, con-
necting the peripheral nodes of each cluster to the
central node of the old cluster, resulted in a large 25-
node cluster. Next, four replicas of this 25-node cluster
are generated and the 16 peripheral nodes are connected
to the central node of the old cluster, obtaining a larger
cluster of 125 nodes. These replication and connection
steps can be repeated indefinitely to generate a hierarch-
ical architecture. In each step i, the number of nodes in
the network is 5i. This network model, which we expli-
citly denote by “deterministic hierarchical model”, has
subsequently a great influence on the studies of network
biology [8,9], and the scaling of C(k) is widely used to
identify whether or not a network is hierarchically orga-
nized nowadays.
Two former studies have suggested that the decrease

of C(k) can be tentatively attributed to the tendency that
large degree nodes are connected to small degree ones
in biological networks[1,10]. For example, Soffer and
Vazquez proposed a novel measurement of clustering
coefficient taking into account of the neighborhood de-
gree of node, which didn’t scale with k. Their work sug-
gested that the variation of C(k) can be attributed to
neighborhood degree distribution. However, the “deter-
ministic model” is also anti-correlated. Thus, it is still
possible that both the degree anti-correlation and the
variation of C(k) is the reflection of hierarchy, suggesting
that proper “null model” is needed to clarify their rela-
tionships. Moreover, metabolic networks is nicely
approximated by C(k) ~ k-1, providing a strong evidence
for the existence of hierarchy in these networks. How-
ever, to our best knowledge, former studies didn’t dir-
ectly indicated why C(k) strictly follows this scaling law
(k-1) in metabolic networks. These may be the reasons
why the variation of C(k) is still widely used in assessing
biological network hierarchy. In fact, almost every study
on biological networks that observed the variation of C
(k), including protein-protein networks, functional net-
works, human disease networks or even ecological net-
works, claimed that they have found a hierarchical
modular structure, for example [11-17]. This situation
suggested that, a further and systematical investigation
of clustering coefficient focused on different types of
biological networks is necessary. In this work we
revealed the reason why C(k) scales with k-1 in metabolic
networks and suggested by “null model” that the vari-
ation of C(k) is neither sufficient nor exclusive for a
hierarchical network. Our findings suggest the existence
of spoke-like topology as opposed to “deterministic hier-
archical model”.

Results and Discussion
Origin of the scaling law in metabolic networks
We start by indicating why clustering coefficient distri-
bution of metabolic networks strictly follows the particu-
lar scaling law (k-1). The clustering coefficient, defined
as CðkÞ ¼ 2N=kðk� 1Þ , provides a measure of the level
of interconnectivity in the neighborhood of a node,
where N is number of triangles formed by the node and
a link between any two direct neighbors of it [7]. In the
former study, Ravasz et al. found a scaling law of C(k).
They argued that this scaling law was not expected for a
random scale-free network of similar sizes, indicating
the absence of hierarchy in random networks. In the
study, they used the B-A model to generate random
scale-free networks [2]. One problem with their random
network model, however, is that it does not take into ac-
count the existence of so-called super-hubs in metabolic
networks (i.e. ATP and H2O). Drawing the degree distri-
bution of metabolic networks shows the existence of
“super hubs” that are unexpected from the approximated
power-law degree distribution (Figure 1). A single super
hub can have great impact on topological measures of
network density such as clustering coefficient, as it car-
ries a lot of edges. To take into account the super-hubs,
here we generate random networks by randomly rewir-
ing the links of metabolic networks, which preserves the
same degree distribution [1]. We plot the C(k) curve of
E.coli and the curves averaged over the metabolic net-
works of all 43 organisms, along with their randomized
counterparts (Figure 2A and 2B). As can be seen,



