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Abstract

Background: Models of cellular molecular systems are built from components such as biochemical reactions
(including interactions between ligands and membrane-bound proteins), conformational changes and active and
passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the
system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be
represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency
a particularly important consideration for software that is designed to simulate such systems.

Results: We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating
biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and
well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex
boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The
powerful Python interface facilitates model construction and simulation control. STEPS implements the composition
and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an
efficient search and update engine. Additional support for well-mixed conditions and for deterministic model
solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of
isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron
sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is
often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to
MesoRD we show the efficiency of the STEPS implementation.

Conclusion: STEPS simulates models of cellular reaction–diffusion systems with complex boundaries with high
accuracy and high performance in C/C++, controlled by a powerful and user-friendly Python interface. STEPS is free
for use and is available at http://steps.sourceforge.net/
Background
As the understanding of the molecular systems govern-
ing many aspects of cellular function improves it is be-
coming increasingly clear that the assumption of mass
action kinetics in well-mixed volumes is often invalid. A
good example is calcium signaling, which can be highly
localized with very steep concentration gradients [1-3].
Calcium signaling depends on the interaction between
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membranes where the calcium channels are located and
the cytoplasm where calcium activates many different
enzymes [2,3]. The membrane channels are often
arranged into clusters containing only a few or tens of
channels [4,5] resulting in stochastic release events that
have been observed experimentally [6]. In neurons, the
resting concentration of calcium in dendritic spines,
where it plays an essential role in triggering synaptic
plasticity, corresponds to only a few ions in this small
volume [7], indicating that calcium dynamics can be
highly stochastic [8]. Moreover, dendritic spines have a
typical morphology that strongly affects the inward and
outward diffusion of molecules [9]. Taken together, these
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Figure 1 STEPS workflow. The biochemical model and the
geometry are described separately (using Python modules
steps.model and steps.geom respectively) and are brought
together by the solver object. The steps.utilities namespace
contains various helper modules that assist in model and
geometry construction. Python packages such as SciPy are a
convenient tool for post-simulation analysis.
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considerations point to the need of software that sup-
ports the simulation of stochastic reaction–diffusion sys-
tems with an accurate representation of the complex
geometries specified by the membranes of a cell and its
intracellular organelles. In this paper we describe STEPS,
STochastic Engine for Pathway Simulation, which was
designed to give modelers an efficient implementation
with a sophisticated user interface.
Stochastic reaction–diffusion can be solved using two

fundamentally different approaches: particle-based or
voxel-based methods. In the first method one keeps
track of the Brownian motion of each individual mol-
ecule in the simulation and reactions are based on colli-
sions between molecules, while in the second approach
the behavior of groups of molecules in subvolumes is
computed using the laws of chemical kinetics, and diffu-
sion is simulated as the transport of molecules from one
subvolume to another. Particle-based methods can be
further divided into those that track Brownian motion in
open space (examples are MCell [10,11] and Smoldyn
[12]) or those that use lattices on which molecules hop
from one site to another (examples are GridCell [13] and
see [14,15]). An advantage of these methods is the high
physicochemical fidelity of the approach, but this comes
at the price of having to track the behavior of every sin-
gle molecule in the system. This is computationally ex-
pensive and may not always be relevant in a biological
context.
Stochastic voxel-based approaches compute changes in

the number of molecules present in small volumes with-
out distinguishing among individual molecules. This can
be more efficient in large systems and also allows for
easier combination of exact solution methods with ap-
proximative ones [16], which may greatly speed up com-
putations (see Discussion for more detail). A widely used
approach to model chemical reactions is Gillespie’s Sto-
chastic Simulation Algorithm (SSA) [17], which can eas-
ily be extended to deal with diffusion (see further and
[17,18]), a method commonly referred to as “spatial
SSA” or “spatial Gillespie”. STEPS implements a deriva-
tive of the SSA in tetrahedral meshes to model the
geometry, which importantly allow for a much better
morphological resolution than the cubic voxels used in
most other SSA based software, e.g. MesoRD [19] and
NeuroRD [20].
This paper describes STEPS 1.3 and is structured as

follows: we first introduce the overall workflow and
structure of STEPS and its multiple solvers, the rest of
the paper largely focusing on the solver for stochastic re-
action–diffusion. We next introduce the SSA, tetrahedral
meshes and how to adapt the SSA to model diffusion in
such meshes. We then demonstrate the accuracy of
STEPS and compare efficiency to other reaction–diffu-
sion simulators. We finish with describing the Systems
Biology Markup Language (SBML) [21] import module
and demonstrate simulation of some SBML models using
STEPS.
Implementation
STEPS overview
The user interface to STEPS is in Python, a very power-
ful and versatile scripting language, while the core
STEPS code is in C/C++ for high efficiency. Figure 1
shows a typical STEPS workflow. Everything in the Py-
thon user front-end is contained in namespace ‘steps’,
within which there are a number of modules that contain
classes and functions separated by the different tasks
required to build a STEPS simulation. This means that
using STEPS largely consists of creating Python objects
to represent the various components of a reaction–
diffusion model (e.g. chemical species, reaction and dif-
fusion rules, compartments etc.) and invoking their
methods to set conditions and to control the simulation.
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STEPS differs from many reaction–diffusion simulators
in that the chemical model and the geometry are
described completely separately, which can be an advan-
tage due to the challenging task of creating a suitable
complex geometry for spatial simulations. For example,
with the two tasks separated in this way one researcher
may dedicate all their time purely to mesh-construction
while another researcher constructs the biochemical
model. Meshes may then be saved, shared and reused in
other simulations as required. Uncoupling the model de-
scription from the simulation means that complex initial
conditions can be achieved [22] and modified without
making changes to the model. To compliment these pos-
sibilities compatibility with current developed standards
such as SBML is also achievable, yet relying purely on
SBML would disable some important features of STEPS
such as those mentioned above.
Running a STEPS simulation will usually involve creat-

ing one main Python module, which will import STEPS
modules and possibly other outside user-written modules
for the model (such as separate modules for tetrahedral
mesh description or user-defined helper functions) along
with some of the many powerful scientific tools available
for Python such as SciPy and NumPy. Python is generally
regarded as a relatively easy-to-learn, intuitive language
and the basic skills required to run a STEPS simulation -
such as creating and manipulating objects, running sim-
ple loops and perhaps reading and writing to files - can
usually be acquired quickly. We give a brief overview of
the main components of the STEPS Python user
interface:

steps.model
The steps.model module contains everything required to
describe how chemical species in the model interact. For
example, the chemical species themselves are described
by creating instances of class steps.model.Spec. Interac-
tions of chemical species are described by creating
objects to represent chemical reactions and diffusion
rules. At this stage nothing is said about where these
interactions take place, although different rules are
grouped into ‘volume systems’ and ‘surface systems’,
which are the objects that connect the biochemical
model with the geometry description.

