Simoes et al. BMC Systems Biology 2012, 6:38
http://www.biomedcentral.com/1752-0509/6/38

BMC
Systems Biology

RESEARCH ARTICLE Open Access

Organizational structure and the periphery of
the gene regulatory network in B-cell

lymphoma

Ricardo de Matos Simoes, Shailesh Tripathi and Frank Emmert-Streib”

Abstract

signals is severely limited.

corresponding to different cellular components.

receptors in B-cell lymphoma.

Background: The physical periphery of a biological cell is mainly described by signaling pathways which are
triggered by transmembrane proteins and receptors that are sentinels to control the whole gene regulatory network
of a cell. However, our current knowledge about the gene regulatory mechanisms that are governed by extracellular

Results: The purpose of this paper is three fold. First, we infer a gene regulatory network from a large-scale B-cell
lymphoma expression data set using the C3NET algorithm. Second, we provide a functional and structural analysis of
the largest connected component of this network, revealing that this network component corresponds to the
peripheral region of a cell. Third, we analyze the hierarchical organization of network components of the whole
inferred B-cell gene regulatory network by introducing a new approach which exploits the variability within the data
as well as the inferential characteristics of C3NET. As a result, we find a functional bisection of the network

Conclusions: Overall, our study allows to highlight the peripheral gene regulatory network of B-cells and shows that
it is centered around hub transmembrane proteins located at the physical periphery of the cell. In addition, we
identify a variety of novel pathological transmembrane proteins such as ion channel complexes and signaling

Keywords: B-cell lymphoma, Gene expression data, Gene regulatory network, Statistical network inference

Background
The inference of gene regulatory networks from gene
expression data is crucial for enhancing our understand-
ing about relations between genes [1-3]. In general, a gene
network describes a map of direct physical (biochemical)
interactions among genes, gene products or metabolites
that occur in the living cell [4,5] and, hence, enable a sys-
tems biology approach [6-8]. It has been demonstrated
that gene regulatory networks, as a specific type thereof,
can be indirectly inferred from steady state gene expres-
sion data, which are measured under different conditions
either in individual tissues or cell types [9-11].

In general, it is believed that the gene regulatory
network is governed by major hub genes like transcription
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factors that directly bind specific DNA segments in the
nucleus and activate or repress the expression of other
genes [1,12]. Further, it has been proposed that the
genes in cellular networks are organized by a hierarchi-
cal and modular structure. This assumption has been
studied, e.g., for metabolic networks [13]. A hierarchical
modularity implies functional community structures of
interconnected layers in the network with a potentially
heterogeneous modularity structure. For example, for the
protein network of E. coli it has been demonstrated that
the center of the network has a higher modularity than
the periphery of the network [14]

In the following, we consider the periphery of a net-
work to be given by leaf genes or linearly connected genes,
while the central regions are complex, composed of genes
with a high node degree. In [15] the functional modular-
ity of different layers in the yeast and the E. coli protein
network was observed to be governed mainly by a central
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and a peripheral layer, connected by an intermediate
layer exhibiting a reduced modularity. The central layers
of these networks were described to be highly enriched
by genes that are located in the nucleus for regulat-
ing, e.g., the cell cycle, while the periphery is governed
by metabolic, transport systems and cell communication
processes. These results are consistent with the simplified
view that the physical periphery of a cell produces sig-
naling cascades that are induced by extracellular signals
that are detected by transmembrane protein receptors.
In turn, this leads to a transduction and amplification
of extrinsic and intrinsic signaling cascades through the
cytoplasm to the nucleus culminating in the regulation
of gene expression. For an intuitive visualization of these
intricate processes see Figure 1.