Figure 2 Origin of the scaling law of C(k). (A) C(k) for metabolic network of E.coli (green dot) and a randomized network (black circle). (B) The
C(k) curves averaged over 43 organisms (red circle) and over 43 randomized networks (black circle). (C) The degree distribution of a random
network with 4 super-hubs added. (D) The variation of C(k) of the random network before and after 4 super-hubs added (corresponds to black
and red circles respectively). (E) Number of newly added triangles, 5N as a function of k. (F) C(k) for random networks with large degree nodes
added. In (E) and (F), black circles correspond to the original network, red circles correspond to the network after 2 nodes with degree 2,000
added and purple squares corresponds to the network after 200 nodes with degree 20 added.
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inconsistent with the former study, the metabolic net-
works and random networks show similar dependence
of clustering coefficient on node’s degree. The only
property shared by metabolic networks and their ran-
dom counterparts is the degree sequence, while the
prominent feature of the degree sequence of metabolic
networks is the existence of super-hubs. Therefore, this
result suggests that super hubs is probably the reason
why C(k) scales with k-1. Note that the metabolic net-
works and random networks are separated when k is
low, suggesting that metabolic networks have relatively
higher modular level than random networks. However,
this difference cannot be used as an evidence of
hierarchy.
One may argue that given the degree distribution,

hierarchical structure of a network is largely defined, so
it is not surprising that random networks generated this
way have similar dependence of clustering coefficient on
node’s degree. To rule out this possibility, we next inves-
tigate whether the scaling law of C(k) can be reproduced
in a totally random network. For this purpose, we first
generated a random scale-free network of 10,000 nodes
with degree following P(k) ~ k-2.6, and then added several
large degree nodes unexpected from the degree
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distribution (Figure 2C, using preferentially attachment).
As shown in Figure 2D, C(k) of the network with several
large degree nodes added appears to scale with k-1, as
opposed to the original network that has no variation.
Therefore, several super-hubs is sufficient to give rise to
the scaling law of C(k). This result is reasonable. For ex-
ample, the metabolic network of E.coli has 2,409 edges
with average claustering coefficient �C ¼ 0:21 and degree
of the largest hub k ¼ 253 . To keep the same value of
clustering coefficient for this super hub, its neighbors
have to be connected by n ¼ k k � 1ð Þ � �C=2 ¼ 6694
edges, which is nearly 3 times of the number of edges in
the network!
We then would like to present an analytical investiga-

tion for this result. Consider an undirected random net-
work with S nodes, M edges and average clustering
coefficient �C , the probability that a newly added node j

has a link with a node i is pij ¼ ki=
PS

s¼1ks ¼ ki=2M , and
thus the expected number of edges that newly added
node j connects to i is mij ¼ min kj:ki=2M; 1

� �
, where ki,

kj are the degrees for nodes i and j and the function min
() is to make sure at most one edge connecting two
nodes. In a random network with no degree correlation,
the average degree of the neighbors of a node would be
the average degree of the network, <k>. Thus, the
expected number of edges that the newly added node
connecting to a neighbor of node i is mj<k> ¼
min kj� < k > =2M; 1

� �
. The number of newly added tri-

angles involving node i that generated by node j con-
necting to both node i and its neighbors can be roughly
estimated by ΔNi ¼ ki �mij �mj<k>. For node j with small
degree kj, mij takes the value mij ¼ kj � ki=2M , and thus

ΔNi ¼ mj<k> � k2i kj2M ¼ αjk2i , where αj is determined by kj.
Now the clustering coefficient of node i is C0 kið Þ �
�C þ 2ΔNi=ki ki þ 1ð Þ � �C þ 2αj , which doesn’t vary with
degree ki. However, for a node with large kj, mij takes
the value mij ¼ 1 and thus ΔNi ¼ αjki . Considering that
the clustering coefficient of a random scale-free network
is extremely small ( �C � 0, for example, there are thou-
sands of triangles in biological networks, whereas there
are only tens of triangles in random networks of similar
size), the C0 kið Þ is now mainly determined by
2ΔNi=ki ki þ 1ð Þ , thus C0 kið Þek�1

i . To test this, we con-
structed a network with 10,000 nodes following the dis-
tribution P(k) ~ k-2.6, which has only 64 triangles in total
and thus the �C � 0. Then we randomly added 2 nodes
with degree 2,000 and 200 nodes with degree 20 into
this network respectively, of which the number of newly
added triangles ΔN as a function of degree k is counted
(Figure 2E). Although the number of newly added edges
is the same, the number of newly added triangles
increases in different rates as a function of k: ΔNek1 in
the first case and ΔNek2 in the second case respectively!
As a result, the clustering coefficient shows a perfect
scaling dependence on node’s degree in the first case,
whereas it doesn’t vary with k in the second case
(Figure 2F). This striking difference comes from the re-
striction mij ¼ min kj � ki=2M; 1