steps.geom
The steps.geom module contains all the classes and func-
tions required to describe geometry to which a biochem-
ical model may be applied. The basic building blocks of
geometry in STEPS are ‘compartments’ and ‘patches’. A
compartment is a 3D volume with reflective boundaries
in which molecules may diffuse and react, and can either
be well-mixed (therefore defined only by volume), or
described by a collection of tetrahedrons in a mesh. A
patch is a 2D surface in which molecules may be embed-
ded and is connected to one or two compartments.
Analogously to compartments, in a well-mixed descrip-
tion patches are defined only by area and in a spatial
simulation they are described by a collection of triangles
forming a surface within a tetrahedral mesh. ‘Surface
reactions’ may take place in patches, which describe both
surface-volume and surface-surface reactions allowing,
for example, a molecule that is diffusing in a volume to
become embedded in a surface and a molecule that is
embedded in a surface to diffuse to a neighboring vol-
ume. Such features are used to model events such as lig-
and-binding and transport.
Groups of reaction and diffusion rules (‘volume sys-

tems’) defined in the biochemical model may be added
to all (or a selection of) compartments in the geometry,
and any groups of defined surface reaction rules (‘surface
systems’) may similarly be added to patches. Grouping in
this way can bring advantages of realism and complexity,
such as allowing the mobility of a species to differ be-
tween different environments, and performance because,
for example, it is possible to declare which reactions
from the overall set of reactions will occur in any given
compartment and thus save memory by omitting reac-
tions that can never occur (if, for example, a reactant
species never appears in that compartment).
The overall geometry used for any given simulation

must be either a collection of well-mixed compartments
and patches, or a collection of compartments and
patches all within a tetrahedral mesh. The steps.geom.
Tetmesh class, which represents a tetrahedral mesh, con-
tains a vast amount of information about the tetrahe-
drons and the triangle surfaces in the mesh and their
connectivity with many helper functions for retrieving
this information. This can be vital for initializing condi-
tions in and running a spatial simulation.

steps.rng
The steps.rng module contains the “Mersenne Twister”
[23] random number generator class that provides the
random numbers required by the STEPS algorithms.

steps.solver
The steps.solver module contains all the simulation sol-
vers available in STEPS. A solver requires access to a
biochemical model description along with a geometry
description in order to build and run a simulation. All
solver classes are derived from an abstract base class,
which means all solvers contain some shared functional-
ity such as the ability to inject molecule species into a
compartment, run a simulation for some time and rec-
ord updated concentrations. Separate solvers then imple-
ment some or all of the optional methods depending on
whether the function makes sense for that particular
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solver. The main focus for this work is solver ‘Tetexact’,
which is a stochastic solver that supports complex
morphology and diffusion and is described further in Im-
plementation of spatial SSA solver. In addition there are
two other solvers available in STEPS 1.3: ‘Wmdirect’,
which is a well-mixed stochastic solver based on Gilles-
pie’s SSA [17], and ‘Wmrk4’, which is a deterministic
solver based on the Runge–Kutta method [24].
Gillespie stochastic simulation algorithm (SSA)
A brief description of the direct method formulation of
the SSA and its implementation in the Wmdirect solver
can be found in the Additional file 1. For a more detailed
overview of the algorithm and its background see [16,25-
27]. The SSA is an event-driven algorithm that has been
demonstrated to give an exact solution to the chemical
master equation [17]. The fundamental assumption
made of the system is that elastic (non-reactive) colli-
sions greatly outnumber reactive ones, which means that
molecules become distributed uniformly throughout the
system volume and that their velocities become ther-
mally randomized to the Maxwell-Boltzman distribution.
Further, molecules are assumed to occupy a volume
which is negligible in comparison to the total system
volume.
Several optimizations to the original direct method

exist [25], such as the construction of a dependency
graph [28] so that only the propensities of affected reac-
tion and diffusion channels are updated in each iteration.
Such an approach is adopted by STEPS in solvers
Wmdirect and Tetexact, as well as some other subvo-
lume-based software (e.g. MesoRD).
Implementation of spatial SSA solver
As mentioned, the standard SSA assumes a well-mixed
system. However, one can introduce spatial gradients
into the SSA [17] by modeling a system of well-mixed
subvolumes with diffusion between them described as
first-order reactions.
In the well-mixed formulation the reaction con-

tainer is described only by its volume. In the spatial
SSA solver this reaction container is broken up in
Ntet smaller subvolumes and each of these subvo-
lumes is treated as a reaction container in its own
right by cloning the reaction channels. This means
that for M reaction rules, and assuming all reactions
may occur in all tetrahedrons (which is not required
by STEPS - see STEPS overview), the total number
of reaction channels will be Mreac =Ntet * M. The
state x of the simulation will also become much big-
ger, it consists of N * Ntet integers, with xi,k,t repre-
senting the number of molecules of species i in
subvolume k at time t.
If we make the subvolumes within a certain size win-
dow (see Subvolume size), the well-mixed assumption
applies to each subvolume independently and one can
accurately represent concentration gradients [29]. The
rate of diffusion of molecules of species i with diffusion
constant Di between two neighboring subvolumes will
depend on the shape of the subvolumes. In STEPS we
have chosen to use tetrahedral meshes, a type of non-or-
thogonal, unstructured mesh in which the problem do-
main is decomposed into a connected set of tetrahedral
elements [30]. Since the tetrahedra do not have to be
perfectly regular, they can smoothly follow any boundar-
ies and can adapt their size to the local level of detail.
Quite often the subvolumes in these meshes are the Vor-
onoi elements surrounding all edge nodes. STEPS in-
stead uses the tetrahedrons themselves, meaning that
each tetrahedral voxel has 4 triangular sides and, through
them, is connected to a maximum of 4 neighboring
tetrahedra. Compared to the Voronoi description this
reduces coding complexity (Voronoi elements have vari-
ous numbers of neighbors), maintains control over sub-
volume size and allows for a far more accurate
description of a surface that represents a membrane
within a mesh.
Diffusion of chemical species A between neighboring

tetrahedrons k and l is simulated by the following revers-
ible “reaction” channel:

Ak ⇌
dk;l

dl;k
Al

With the diffusion rates given by:

dk;l ¼ DiSi;k
Vkdxk;l

dl;k ¼ DiSi;l
Vldxl;k

Where S is the surface area of the triangle connecting
tetrahedrons k and l, V is the volume of the tetrahedron
and the distance dx is computed as the barycenter-to-
barycenter distance, therefore dxl,k == dxk,l.
Including diffusion greatly increases the total number

of reactions channels: Mtot=Mreac+Mdiff, with Mdiff< 4 *
N * Ntet (internal tetrahedrons are connected to 4 neigh-
bors, but tetrahedrons at boundaries are connected to
fewer). However, a diffusion channel in STEPS actually
consists of diffusion of a particular species from a tetra-
hedron to any one of its neighbors, with a total rate of
diffusion equal to the sum of the rates in each direction.
Once a diffusion channel is chosen by the SSA, one of
the possible directions is then chosen. This is mathemat-
ically equivalent to describing diffusion of a particular
species from a tetrahedron as 4 (maximum) separate dif-
fusion channels, but reduces memory requirements by
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approximately a factor of 4 with only a small cost to
efficiency.
The use of a tetrahedral mesh greatly increases the

complexity of the search for the next reaction in the
SSA. Since version 1.3, the implementation of Tetexact
solver has therefore adopted the Composition and Rejec-
tion (CR) Method [31], whose time complexity is con-
stant even for systems with large number of reactions.
The algorithm is described in more detail in Additional
file 1.