The inference of gene interactions in a gene regula-
tory network from gene expression data is often discussed
in connection with the nuclear transcriptional regulatory
network [1,16,17]. In the simplified transcription factor vs
target gene model, a transcription factor affects directly
the gene expression of the mRNA of a target gene. This
may give the impression that gene interactions inferred
from expression data need to be interpreted in the context
of transcription regulation. For this reason, inferred net-
works from gene expression data are frequently equated
with the transcriptional regulatory network. However, this
is not justified because expression data convey only infor-
mation about the dynamic state of genes correspondingly
their mRNAs and, hence, do not provide direct infor-
mation about any type of biochemical binding, including
transcription regulation, at all. Instead, inferred interac-
tions from expression data are not limited to transcription
regulation, but can also include protein-protein interac-
tions [18]. To emphasize this, we use the terminology
gene regulatory network for a network that is inferred
from gene expression data to point out that this is not
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necessarily a transcription regulatory network but a mix-
ture of this and a protein-protein network [19].

The major purpose of this paper is to infer a gene reg-
ulatory network from a large-scale B-cell lymphoma gene
expression data set, and to investigate its structural and
biological organization. Immature B-cell lymphocytes are
cells from the bone marrow that play an important role in
the adaptive immune system. When B-cells are activated
by an antigen they differentiate to memory B-cells, to anti-
body secreting plasma B-cells or proliferate intermediately
to germinal centers (centroblasts and centrocytes) [20]. B-
cells are one of the most interesting cell types for the study
of mammalian signaling and cell differentiation processes
due to their unique physiological properties governing
the adaptive immune system. Malignancy of the different
B-cell lymphocyte types leads to a variety of lymphoma
and leukemia disease phenotypes such as B-cell chronic
lymphocytic leukemia (BCLL, germinal center), Burkitt
lymphoma (BL, germinal center), Diffuse large B-cell lym-
phoma (DLBCL, germinal center), Follicular lymphoma
(FL, germinal center), Hairy cell leukemia (HCL, memory
B-cells), Mantle cell lymphoma (MCL, immature B-cells)
and Multiple myeloma (MM, plasma cells). For our anal-
ysis, we use the microarray data set from [21] which
contains samples from the germinal centers of lymphoma
patients and experimental transformed germinal center
cell types.

In a previous study, it has been found that the C3NET
inference algorithm has a considerably higher true posi-
tive (TP) rate for leaf edges of genes in a network that
are sparsely connected [18]. For this reason we hypoth-
esize that this method has characteristics which are very
beneficial for the inference of peripheral regions of the
gene regulatory network of B-cells. Due to the fact that B-
cells are highly receptive to external stimuli, as described
above, knowledge of these interactions seems viable for
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gaining a deeper functional understanding of the intricate
differentiation processes.

In order to analyze the structural organization of B-cell
lymphoma, we infer a gene regulatory network by using
C3NET in combination with an ensemble approach. This
means, instead of applying the inference method to one
data set, we are applying it to a bootstrap [22] ensemble
of data sets. This allows not only to assess local network-
based measures down to the level of individual edges
[23,24] but also to obtain an average network structure
which is amenable for a hierarchical analysis, as we will
show in this article.

There are several large-scale B-cell lymphoma related
gene expression data sets available of germinal cen-
ter tumor samples from Diffuse large B-cell lymphoma
(DLBCL), Follicular lymphoma (FL) and Burkitt lym-
phoma (BL) [25-29]. In this paper, we study the gene reg-
ulatory network from B-cell lymphoma by using the data
set in [21]. For an independent validation of our results we
study in addition two Diffuse large B-cell lymphoma data
set described in [25,27].

To demonstrate the validity of our bootstrap approach,
we are using simulations comparing results from a boot-
strap ensemble with an ensemble of independently gen-
erated data. For a principle overview of the generation
of the bootstrap data, see Figure 2. In this figure, the
data set Df refers to the k-th data set from the bootstrap
ensemble.

In this paper, we infer the peripheral region of the gene
regulatory network inferred from a large-scale B-cell lym-
phoma gene expression data set by using the C3NET
algorithm. We provide a functional and a structural anal-
ysis of the largest connected component for this network.
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Further, we analyze the hierarchical organization of the
network components of the B-cell gene regulatory net-
work as revealed by the bootstrap approach.

Methods
In the following section we present the methods and the
data used for our analysis.