� �
. For nodes with small

degrees, mij takes the valuemij ¼ kj � ki=2M , whereas for
nodes with large degrees, mij takes the value mij ¼ 1 .
Notably, this formula reflects the fact that there is at
most one edge connecting two nodes in these biological
networks. Hence, this formula implies that connections
between large degree nodes in metabolic networks are
highly suppressed, compared to a random network with
no constraints on edge multiplicity. For example, the
two largest hubs in metabolic network of E.coli would be
connected by m ¼ ki � kj=2M ¼ 253 � 128= 2 � 2409ð Þ ¼
13:4 edges without constraints on edge multiplicity! In
this case, a large degree node is forced to connect to
small degree ones; as a consequence, its clustering coef-
ficient is relatively small.
It should be noted that the clustering coefficient in the

first case is at least an order of magnitude larger than
that of the network in the second case, suggesting that
the existence of super-hubs is one of the origins of high
clustering of metabolic networks. Thus, when the level
of clustering coefficient is regarded as a measure of
modularity level, the existence of super-hubs should be
considered, otherwise the modularity level of biological
networks would be highly overestimated [7,18].
Variation of C(k) is a reflection of degree correlation
Next, we ask whether the existence of super-hubs is the
only reason that biological networks show dependence
of clustering coefficient on node’s degree. However, we
found that for other biological networks, the C(k) curve
can be highly different with random networks of same
degree distribution (for example, the protein-protein
interaction network and the genetic synthetic lethal net-
work. Additional file 1: Figure S1), suggesting that the
variation of C(k) cannot be solely attributed to the exist-
ence of super-hubs. For metabolic networks, we have
shown that the dependence of clustering coefficient on
node’s degree has its origin in the suppression of hub-
hub connections (mij ¼ min kj � ki=2M; 1

� �
). Hence, it is

possible that even without the existence of super-hubs,
the anti-correlation between hubs is enough to cause the
variation of C(k). Former studies have found that many
biological networks are disassortative, indicating that the
strong repulsion between hubs is frequently observed
[1,19-21].
To investigate the relationship between repulsion of

hubs and the variation of C(k), we plotted the correl-
ation profiles for biological networks, as well as their



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Correlation profiles and the C(k) curves. Correlation profile and C(k) curves of (A) protein network, (B) genetic network, (C) gene
coexpression network and (D) metabolic network of E.coli with 21 currency metabolites (i.e. ATP and NADH) removed. Green rectangles in (A)
and (B) are the C(k) curves of two simulated random networks.
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clustering coefficient distribution (Figure 3). The correl-
ation profile compares the joint probability P(ki, kj) of
finding a link between any two nodes of degree ki and kj
with the same probability Pr(ki, kj) in random counter-
parts [1,20]. The random counterparts are generated by
randomly rewiring the links of original network, thus
preserving the degree sequence. The correlation profiles
for biological networks were generated by comparing
with 100 randomized counterparts. The protein-protein
interaction network and the genetic synthetic lethal net-
work pose a higher level of anti-correlation: nodes with
large degrees favor to link with nodes of small degrees
(Figure 3A and 3B). A measure of degree correlation,
known as assortative coefficient r (shown in the figure),
is consistent with their correlation profiles [22]. Their
corresponding clustering coefficient distributions show a
decline with node’s degree, although with a clear devi-
ation from scaling law C(k) ~ k-1. Note that there is a
rapid decrease of C(k) for large node degree, corre-
sponding to the highly suppressed region in the upper-
right corner of correlation profiles (colored by dark
blue). On the other hand, the gene co-expression net-
work and the metabolic network with currency metabo-
lites removed display a high level of hub affinity as
opposed to anti-correlation; nodes with large degrees
favor to link with other nodes of large degrees
(Figure 3C and 3D). Their clustering coefficient distribu-
tions, therefore, do not decrease with node’s degree.
Thus, the variation of C(k) perfectly coincides with the
correlation profiles of network structure. This result is
consistent with a former study of Soffer and Vazquez
[10]. In their study, Soffer and Vazquez proposed a novel
measurement of clustering coefficient of node that was
normalized by its neighborhood degree, which didn’t
show dependence on node’s degree. Their results also
suggest that the degree correlation is probably the origin
of the variation of C(k).