Importing and annotating tetrahedral meshes
High quality meshes are often essential to obtain accur-
ate simulation results. Instead of developing our own
mesh generator we make use of powerful mesh gener-
ation software, such as CUBIT [32], TetGen [33], and
Gmsh [34], and provide a set of utilities for importing
tetrahedral meshes. This approach is significantly differ-
ent from the approach taken by most other spatial SSA
simulators, for example MesoRD [19] and NeuroRD
[20], where cubic mesh generation is included in the
simulation.
The mesh importing utilities are carefully designed so

that STEPS is not only capable of importing meshes
from supported formats, but is also extendable. Cur-
rently, one-step importing functions support three com-
mon mesh formats: the Abaqus format exportable by
CUBIT, TetGen’s own formats (.node, .ele and .face), and
the MSH ASCII format used by Gmsh. These import
functions use the pure-Python-based ElementProxy class
which provides generic mesh importing functionalities
such as data storage, grouping and index mapping. Dur-
ing import, first a sufficient number of ElementProxy
objects are created of a type corresponding to the kind
of geometry element in the mesh data (e.g. tet_proxy for
tetrahedrons). After that, data about each geometry
element is inserted in its associated proxy. During the in-
sertion, the proxy automatically assigns a STEPS index
for the element and also records the index mapping be-
tween the import index and STEPS internal index of the
element, which are accessible during later simulation.
Once all element data is inserted, the proxy objects can
be directly used to create meshes, compartments and
patches in STEPS, as well as to perform further mesh
manipulations.
The mesh importing utilities in STEPS also provide a

more advanced, flexible way to simulate systems with
complex geometries. Traditionally, meshes for subvo-
lume-based SSA simulations have been constructed from
combinations of standard geometry primitives such as
cubes, spheres and cylinders [9], where geometry fea-
tures are highly abstracted. A typical representative of
this method is the Constructive Solid Geometry (CSG),
adopted by MesoRD for geometry construction. This
type of mesh is relatively easy to construct, but the
highly abstracted models may not reflect real geometry
constraints to the system and may produce inaccurate
simulation results (see Results). A better, yet more chal-
lenging approach is to reconstruct volume meshes from
biological data based on closed surface meshes. However,
the surface meshes derived from series of electron
microscope images [35] are commonly unclosed and
have small intersecting surfaces, thus they cannot be
used directly in volume mesh generation. This problem
can be solved by semi-manually preprocessing the sur-
face meshes using mesh manipulation tools such as
MeshLab [36]. Once volume meshes are generated from
the cleaned-up surface meshes, they can be imported to
STEPS for simulations. Figure 2 gives an example STEPS
simulation running in a reconstructed mesh with realis-
tic geometry.

Subvolume size
When generating a mesh for STEPS, and other stochastic
voxel-based approaches to reaction–diffusion simulation,
an important consideration is the size of the subvolumes.
As described in Implementation of spatial SSA solver,
subvolumes are assumed to be of a size that represents a
well-mixed region. Most real biological systems will in-
deed exhibit a size-band where the natural motion of
molecules maintains the well-mixed condition and for a
STEPS simulation we should ensure that all tetrahedrons
fall within this band for maximum simulation accuracy.
How can we estimate the size at which a system exhi-

bits well-mixed behavior? By ‘well-mixed’ (or ‘well-
stirred’) we mean that there are many more nonreactive
collisions than reactive ones, quickly removing any
spatial gradients that appear from phenomena such as
chemical reactions or transport. At relatively large
volumes, however, spatial chemical gradients can persist
in a region, broadly speaking whenever reactions occur
at a faster rate than the region can be smoothed by diffu-
sion. If we were to represent such regions with well-
mixed subvolumes we would lose spatial detail. Deter-
mining the largest volume at which spatial gradients
don’t exist is a good estimate of the upper-bound for the
well-mixed condition and can be estimated mathematic-
ally by comparing reaction time to diffusion time in the
continuous case. However, it would be naive to assume
that below a certain volume the region is always well-
mixed; subvolumes can also be too small [37,38]. Sizes
that are comparable to the size of a molecule are intui-
tively too small since we require that molecules are well-
defined within subvolumes, and sizes smaller than the
mean-free path of a molecule are also too small because
there may not be enough elastic collisions taking place
inside a region to keep it well-mixed. In a discrete de-
scription the minimum number of molecules in a



Figure 2 STEPS import of a tetrahedral mesh with realistic geometry. The mesh is reconstructed from a surface triangular mesh provided at
http://synapses.clm.utexas.edu/anatomy/Ca1pyrmd/radiatum/K24/K24.stm . For a test simulation in STEPS molecules are distributed uniformly and
the system is then visualized in CUBIT.
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populated tetrahedron is 1, which means that, below a
certain size (where the mean number of molecules per
tetrahedron becomes much less than 1), reaction time
for a populated tetrahedron decreases with decreasing
volume (reaction rate increases) and comparison to dif-
fusion time for the discrete case is a good way to esti-
mate the minimum subvolume size.

So there exists a window of subvolume size at which
we can apply the well-mixed approximation, which may
be slightly different for each particular model. It is im-
portant to determine this window, but we will show that
it is usually relatively large for biologically realistic mod-
els and therefore poses only a minimal restriction on
mesh-generation. Simulation time increases with increas-
ing number of tetrahedrons, so tetrahedron size is also
an important consideration for simulation efficiency. The
greatest simulation efficiency possible with acceptable
accuracy would be with all tetrahedrons in the mesh at
the upper-bound of acceptable size. However, the tetra-
hedrons that represent the space around complex
boundaries may have to be significantly smaller than the
largest acceptable size so as to represent the boundaries
accurately. An ideal mesh for any given problem, there-
fore, is one that achieves the greatest simulation effi-
ciency at which the well-mixed assumption holds, but
with acceptable morphological resolution.
For an example problem with reasonable simulation
parameters, if the fastest reaction in the system is a sec-

ond order reaction Aþ B→k C with k = 100/μM.s, the
slowest diffusion coefficient is D = 0.1 μm2/ms, and con-
centrations are [A] = [B] = 1 μM, our upper bound esti-
mate is approximately 0.4 μm with a lower bound of
approximately 0.02 μm (see Additional file 2). This size
window is large enough not to place much restriction on
our mesh-generation at all. Though a factor of 20 for the
tetrahedron size may not sound like a large window, it
means of the order of a 104 factor difference in volume.
Put another way, the number of tetrahedrons per cubic
micron of mesh for this problem should number more
than approximately 100 and fewer than approximately
1,000,000 to ensure the well-mixed subvolume condition.
There are several reasons why we may wish to stay sig-
nificantly larger than the calculated lower bound in this
example, the practical reasons that a mesh of 1 million
tetrahedrons per cubic micron would consume enor-
mous amounts of memory and result in an unnecessarily
slow simulation, and another reason is that at 20 nan-
ometers we are approaching the size of proteins.
Figure 3 shows the simulation of this system in

STEPS with three different tetrahedral meshes repre-
senting the same total volume of one cubic micron.
The three meshes are reasonably regular and range

http://synapses.clm.utexas.edu/anatomy/Ca1pyrmd/radiatum/K24/K24.stm
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Figure 3 Subvolume size. The model described in the text is
simulated for different uniform meshes over a range of tetrahedron
sizes, all within the acceptable upper and lower bound of 0.4 μm to
0.02 μm, and each mesh representing the same geometry. Mean
results for 10 iterations in each case are identical for each mesh size
with no errors, demonstrating the accuracy of the well-mixed
approximation in this range.
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from the upper bound of accepted subvolume size
(with approximately 100 tetrahedrons) to a size of 30
nanometers (approximately 350,000 tetrahedrons).
There are no significant errors in results and no dis-
crepancies between the different mesh sizes, showing
that the spatial Gillespie method is accurate over this
range for this simple problem.
We may find for other types of simulations that our