Simulated Gene Expression Data

We simulate gene expression data sets for a variety of dif-
ferent network structures by using SynTReN and GeNGe
[30,31]. For each network type, we generate 300 data sets
with a sample size of 100, 200, 500 and 1000. Further,
for each of these data sets, a bootstrap ensemble of size
b = 100 was generated by sampling with replacement.

In addition, we generate simulated gene expression data
sets for a network consisting of 8 network modules, which
are organized in a hierarchical manner; see Figure 4 for
a visualization. Each network module is generated using
a Modular Topology Model (MTM) network model, each
with a size of 25 genes. A MTM network has properties
such as a scale-free degree distribution, high clustering
coefficients and short path lengths as observed in real
biological networks [32,33]. We construct 5 different net-
works by weakly connecting the 8 individual modules with
a different number of connections. Specifically, the indi-
vidual network modules are connected by 0, 3, 5, 10 and 15
edges, resulting in a total of 5 networks, each consisting of
200 genes. For each of the 5 networks, we generate inde-
pendently 100 gene expression data sets with sample size
500 by using netsim [32]. Netsim generates time-series
data. In order to obtain steady state expression data each
sample in a data set is taken after the 50th time point. The
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Figure 3 lllustration of the usage of the bootstrap ensemble for the clustering of the network components.
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gene expression profiles are generated with a sigmoidal
activator function.

Preprocessing of B-cell ymphoma microarray data sets
The collection of the microarray gene expression data
used in this study are from [21], which are accessible
from the NCBI Gene Expression Omnibus (GEO) [34]
(accession GSE2350). We denote the GSE2350 dataset
that includes transformed and untransformed B-cell lym-
phoma samples as the Basso GSE2350 dataset. For
our analysis we consider only samples for which raw
gene expression data in form of CEL files are avail-
able. From the total of 387 samples of the GSE2350
dataset, 344 samples were available with raw CEL files.
In the following, we call this data set D. The data
set includes two Affymetrix chip platforms, hgu95a
and hgu95a_v2. We used the mixture CDF environ-
ment hgu95avl2mixcdf_1.0.tar.gz available from http://
bmbolstad.com/misc/mixtureCDF/MixtureCDEhtml] to
include only probe sets that have the same probe set
annotation.

For a cross-dataset validation of our study, we pre-
processed two additional B-cell lymphoma data set. We
retrieved a Diffuse-large B-cell lymphoma hgul33plus2
Affymetrix microarray data set with accession GSE11318
[27] including 203 samples, and a Diffuse large B-cell lym-
phoma /gul33a Affymetrix microarray data set with the
accession GSE22470 [25] including 271 samples. These
two data sets contain only untransformed B-cell lym-
phoma samples. We denote these as the Lenz GSE11318
dataset and the Salaverria GSE22470 dataset.

We processed all CEL files for each data set using RMA,
a quantile normalization and summarization [35-37]. We
extracted the logy expression intensities for each probe
set. Because a gene can be represented by more than one
probe set, we calculate the median expression value for
each gene by mapping the annotation of Affymetrix-ID
to Entrez gene IDs to obtain a summary value for the
genes. The Basso GSE2350 dataset comprises a total of
9,684 genes and 344 samples, where we do not exclude
any unmapped probesets.

In order to perform a cross-dataset validation of the
Basso GSE2350 dataset, we discarded all gene and probe
set identifiers from the Lenz GSE11318 dataset and
Salaverria GSE22470 dataset that are not present in the
Basso GSE2350 dataset. After removal, the expression
matrix of the Lenz GSEI11318 dataset comprises 8,727
genes and 203 samples and the expression matrix of the
Salaverria GSE22470 dataset comprises 8, 664 genes and
271 samples.

Gene regulatory network inference

We use the C3NET method [18] to infer the gene regula-
tory networks for the simulated gene expression data sets
and the B-cell data. For each data set, a copula transforma-
tion is applied to the gene expression matrix as performed
in [17]. Mutual information for all gene pairs is computed
using the Pearson estimator [38,39]

1
IX,Y) = -5 log(1 — p?). (1)
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Here, p is the Pearson correlation coefficient. F-scores are
estimated by

2
F=-""2" 2)
p+tr

Here, p is the precision and r the recall.