Simulated annealing
However, it is still possible that both the anti-correlation
between hubs and the variation of C(k) are reflections of
hierarchy. A key procedure of generating “deterministic
hierarchical model” is to connect peripheral nodes to the
central node of a certain module and to avoid direct
links between central nodes [7,23]. They provided little
information about why this procedure is necessary.
However, this procedure helps to give rise to both anti-
correlation and the variation of C(k). For example, the
assortative coefficient r ¼ �0:077 for “deterministic
hierarchical model” network of 56 = 15625 nodes. To
rule out the possible that both the anti-correlation and
the variation of C(k) are reflections of hierarchy, one has
to investigate whether a random network with similar
level of repulsion between hubs would have the same
variation of C(k). However, one problem with the ran-
dom networks is that they are much less modular than
biological networks. In other words, the neighbors of a
same node are more likely to be linked in biological net-
works than in random networks (that is, more likely
forming a triangle). To overcome this, we generated ran-
dom networks by combining edge rewiring method and
simulated annealing algorithm. We first generate seed
networks that preserves the joint probability P(ki, kj) (see
Materials and methods), and then conduct simulated
annealing introducing an effective temperature T to glo-
bally minimize the following score function: E ¼
Nrandom �Nj j=N, where Nrandom is the number of trian-
gles in random network and N is the number of triangles
in real network. Random networks with the same level
of modularity will have the minimum score 0. At each
Monte Carlo step, we select two edges at random from
this network and replace them with two new ones by re-
wiring them with a probability min exp �ΔE=Tð Þ; 1½ �, on
one condition that the rewiring step preserves the joint
probability P(ki, kj). Then, This Monte Carlo step is
repeated until E achieves a stationary value. Because the
minimum energy is given, it is easy to get a network
with similar level of modularity as real network by indu-
cing an appropriate temperature T. Figure 4 and B
shows the C(k) curves for two random networks anneal-
ing to the two biological networks that show variation of
C(k) (the green rectangles). As can be seen, the C(k)
curves of the two random networks overlap with bio-
logical networks nicely. Since the seed networks are ran-
dom networks, this result confirms that the dramatic
decline of C(k) with node’s degree is the reflection of re-
pulsion between hubs rather than reflection of rigid hier-
archy as characterized by “deterministic hierarchical
model”.
One concern is that a few of edges of the generated

random networks and biological networks may be over-
lapped, and thus hierarchy structure is conserved in null
networks. To rule out this possibility, we further gener-
ated much more stringent but uncorrelated random net-
works of which a large fraction of edges are overlapped
with the biological network. However, we found that the
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variation of C(k) was substantially disappeared (Add-
itional file 2: Figure S2). One should also note that the
clustering coefficient distribution of Figure 3 shows clear
deviation from any scaling law C(k) ~ k-β, further sug-
gesting that biological networks cannot be characterized
by the “deterministic hierarchical model”.

Spoke versus “deterministic hierarchical model”
The “deterministic hierarchical model” suggests that the
variation of C(k) is caused by rigid hierarchy that is built
by connecting the external nodes of low-level dispersed
modules to the central nodes of a high-level module.
(Figure 4A) [23]. However, our results suggest that the
variation of C(k) in biological networks, is caused by the
abundance of large degree nodes connecting to those
with much smaller degree, which we refer to as a heuris-
tic “spoke” model (Figure 4B). The two models can be
easily checked by visualizing the connection of a few
hubs for a real network. Figure 4B shows the connection
of the top 6 best connected proteins and their neighbors
in a small protein interaction network formed by pro-
teins localized in nucleus according to a high-confidence
dataset (Figure 4C) [24]. Apparently, the protein net-
work supports the picture of “spoke” model rather than
rigid hierarchy of “deterministic hierarchical model”.
What do our results suggest for the conception of