window may even be larger than in this example. How-
ever, with slower diffusion the window may become nar-
rower, but is often still large enough not to pose too
much restriction on mesh generation. For example, with
the same example parameters except for a diffusion coef-
ficient of 0.02 μm2/ms, which is about the slowest diffu-
sion coefficient of the very largest proteins in water [39-
41], the mesh should contain more than approximately
300 tetrahedrons and fewer than approximately 20,000
tetrahedrons per cubic micron, so some care should be
taken in this case not to go below the lower bound of ac-
ceptable subvolume size (i.e. not going higher than
20,000 tetrahedrons). The crowded environment of the
cell can cause the observed apparent diffusion coefficient
to be lower than that in water by a factor that may be
dependent on the size of the molecule [41]. However,
crowding at the same time is expected to also decrease
the rate of fast, diffusion-limited association reactions
[42-44]. Therefore a scenario where large, very slowly-
diffusing molecules are involved in fast reactions that in-
crease the minimum subvolume size enough to approach
the upper bound is rather unlikely. The Results section
contains a validation of the well-mixed subvolume calcu-
lation for a problem with slow diffusion, approximately
in the range for the apparent diffusion coefficient mea-
sured of large proteins in the cytoplasm.
Recent proposals have been made to correct reaction
rates at the algorithmic level if subvolumes approach a
small, “critical” size [38], however in STEPS we prefer to
keep the larger minimum size as a constraint on the
model, in effect constraining the subvolume size to be
significantly larger than the “critical” size. This is partly
because the small sizes typically involved often consume
huge amounts of memory and slow simulations unneces-
sarily or may even be unattainable, so to go below the
lower bound and approach the critical size is often im-
possible or impractical. In the case for very slow diffu-
sion it may be necessary for modelers to take some care
to ensure tetrahedrons do not become too small, but in
practice, for most biologically realistic models, mesh gen-
eration is not significantly restricted by the subvolume
size consideration and the major challenge is realistic
boundary representation.

Mesh quality
Consideration should also be given to the quality of the
mesh used for the STEPS simulation. Tetrahedrons,
compared to cubic elements, have the benefit of being
able to adapt their size and shape to local levels of detail,
however one must make sure that they do not become
too irregular, or “stretched” in any regions of the mesh.
In part this is due to considerations of subvolume size (if
a tetrahedron is stretched the size of the tetrahedron in
some directions may be much larger than the edge-
length assumed for the regular tetrahedron) and also to
do with an assumed level of regularity for the derivation
of the diffusion rates.
There are many different quality measurements for a

tetrahedron and each mesh-generator usually comes with
one or more from this set. The software may use these
measures internally so as to ensure good quality mesh
output, and can also report quality of the generated
mesh to the user. The quality measure used in TetGen is
the radius-edge ratio: the ratio of the radius of the tetra-
hedron’s circumsphere to the length of the shortest edge.
This value is approximately 0.61 for a perfectly regular
tetrahedron. Values up to 2.0, which is currently the de-
fault value in Tetgen for Quality mesh generation, pro-
duce a mesh in which no tetrahedron is too stretched
out. CUBIT incorporates many quality measurements,
for example the Aspect Ratio Beta [45], which is the cir-
cumsphere radius divided by 3 times the inscribed
sphere radius and takes acceptable values between 1
(regular tetrahedron) and 3.
STEPS itself comes with a quality measure that can be

performed on the imported mesh, the radius-edge ratio
that is also used in TetGen. As well as quality, it may be
desirable for example to find the minimum, maximum
and standard deviation of tetrahedron volumes so as to
ensure they fall within the acceptable range, and this can
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be achieved with a simple loop over mesh elements in
the Python interface. STEPS will not fail to run a simula-
tion on a poor quality mesh, since setting an internal tol-
erance may be too restrictive, so users should decide
whether to perform their own analysis on a mesh to de-
termine if it is of acceptable quality before running a
simulation.

Results
Accuracy of geometry representation
To test our intuition that complex geometry may be bet-
ter represented by tetrahedral meshes than cubic meshes
we constructed five geometrical shapes each representing
a dendritic spine on a neuron [7,9] by a simple combin-
ation of a spherical head and cylindrical neck. All spines
were generated randomly within constraints to cover a
broad range recorded experimentally from rat Purkinje
neurons [46] (see Additional file 3). We then compared
the accuracy of these meshes for two biologically import-
ant measures: volume, important for chemical reactions
and diffusion in the spine, and surface area, important
for membrane transport mechanisms like voltage-gated
calcium channels on the spine [1].
For each spine shape, first an adaptive tetrahedral

mesh was generated in CUBIT with the coarsest mesh
(minimal number of tetrahedrons) permissible by the
software, and then a cubic mesh was generated in
MesoRD from CSG input, with the cube size controlled
to result in a mesh with a similar number of subvolumes
to the tetrahedral mesh (further information about the
meshes can be found in Additional file 3). Furthermore,
for each spine a more detailed (greater number of subvo-
lumes) tetrahedral and cubic mesh was generated, with a
close match between the number of tetrahedral and
cubic subvolumes. The more detailed meshes typically
approached the approximate minimum subvolume size
for a system of slow diffusion and fast reaction previ-
ously discussed, and so are approximately the most
detailed mesh that would be acceptable for simulation.
Figure 4 shows spine #4 represented by both a tetrahe-
dral mesh and cubic mesh in the coarser case.
For all meshes the volume and surface area of both the

head and neck regions were measured and compared.
Figure 5 shows a plot of the normalized measurements.
All meshes appeared to represent the spine head volume
quite accurately, yet the cubic meshes often failed to rep-
resent the neck volume sufficiently, and only a marginal
improvement was noticeable in the more detailed
meshes. This demonstrates that, while one could always
find an optimal cube size to represent any one region of
a geometry accurately, the cube size will not necessarily
suffice for other regions which may have different
morphologies. This is a clear drawback for cubic meshes,
which originates from the need for all subvolumes to be
of the same size. Any error in volume will of course pro-
duce an error in reaction rates as well as for diffusion
rates. It may be possible with a very detailed mesh to
represent all regions sufficiently, yet a larger number of
subvolumes means a slower simulation and may result in
loss of accuracy caused by the small subvolume size.
In terms of surface area in all cases the cubic meshes

failed to represent the boundaries accurately, in fact
slightly worsening in the more detailed meshes. This ob-
viously arises from a discrepancy between the surface/
volume ratio of a cube compared to a sphere or cylinder.
This failure to represent surface area closely could for
example be important if modeling the mobility of surface
molecules, or if a density of surface molecules is speci-
fied in a model then the total number of molecules
would end up being too high in a cubic mesh due to the
larger surface area. In such a case it may be possible to
overcome such difficulties by introducing a correction
factor, yet a further complication is that, in tests, we
determined that such a correction factor is not constant
and varies considerably throughout regions of the spine
meshes.
In all cases the tetrahedral meshes represented volume

and surface area throughout all regions of the mesh with
high accuracy.

Validation
Although STEPS uses established methods to simulate
reaction–diffusion systems, errors can be made in the
coding that would lead to erroneous results. Therefore it
is important to validate the accuracy of the program by
simulating models for which the correct response is
known. To our knowledge no standard benchmarking li-
brary for reaction–diffusion systems exists, so we devel-
oped a representative set of models that test different
aspects of the code.
Here we briefly describe each model and show the ac-

curacy of the results in STEPS. The models and para-
meters used are described in detail in Additional file 4
and in the model scripts which can be downloaded from
the STEPS website.

Simple well-mixed reactions
We tested STEPS accuracy for four types of reactions,
chosen for their prevalence in real systems and models,
as well as for their fitness for analytical investigation.
The Python interface to STEPS made it easy to take the
mean and standard deviation of a large number of indi-
vidual simulation runs and in each case the mean STEPS
output was converted to a 95% confidence interval (CI),
which was then compared to the known analytical value
(detailed in Additional file 4).
One of our simplest validation systems, the first-order

irreversible reactions system, is also perhaps one of our



Figure 5 Comparison between cubic and tetrahedral spine
meshes. A scatter plot of the properties of the tetrahedral meshes
(red triangles; many points overlap) and the cubic meshes (blue
squares; some overlap) representing geometry which consists of a
spherical head joined to a cylindrical neck to approximate dendritic
spines. All properties were plotted as a ratio of measured value/ideal
value. A. The coarsest meshes ranging from approximately 2500–
3000 subvolumes per mesh. B. The more detailed meshes ranging
from approximately 11000 to 16000 subvolumes per mesh.

Figure 4 Example tetrahedral and cubic spine meshes. The ideal geometry for Spine #4 (A) represented by a cubic mesh of 2576 cubes (B)
and by a tetrahedral mesh of 2571 tetrahedrons (C). The mesh surfaces are displayed in CUBIT.
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most important due to the fact that we test the resulting
noise from our implementation of the SSA. This vital as-
pect of stochastic reaction–diffusion simulator output is
usually insufficiently tested, often with simple visual
comparison of the amplitude of the noise from the out-
put of two different simulators. The standard deviation
matched the analytical solution to the chemical master
equation closely, and the mean behavior also behaved as
expected (20 of 20 points fell in the 95% CI) (Figure 6A).
For first-order reversible reactions the steady state

can be computed and the mean concentrations of
the STEPS simulation evolved properly to this steady
state (14 of 14 points in CI) (Figure 6B). For the sec-
ond-order irreversible reaction with equal reactant
concentrations (Figure 6C) and unequal concentra-
tions (Figure 6D) the mean behavior of the STEPS
simulations followed the analytical solutions (38 of
40 and 19 of 20 points within CI respectively).
We also tested a ‘Production and Degradation’ reaction

system described by two reactions: a first-order annihila-
tion reaction and a zero-order production reaction. Such
reactions, though they may be unphysical in biological
systems, are useful simplifications that are commonly
used in models and as such are supported in STEPS.
Due to the simplicity of this system an analytical solution
to the steady-state version of the chemical master equa-
tion can be found (see Additional file 4). The stationary
distribution from the simulation in STEPS followed the
analytical prediction (15 of 16 points within CI)
(Figure 7), providing another validation of the noise in
our SSA implementation.
In total for the well-mixed reaction systems, for 106 of

110 measurements the analytical mean fell within the
confidence interval of STEPS output, a success rate of
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96% which is approximately equivalent to the 95% suc-
cess that is expected.
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Figure 7 Validation of production and degradation reactions.
Compares the stationary distribution of a combined production and
degradation reaction of a single species from the STEPS simulation
(histogram) with the analytical solution (solid line).
Diffusion
Many of the diffusion models could not undergo such
precise statistical analysis as the reaction models because
in most cases the analytical concentration of an exact
position in 1-dimensional axial or radial space is com-
pared to the mean concentration at the center of a small
bin of finite tetrahedral volumes in STEPS, which is not
a precise comparison. However, simply by visual com-
parison it could be seen whether STEPS output followed
closely what was expected.
We first tested the most universal case: 3D diffusion

from a point source in an infinite volume (Figure 8A),
which has a known analytical solution for the time and
evolution of the radial mean concentration [47]. While
we could ensure the absence of boundary effects, it was
not possible to mimic a point source in a tetrahedral
mesh. The small deviations between the analytical solu-
tion and the STEPS simulation at short distances from
the source for early simulation times are due to the finite
volume of this source (see Additional file 4). At further
distances or later times the match between the mean of
the STEPS simulation showed no significant deviation
from the analytical solution.
Next we tested three different scenarios for 1D diffu-

sion: from a point source at one end of a finite tube
(Figure 8B), in a semi-infinite tube with a clamped
concentration at the end (Figure 8C) and in a finite tube
with constant influx of the same species at both ends
(Figure 8D). These systems each have a known or
deduced analytical solution of the time evolution of the
axial mean concentration for 1D diffusion, which may in
each case be compared to simulation output due to the
radial symmetry of the problem. In all three cases the
mean of the STEPS simulation and the analytical solu-
tion matched closely at all spatial locations for all times.
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Reaction–diffusion
In testing the combined simulation of chemical reactions
and diffusion we were limited by the paucity of available
analytical solutions. A first simple test was to add diffu-
sion to an irreversible first-order reaction with an initial
uniform concentration of the reagent. Diffusion should
not affect this process, which is confirmed (30 of 30
points fell within 95% confidence interval) (Figure 9A).
Next, a very discrete reaction–diffusion problem, typic-
ally containing only about 10 molecules in the system,
was analyzed. This consisted of two reactions: a zero-
order reaction and second order reaction [38]. Ensuring
that subvolume size was larger than the accepted lower
bound, and significantly larger than the “critical value”
discussed in [38], the deviation of the stationary distribu-
tion of the reactant from the analytical solution to the
master equation was small (Figure 9B).
Finally we present a reaction–diffusion system contain-

ing spatial gradients for which we found an analytical so-
lution [48] and where diffusion is important. This is a
second-order degradation process where the initially
separated reactants diffuse from separate halves of a tube
and the assumption that they degrade so fast on contact
that their concentration at the center is always zero. The
analytical solution then corresponds to diffusion with a
concentration clamped at zero, which matched the
STEPS simulation closely (Figure 10).
Algorithm efficiency
To make comparisons between the efficiency of the reac-
tion–diffusion algorithm in STEPS to a similar tool we
compared to MesoRD [19] and to make comparisons to
particle methods we chose Smoldyn since it has been
reported to be an efficient particle simulator [12]. All
simulations were run on a Macbook Pro 2.4 GHz Intel
Core 2 Duo processor and 4 GB 667 MHz DDR2
SDRAM. Care was taken to ensure that the computer
performance was as equal as possible for every test, with
a measured pystone score of approximately 54500 pys-
tones/second.
Precise comparisons of the subvolume approach

employed by STEPS and MesoRD with the particle ap-
proach of Smoldyn are difficult due to different factors
affecting the efficiency of the two approaches, however
we tested a range of simulation conditions with notable
comparisons when the simulators are estimated to be at
the most efficient with acceptable accuracy. The accept-
able spatial resolution in STEPS and MesoRD is esti-
mated as the size at which there are approximately 10
diffusion events per reaction event (of the fastest reac-
tion) per subvolume (see Additional file 2). Smoldyn is
not exact for all length time-steps due to the fact that
the reactants can only undergo one interaction at the
end of a time-step and it is not possible for a molecule
to be in existence for less than the length of a time-step.
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This means that if products are involved in further inter-
actions (as is the case for this model) then errors are
introduced for large time-steps. An acceptable time-step
in Smoldyn is stated as that at which it is “significantly
smaller” than the timescale of the fastest reaction in the
system, which we will choose as the time-step that is 10
times lower than the fastest reaction in the system.
In a comparison to the Smoldyn benchmark [12]

STEPS appears to perform favorably. This model is a
Michaelis-Menten enzyme reaction and the simulation
parameters suggest an upper bound of tetrahedron size
in STEPS of 2 μm, which corresponds to approximately
140 tetrahedrons in the simulation volume. Simulating in
a mesh of 284 tetrahedrons took 10 seconds in STEPS
compared to 46 seconds for the Smoldyn simulation
(close to the 47 seconds reported on the author’s
computer).
The more interesting comparisons in efficiency, how-

ever, come in larger models with a greater number of
distinct diffusing species with multiple chemical interac-
tions. We ran a test model in STEPS, MesoRD and
Smoldyn consisting of 10 molecular species in different
concentrations, that diffuse with different diffusion con-
stants, and interact by 8 reaction channels (described in
further detail in Additional file 5). STEPS and MesoRD
runtime increases with increasing spatial resolution and
Smoldyn runtime increases with decreasing time-step, so
we compared a range of conditions with an estimate of
the point at which the simulators are most efficient yet
accurate. All simulations were run 3 times and a median
value taken, and in all cases the differences in runtimes
between the 3 tests were found to be small.
Figure 11 shows simulation times in STEPS, MesoRD

and Smoldyn for the test system for two different mod-
els, which differ only by the total number of molecules
as the initial condition. All simulators are very fast in the
most efficient case (very large time-step in Smoldyn, only
one volume in STEPS, eight subvolumes in MesoRD) but
may be inaccurate. As we then decrease efficiency and
increase accuracy we can see that simulation time even-
tually scales approximately linearly for all simulators, al-
though MesoRD initially scales logarithmically. In the
first model a total of 5500 molecules were injected,
which corresponds to a concentration of ~0.3 μM, and
during simulation the total number of molecules
increased to around 6000. The estimated upper limit of
acceptable subvolume size in STEPS corresponds to ap-
proximately 300 tetrahedrons in the mesh, making the
results for a 454 tetrahedron mesh accurate with a simu-
lation time of 13 seconds. The estimate for a cubic mesh
puts an acceptable number of cubes at approximately
380 (a small discrepancy from the tetrahedral case aris-
ing from the different geometry), giving the fastest simu-
lation with acceptable accuracy at 512 subvolumes in the