modularity? First of all, they suggest the existence of
functional modules that are spoke-like or built by con-
necting spoke-like topologies. This new view will include
many biological modules that can not be revealed by
finding densely connected regions such as cliques or k-
cores. For example, the functional module associated to
cell wall organization is built by connecting several
spokes (Additional file 3 Figure S3). Many biological
pathways include enzymes and tens of its substrates may
be better depicted by this view of modularity. We found
that even protein complexes could be spoke-like as well.
Figure 4D shows three protein complexes of S. cerevi-
siae, of which FBP degradation complex and nucleolar
ribonuclease P complex are built by a single spoke, while
mitochondrial ribosomal small subunit is built by con-
necting two spokes centered on mrp4 and mrps5 re-
spectively. However, we stress that the traditional idea of
modularity as finding densely connected regions is still
useful in identifying cellular machines. In fact, the pro-
tein network integrates “spoke” topology and densely
connected regions into a highly interconnected web. A
single molecule could be both a member of clique and a
member of spoke-like topology. For example, srb4
encodes a core component of the SRB mediator complex
of S. cerevisiae and is required for transcription of most
yeast genes. However, the execution of the function of
srb4 also relies on the interaction of many poorly con-
nected genes outside the complex such as cbs1, a
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mitochondrial translational activator of cob mRNA,
resulting in a large spoke centered on srb4 (Figure 4E).
These explain why C(k) shows negative dependence on
node’s degree in protein network, even though there are
a large number of protein complexes.

New hierarchical modularity paradigm
Finally, our work raises two fundamental questions: a
question about motivation of spoke-like topology during
evolution and a question about how low-level modules
communicate with each other to generate high-level
ones. A possible answer for the first question is that sup-
pression between hubs confines mutational perturba-
tions to the local. It is widely accepted that hub genes
are more essential than poorly connected genes. Thus,
the overabundance of spoke-like topology may reduce
the accumulative effect of the mutational perturbations
of two directly connected hubs. Another possible answer
for the first question is that the overabundance of
spoke-like topology shortens the distance between mole-
cules, and thus signals propagate more quickly. A mol-
ecule connecting with a hub is more easily to propagate
its signal than a molecule connecting with a poorly con-
nected node. Given that most molecules of biological
networks are poorly connected, this may be one of the
reasons why these networks favor spoke-like topology.
This speculation is supported by the finding that more
nodes in an assortative network (i.e., social network) fail
to connect to the largest component to propagate its sig-
nal than in a disassortative network (i.e., World Wide
Web) [19,22].
Apparently, cellular processes are hierarchically orga-

nized, so does the biological networks consisting of
interacting molecules that carry out cellular functions.
The second question is about how higher-level cellular
functions build by connecting low-level ones in bio-
logical networks. To answer this question, we studied a
subnet related to cellular response to stress, which con-
sists of several low-level cellular functions such as re-
sponse to heat, starvation, osmotic stress and so on
(Figure 5A). This subnet consists of both spoke-like top-
ologies (i.e., nodes around gene hog1, pho85 and cdc48)
and a clique (i.e., members of nuclear pore complex
such as nup100, nup133, nup120 and nup84). From this
subnet, one can find that functional modules need not
be rigid, densely interconnected structures. Moreover,
genes may belong to different modules at the same level
of the hierarchy, which are in contrast to the “determin-
istic hierarchical model”. The overlap between functional
modules is consist with the fact that genes are always
multi-functional, which allows one function to influence
another more effectively. For example, cdc28 is not only
a regulator in cellular response to stress (Figure 5A), but
also a regulator in mitosis, which may conduct the
interplay between environmental stress and cell cycle. It
has been found that osmotic stress causes the down
regulation of cdc28 activity and causes a cell cycle delay
in Saccharomyces cerevisiae [25]. To include these fea-
tures, we introduce a continuous modularity paradigm
(Figure 5B), where the border of a module and overlap
between modules can both be found, allowing each
module to accomplish a relatively autonomous function
and to influence the function of other modules. This
new paradigm is enriched of spoke-like topology; how-
ever, a few cliques can also be seen. A high-level func-
tional module is built by connecting these overlapped
modules together, and several high-level modules further
build a higher-level module in a similar way. This pro-
cedure can be repeated to generate a hierarchical archi-
tecture. This new paradigm may not be as simple and
concise as “deterministic hierarchical model”, but it
takes into account the multi-functionality of biological
molecules and flexibility of modular structure. Further-
more, it suggests that appropriate overlap could be a pri-
mary basis for a high-level cellular function to integrate
information from its low-level modules and resolve con-
flicts between them.