Figure 11 Simulator efficiency. Test system simulation runtimes in STEPS, MesoRD and Smoldyn. Filled circles show points where the simulation
is calculated to be accurate and open circles show where simulation may be inaccurate. A. Low number of molecules initial condition. Left panel:
STEPS and MesoRD simulation runtimes at different number of subvolumes describing the same total mesh volume. Right panel: Smoldyn
runtimes with varying number of simulation iterations due to a change in time-step. B. High number of molecules initial condition, which is the
only difference from simulations shown in A. Notice different y-scale between A and B but not between left panels and right panels.
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MesoRD mesh with a simulation time of 66 seconds (it
was in fact not possible to generate a 7x7x7 mesh of 343
cubes). The fastest reaction in the system has a charac-
teristic time of 1 ms, so a time-step of 0.1 ms was esti-
mated as the upper-bound for accuracy in Smoldyn with
a runtime of 73 seconds. So, at the estimate for the most
efficient conditions with acceptable accuracy, STEPS
runtime was more than 5 times faster than MesoRD and
Smoldyn. As we increase accuracy further in Smoldyn
with 10 times more iterations the runtime slows to 726
seconds (not plotted), and with approximately 10 times
more subvolumes in STEPS (4520) and MesoRD (4096)
STEPS slows to 109 seconds compared to 169 seconds
for MesoRD. So, in the lower molecule number case, at
the most efficient simulation possible for acceptable con-
ditions STEPS appears to perform favorably, and as we
increase detail STEPS appears to maintain an advantage
over the other two simulators. At the most detailed
meshes tested for STEPS (13871 tetrahedrons) and
MesoRD (13824 cubes) runtime was 263 seconds in
STEPS and 347 seconds in MesoRD (not plotted).
The spatial SSA approach shows increasing benefit with

larger numbers of molecules. In the second model a total
of 55000 molecules were injected, which corresponds to a
concentration of ~3 μM, and during simulation increased
to around 60000. The upper-limit of acceptable spatial
resolution was estimated to correspond to approximately
1200 tetrahedrons in the mesh for STEPS and 1500 cubes
in the MesoRD mesh, and the fastest reaction time in
Smoldyn at the start of the simulation remained 1 ms.
The STEPS simulation with 2090 tetrahedrons took 413
seconds compared to 1205 seconds in a mesh of 1728
cubes in MesoRD. In Smoldyn, with a time-step of 0.1
ms, simulation time was 2857 seconds. With approxi-
mately double the number of subvolumes in STEPS
(4520) and MesoRD (4096) runtimes increased to 831
seconds and 1910 seconds respectively. With twice the
number of iterations in Smoldyn (time step of 0.05 ms)
simulation time was 5745 seconds.
Direct comparison between STEPS and MesoRD show

that STEPS performs significantly better in all tested
conditions. Direct comparisons to Smoldyn are not pos-
sible, however something that can clearly be seen is that
the magnitude of the slopes between the two different
initial conditions means that, for a factor of 10 increase
in the number of molecules, STEPS slows by a factor of
approximately 8, whereas Smoldyn slows by a factor of
approximately 33 and this factor is expected to become
even larger in models with a greater numbers of mole-
cules. Notice, however, that a higher molecule number
does mean a slightly finer mesh must be used in STEPS
and MesoRD to ensure the well-mixed subvolume
condition.

Importing SBML models
STEPS provides thorough and well-validated support for
SBML [21], a common format for representing biochem-
ical models. STEPS has been tested to successfully run
the majority of the SBML Test Suite models and
“curated” models from the BioModels Database [49],
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with results validated against published solutions. The
high-level of support has largely been made possible by
supporting MathML expressions. Such expressions,
which are very common in SBML models, often include
simulation variables that must be stored and available to
use by the solver. STEPS stores the MathML expressions
in Python structures, updates variables in the expressions
during simulation, and can solve the expressions when-
ever necessary. This has been crucial for STEPS support
for SBML components such as Function Definitions, Ini-
tial Assignments, Assignment Rules, Rate Rules, Event
Triggers and Event Assignments. For the special case of
Reactions, STEPS is able to examine the form of the Re-
action Kinetic Law maths and separate them into two
categories: those that can be represented as an ordinary
reaction in STEPS, and those that must be solved by an
approximate method because the Kinetic Law maths dif-
fers from a fundamental reaction (many models contain
at least one of these types of reaction). This ensures that
a reaction will never be represented incorrectly in
STEPS. Any simulator, such as MesoRD, that does not
provide thorough MathML support is limited in its sup-
port of many SBML components, and any stochastic
simulator that does not examine the form of Reaction
Kinetic Law maths will represent most published models
incorrectly. STEPS support extends to models containing
multiple compartments and surfaces, along with volume-
surface and surface-surface reactions. In the end STEPS
successfully imported 654/980 SBML Test Suite 2.0.0
l3v1 models (Additional file 6: Figure S1). Solutions are
provided with the Test Suite for every model, so by auto-
mated testing a large number of models could be
imported, simulated in the deterministic Wmrk4 solver
in STEPS and results compared against given solutions.
Of the 326 models that failed 262 fell into 3 categories,
those that contained: (1) 0-dimension or 1-dimension
compartments that are not supported in STEPS, (2) no
chemical species (STEPS requires at least one chemical
species in order to run a simulation) and (3) Algebraic
Rules, which are difficult to support in a STEPS context
and rarely appear in SBML models. The other models
that failed included some that are not possible to run in
a discrete stochastic context such as those that include
partial stoichiometry or negative concentrations and as
such are also not supported in the STEPS deterministic
solver, which shares model construction with the sto-
chastic solvers. STEPS also successfully imported 223/
326 curated BioModels Database models (downloaded in
June 2011), where possible the most recent versions of
each model (often l2v4) were imported. The majority of
the failures were again because of no chemical species in
the model, partial or high reactant stoichiometry, and
also included those with unsupported units such as
amperes or volts.
Imported models may be directly simulated in STEPS
using the deterministic solver or the well-mixed stochastic
solver, although many models are not suitable for stochastic
simulation without some modification. It is worth noting
that SBML models may potentially form the basis of simula-
tions in the spatial stochastic solver, but not without some
modifications; for example diffusion coefficients and non-
uniform initial conditions must currently be defined outside
of SBML. Figure 12A shows a deterministic simulation in
STEPS of model BIOMD0000000184 from the BioModels
Database in comparison to a BioModels Online Simulation.
This model of spontaneous calcium oscillations in astro-
cytes [50] contains two compartments (cytoplasm and
endoplasmic reticulum) with transport reactions between
them. Some reactions in the model can be represented as
fundamental reactions, but some reactions contain complex
maths, which is therefore converted to Python structures
allowing for solution by the approximate method.
Figure 12A shows close agreement between the STEPS
simulation and the BioModels Online Simulation, and also
matches the published results [50] (not shown).
Some SBML models are suitable for well-mixed sto-

chastic simulation without any modification. One ex-
ample is BIOMD0000000152, which contains a
femtoliter compartment and micromolar concentrations.
As described further in [51] this is a larger model con-
taining 63 Species and 120 Reactions, and also 21 Events
which represent ‘cAMP’ and ‘Ca’ signals. At time 400 s a
pulse of cAMP is introduced, and then intermittently be-
tween times 450 s and 490 s the reaction parameter con-
trolling calcium influx is toggled between a low and high
value by Events. When running the simulation in STEPS
the mathematics representing Event Triggers and Event
Assignments is stored in Python structures, which makes
it possible to represent these important features of the
model. Figure 12B shows simulation results using the
STEPS stochastic solver superimposed on deterministic
results from a BioModels Online Simulation, displaying
the two species directly involved in Events: cAMP and
Ca. STEPS matches the BioModels Online Simulation
results, with some small expected variability arising from
the stochastic simulation.
Discussion
Advantages and disadvantages
As described by example in [22] the Python interface to
STEPS brings a number of advantages over reaction–
diffusion simulators that have a non-interactive interface.
STEPS modelers have greater freedom and control over
a simulation, and may utilize the many powerful scien-
tific tools already available for Python for tasks such as
data analyses and visualization. In fact we believe a
powerful interface is the only way to be able to achieve
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the complex tasks that go with initializing, running and
collecting data from simulations in complex 3D
geometries.
STEPS provides substantial functionality (significantly

more than is often available in similar software) in the
Python interface that a modeler may use for building a
model and customizing a simulation, which can be par-
ticularly important for spatial simulations. Examples are
the steps.geom.Tetmesh class functions that are crucial
for acquiring and utilizing information about complex
3D mesh geometry, and the functionality in the STEPS
Tetexact solver that allows for the manipulation of mol-
ecule counts, reaction and diffusion rates, both compart-
ment and patch-wide or individually for tetrahedrons
and triangles. There are many possible applications for
such functionality, including complex initial conditions
[22], chemical localization, control over reaction rates by
external variables such as voltage or temperature, and
support for some of the more advanced features of
SBML such as Rules and Events. All functions are
described in detail in the user documentation.
Python is becoming particularly important in the neu-

rosciences and as more and more neural simulators
adopt a Python interface the future may even see Python
used to glue simulators together so that phenomena on
different spatial scales can be integrated, although there
may be more efficient alternatives [52]. The Python
interface is an advantage now and as biological simula-
tion becomes more and more complex, will be an advan-
tage for the future.
STEPS is capable of accurately representing complex

boundaries by supporting unstructured tetrahedral
meshes. We demonstrated that while the regular cubic
meshes supported by some other simulators are very
easy to generate they limit the morphological resolution.
Tetrahedrons are able to adapt their shape and size to
regions of high morphological detail, which means that
such meshes (with sufficient spatial resolution) are able
to follow the complex boundaries of a cell very closely.
Tetrahedrons may be larger for regions of less interest,
which is an important consideration for simulator effi-
ciency. However, with tetrahedron-based geometry
comes the difficulty of generating high-quality meshes,
which is a drawback for this approach. Specialist mesh
generation software is best left to this task and there are
some powerful tools available, with common output for-
mats supported by STEPS. Complex boundary gener-
ation is not a unique problem to STEPS and particle-
based simulators that support complex surfaces, which
may for example be represented by collections of trian-
gles or squares, may also require outside software to de-
velop sufficient quality surfaces.
STEPS has the advantage of supporting both spatial

and non-spatial stochastic simulations as well as deter-
ministic simulations, and in the near future will even be
able to combine spatial and non-spatial compartments in
the same stochastic simulation. This may be a very im-
portant feature for efficiency in some models while still
allowing for complex boundary representation. For ex-
ample, if one wished to simulate calcium release from
intracellular calcium stores in the endoplasmic reticulum
(ER), it would be vital to represent the resulting calcium
gradients in the cytoplasm in a spatial compartment, yet
the simulation would be severely slowed by simulating
diffusion in the highly-concentrated ER, which may only
have a negligible effect on outcome. Representing the ER
as a well-mixed compartment would reduce runtime
considerably without affecting accuracy.

Chemical accuracy of reaction–diffusion algorithms
Any representation of a biochemical system on a
computer is of course not an exact replication of the
real system. Simplifications are made, both by the
modeling software and in the designed model itself,
to ensure that the problem is tractable and may be
simulated on the limited computational power avail-
able in an acceptable amount of time. For example,
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many approaches to biochemical reaction diffusion
simulation ignore the crowded environment of the
cell formed by macromolecular structures, a feature
that can have a significant affect on apparent diffu-
sion coefficients and reaction rates [44,53]. Every ap-
proach to incorporating spatial detail into stochastic
biochemical simulations makes a different set of sim-
plifying assumptions, which means that the most ac-
curate approach may depend on the properties of the
simulated model.
A popular approach to reaction–diffusion modeling

is based on Smoluchowski theory [54], which tracks
diffusing point-like particles that may react when
they fall within a certain distance of another reactive
molecule. This theory has the advantage of including
some consideration of molecule size, but is limited
by its own simplifying assumptions about the system,
which can lead to small errors if, for example, two
reactants are at a similar concentration to each other
[55,56], which is of course often the case for bio-
logical systems. In addition, the theory is derived for
a system with only one reaction present, making
results for all systems with more than one reaction
approximate. However, a small time-step can often
ensure good accuracy, but this comes at a cost to
efficiency.
The spatial Gillespie approach makes the assump-

tion that the subvolumes represent well-mixed
regions and, as we have seen, at relatively very large
or very small sizes this may not be the case, so some
care must be taken by the modeler to ensure subvo-
lumes are in the well-mixed range. A benefit of this
approach is the potential gain in efficiency, but a
drawback is that it is as yet unclear how to incorpor-
ate molecule size and macromolecular crowding into
simulations, although this may be possible in the fu-
ture. The unstructured mesh in STEPS already allows
for complex boundaries that could potentially form
impenetrable fixed structures within the volume that
could go some way towards replicating the crowded
environment of the cell. The incorporation of react-
ant size into the Gillespie framework is an active
area of research and it has already been found that
for a unimolecular second-order reaction system in
one dimension reactant size may be simply incorpo-
rated by replacing system volume with the “free vol-
ume” [57] and in two dimensions the propensity
function is still applicable, yet with a larger correc-
tion than just the free volume [58]. This suggests an
extension to 3 dimensions will involve a correction
to the propensity function based on the excluded
volume from the molecules, which could potentially
be found from a fixed user-defined parameter of
molecule size. Allowing the molecule size to be
defined explicitly could ensure that it is always bio-
logically feasible. Where the implied molecules size
is found intrinsically from reaction and diffusion
parameters (as is the case for Smoluchowski models)
the calculated binding radius can be very different
from the physical size of the molecules; typical reac-
tion and diffusion parameters of proteins give a
binding radius that is unrealistically small [38], and
slow diffusion with a fast reaction can lead to a
binding radius that is very large. In addition to this
possibility, one intriguing approach to this problem
is to apply a hybrid method where discrete and con-
tinuous spatial descriptions are both permitted, and
the simulator combines the spatial Gillespie method
and Brownian dynamics [59].
Despite their limitations, current voxel-based and par-

ticle methods can often both be shown to be good
approximations for a range of biological conditions and
a lot of useful information about many systems can be
extracted from their simulation. In the future, as compu-
tational power increases, our understanding of cellular
systems improves and new algorithms are developed (or
existing algorithms modified), biochemical computing
will surely become more and more powerful and accur-
ate. Only time will tell how significant these future
improvements will be, or whether current methods are
accurate enough for most studies. At present, with differ-
ent methods for stochastic reaction–diffusion simulation
within complex boundaries essentially producing the
same results for a wide range of biological conditions,
software efficiency, reliability and ease of use are often
the most important considerations for a modeler.