Conclusions
It is widely accepted that biological hierarchy can be well
characterized by a “deterministic hierarchical model”,
because it reconciles modularity and scale-freeness, with
C(k) following a scaling law [7]. A later study further
developed a more general power-law of C(k) to identify
hierarchical network [23]. Although the model success-
fully shows that C(k) of a “deterministic hierarchical
model” network follows the scaling law C(k) ~ k-1, there
is no evidence showing that a network following this
scaling law is necessarily a network of hierarchy. There-
fore, it is not sufficient to identify network hierarchy.
More evidences comes from the fact that many networks
with no significant variation of C(k) are also hierarchic-
ally organized. It has been found that many complex sys-
tems have hierarchical organization, including social
networks that are known to be assortative and lack the
variation of C(k) [26,27]. These studies further suggest
that the scaling of C(k) is neither a sufficient nor a
needed condition for a network to be hierarchical. Al-
though two former studies have suggested the shortcom-
ings of using the variation of C(k) in assessing network
hierarchy [10,26], our study provided further and more
direct evidences. Nowadays, many sophisticated models
have been developed to include the variation of C(k) and
degree distribution. However, since the variation of C(k)
is still widely used as a standard indicator of hierarchical
network structure, it is necessary to specifically point
out the limitations of “deterministic hierarchical model”.
By doing this, our study suggests the need to reconsider
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the modularity nature of biological systems. In particu-
lar, we stress the importance of overlap in the communi-
cation of different modules. Our study may be applicable
to other complex networks as well, such as WWW, of
which the variation of C(k) was interpreted as the exist-
ence of network hierarchy too [23].

Methods
Datasets
Our analysis includes four types of biological networks
of yeast: Physical protein interaction network, genetic
synthetic lethal network, gene co-expression network
and metabolic network. Dataset of protein-protein inter-
action was obtained from DIP (version 10/2010) [28]. To
display the organization for the top 6 best connected nu-
clear proteins, a high-confidence dataset curated from
literatures and high-throughput sources was used [24],
where the subcellular localization information was
according to MIPs annotation [29]. Dataset of synthetic
lethal interaction was obtained from Biogrid (version
3.1.72) [30], and the metabolic networks of 43 organisms
were obtained from Jeong H et al. [31]. The gene co-
expression network was constructed according to the
yeast cell cycle expression data [32]. Arrays where
greater than 10% of the gene expression information was
missing were removed and genes where more than 7
arrays the expression information was missing were
removed. Then, the Pearson coefficient was calculated
for every gene pair, and only gene pairs with absolute
value larger than 0.65 were used to construct the gene
co-expression network.
Random networks
To generate seed networks that preserves the joint prob-
ability P(ki, kj), we draw N � P kð Þ nodes from the degree
distribution P(k) for each degree k, and then form a
node set S containing ki copies of each node i, where N
denotes the number of nodes in biological network.
Then, we select at random two nodes from S, connect
them to generate a new random network and then re-
move them from S. At each time, we estimate the joint
probability R(ki, kj) in the random network, and test if
R ki; kj
� �

≤P ki; kj
� �

. When the condition is not fulfilled,
we discard the two nodes and draw two new ones from
S. This step is repeated until R ki; kj

� � ¼¼ P ki; kj
� �

for all
the degrees.
Additional files

Additional file 1: Figure S1. Clustering coefficient distribution. (A) C(k)
curves of protein interaction network and (B)genetic interaction network,
as well as their random counterparts of same degree distribution
(generated by randomly rewiring the edges, black circles).

Additional file 2: Figure S2. The variation of C(k) of protein interaction
network (red circles) and stringent but uncorrelated random network
(black circles). The random network and the protein interaction network
have at least 30% of edges overlapped.

http://www.biomedcentral.com/supplementary/1752-0509-6-34-S1.tiff
http://www.biomedcentral.com/supplementary/1752-0509-6-34-S2.tiff
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Additional file 3: Figure S3. The functional module associated to cell
wall organization is built by connecting several spokes in yeast
interactome.
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