Software efficiency
The core algorithm in STEPS is an efficient implementa-
tion of the spatial Gillespie approach to reaction–diffu-
sion modeling and contains the potential for further
improvements to runtime in the future with the intro-
duction of approximate methods such as tau-leaping [60]
adapted for diffusion [61,62]. Efficiency in a spatial Gille-
spie simulation depends on the number of mesh subvo-
lumes so care must be taken to ensure that, where
possible, the subvolumes are close to the upper bound of
accepted size, as discussed in Subvolume size.
STEPS performed favorably in direct comparison to

another subvolume-based simulator, MesoRD, in a wide
range of conditions, which demonstrates the efficiency of
the STEPS implementation. Although it is difficult to
precisely compare simulator efficiency between spatial
Gillespie and particle methods, partly because of the dif-
ficulty of pinpointing the exact point at which the simu-
lator becomes accurate, what can clearly be seen by
comparison to the efficient particle simulator Smoldyn is
that the spatial Gillespie method in STEPS has a



Hepburn et al. BMC Systems Biology 2012, 6:36 Page 17 of 19
http://www.biomedcentral.com/1752-0509/6/36
significant advantage over particle methods at higher
molecule numbers. Also, once accurate conditions have
been met, STEPS performs better than Smoldyn with in-
creasing spatial resolution in STEPS compared to de-
creasing time-step and increasing accuracy in Smoldyn.
This is important because simulation conditions are
often more detailed than the very upper-bound of ac-
ceptable conditions so as to ensure accuracy or because
of complex boundary restrictions.
An important point is that voxel-based software such

as STEPS only begins to lose accuracy when subvolumes
become very small (as discussed in Subvolume size) and
efficiency is low, whereas, conversely, accuracy in particle
methods generally increases with smaller time-step and
therefore lower efficiency. This means that spatial SSA
methods are most accurate at efficient simulation condi-
tions, whereas particle methods are generally most ac-
curate at inefficient conditions.

Validation
Regardless of the approach and the capabilities of the
simulator it is important that all supported features are
validated by analyzing output, where possible comparing
to known analytical solutions. Validation ensures that
there are no numerical errors resulting from bugs in the
code so that the software may be reliably used for re-
search purposes, and repeating this validation every so
often checks that any recent changes to code have not
resulted in loss of accuracy. STEPS is well tested and
validated for the majority of its capabilities as we have
reported in this paper, yet other simulators are often
poorly validated and may be unreliable, particularly when
it comes to capturing the noise resulting from stochastic
chemical reactions. As reaction–diffusion simulators be-
come more and more widely used to investigate the mo-
lecular properties of neural and other biochemical
systems it is vital that each simulator is known to be reli-
able and accurate. For this reason it is important that
standards for validation for reaction–diffusion simulators
are developed, as has been achieved for example for the
electrical properties modeled by neuronal simulators
[63]. The set of validations that we have presented in this
paper could contribute towards such a future reaction–
diffusion standard.

The future
The future will see further additions to STEPS as more
and more biological phenomena are added to models. In
neurons in particular, the intracellular signaling pathways
are highly coupled to the electric excitability of the cell
through the activity of voltage-gated channels on the
membrane. A powerful addition to future versions of
STEPS will be the calculation of the potential across sur-
faces representing membranes within the tetrahedral
mesh geometry, to which voltage-gated ion channels may
be added. In the near future lateral diffusion will also be
implemented to simulate the mobility of molecules in
membranes. Further ahead, one possibility is to allow
meshes to dynamically alter their shape during simula-
tion to replicate real changing cell shape. One potential
application for this is the simulation of the enlargement
of dendritic spines associated with long-term potenti-
ation [64,65].
Future additions to STEPS will also be based on con-

siderations of efficiency. Since spatial simulations are
mainly dominated by diffusion, the largest gain in effi-
ciency may come with implementing approximate meth-
ods for diffusion.
Currently STEPS is developed and tested under 32-bit

systems, thus the simulation size is restricted by 4 GB of
addressable memory, approximately 108 kinetic pro-
cesses. Although this restriction can be eased by convert-
ing STEPS to a 64-bit version, the simulation of very
large scale systems on individual workstations can be im-
practical due to a long runtime. Solution of this problem
will depend on the development of an efficient parallel
framework, where the whole system is distributed and
simulated in different nodes of a computing cluster. A
great challenge for such a parallel framework is the need
to reduce network communication as well as preventing
unnecessary rollbacks caused by state conflicts between
nodes.

Conclusions
Discreteness, stochasticity and spatial effects are vital
considerations for capturing the dynamics of many cellu-
lar molecular systems, yet this high level of detail makes
efficiency a particularly important consideration for tools
such as STEPS that are designed to simulate such sys-
tems. Efficiency is tied to accuracy, gains in one often
coming at a cost to the other. STEPS employs the spatial
SSA approach to discrete reaction–diffusion simulation,
which is generally more efficient than particle-based
methods, yet more abstracted conceptually. However, we
have shown that there is usually no loss or a minimal
loss of accuracy for biochemical systems, provided that
due consideration is given to subvolume size. The opti-
mized algorithm in STEPS was shown to out-perform
both another SSA-based simulator, MesoRD, and particle
methods by comparison to Smoldyn, with increasing
benefit in larger systems and increasing simulation detail.
In terms of spatial accuracy, STEPS offers improvement
over other spatial SSA software by supporting tetrahedral
meshes, which provide higher morphological resolution
than cubic voxels. The problem of representing complex
boundaries in surfaces or meshes is best left to powerful,
specialist software, and common formats are imported
by STEPS. The distinction between biochemical model,
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geometry description and solver method offer a number
of advantages, such as the ability to apply different simu-
lation techniques to the same model, and to reuse com-
plex geometry descriptions. Solver accuracy was
confirmed in an extensive validation suite consisting of a
set of reaction, diffusion and reaction–diffusion systems.
The Python interface to STEPS was found to play an im-
portant role in almost all aspects of creating models,
running test simulations and building additional features,
including reliable support for SBML.
Therefore, STEPS successfully combines both high per-

formance and high accuracy within a powerful and user-
friendly interface, allowing application to a large number
of biochemical network models where stochasticity and
spatial organization play a prominent role. The frame-
work in STEPS offers the potential for future improve-
ments to performance, such as approximate method
implementation and parallelization, which will add more
power and open up even more applications as larger sys-
tems may be simulated. Further additions to the code
will open up the exciting possibility of full integration
with the electrical properties of the cell, allowing accur-
ate and efficient parallel multi-scale neural simulations.
For these and further future additions, which could for
example potentially include new algorithms to represent
the crowded environment of the cell, scientific accuracy
and software efficiency will both continue to play prom-
inent roles in STEPS development.

Availability and requirements
Project name: STochastic Engine for Pathway
Simulation
Project home page: http://steps.sourceforge.net
Operating system(s): Platform independent
Programming languages: C/C++, Python
Other requirements: Python 2.5 ~ 2.7
License: GNU General Public License version 3
Source code and pre-compiled binaries for Windows

and Mac OS X are available at the home page where fur-
ther information about STEPS can also be found, includ-
ing the Online User Manual.
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Tetexact [66,67].

Additional file 2: Subvolume Size. An analysis of acceptable
tetrahedron size range for reaction-diffusion simulations in STEPS.
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