Functional Analysis

The procedure for the Gene Ontology (GO) [40] enrich-
ment analysis was implemented in R using the Entrez
gene to GO annotation from the hgu95a_v2 and the
org.Hs.eg.db package and for the GO enrichment analysis
the topGO package [41] from Bioconductor in R [42]. The
significance level of the enrichment for a GO term was
determined by a hyper-geometric test (Fisher’s Exact Test
[43]). For the analysis, only terms assigned to more than 3
candidate genes are considered for the analysis.

Network gene centrality pathway analysis

For the cross-dataset validation of the B-cell C3NET gene
regulatory networks inferred from different data sets, we
conducted a pathway-based network comparison. This
method allows to identify functional subnetworks with
the strongest structural similarities between pairs of gene
regulatory networks.

We compare the underlying network structure between
two C3NET gene regulatory networks, using the node
betweenness centrality [44] measure. The node between-
ness centrality for a gene v; in a network is defined by [44]
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Betweenness centrality measures the proportion of all
shortest paths between gene vx and gene v;, which tra-
verse gene v; denoted by n;'d, referred to all shortest paths
between gene vi and gene v; denoted by py.

For two given gene regulatory networks, G, and G, we
estimate the betweenness centrality values for all genes
from a Gene Ontology (GO) term. Then, for each GO
term, we perform Spearman’s rank correlation test [43] for
the ranks of the betweenness centrality values. We adjust
p-values using a FDR [45] correction for a given signif-
icance level of « = 0.05. For the analysis we use the
Gene Ontology (GO) annotation from the Bioconductor
org.Hs.eg.db package.

Hierarchical network organization

In order to analyze the hierarchical organization of the B-
cell CBNET gene regulatory network, we perform a three-
step procedure based on bootstrap samples of the data. In
the first step, we infer a network G by using all 344 samples
of the microarray data set D. For this network, we identify
its network components, which represent connected com-
ponents. That means, from G we obtain a set of network
components C = {Cy, ..., Cx} whereas C; represents a list
of genes that can be found in component i. These com-
ponents have the property that for any pair of genes, e.g.,
88k € C; there exists a path connecting gene g; with g.
However, for gene pairs from different components, e.g.,
g € Ciand gr € Cy there exists no path that connects
these genes. The size of each network component is given
by N; = |Cj, i.e., for example that network component

i
i — Z M 3) C; contains N; genes. Here, K indicates the total number
2 M . . .
0 PKi of components found in G we consider for our analysis.
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Figure 4 Reference hierarchical network with 8 weakly connected MTM network modules. Each module consists of 25 genes. The modules
are connected by 0, 3, 5, 10 and 15 edges, as indicated by the black, thick edges between the modules.
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We would like to emphasize that the network components
are naturally obtained because the inferred network G is
usually an unconnected network, due to the conservative
working principle of C3NET. Hence, C = {Cy,...,Ck}
correspond to these individual network components.

In the second step, an ensemble of bootstrap data sets
{Df3 }?:1 is generated from D, as described in Figure 2, from
which we infer an ensemble of networks {Gf';}f):v one for
each bootstrap data set. Further, from the ensemble of net-
works, {G? }f’zl, we estimate for each gene pair the fraction
of inferred edges present in the ensemble,

(#ej = 11{G}))
b

This corresponds to the probability Pr(e; = 1|{ng D). Due
to the fact that the underlying network G is undirected, c;
is symmetric, i.e., ¢;j = ¢j;.

Finally, in the third step, the information obtained in
step one and step two is combined by estimating the
average neighborhood closeness, ¢y, from each network
component k to network component k’, obtained the fol-
lowing way. A mean feature vector, ¢, is estimated for
each network component k by

, ) efl,...,N}L (4)

Cl',* =

A 1
(i) = ]\Tk ZC[]’, ke{l,...,K}. (5)
jeCxk

Here, Ny is the size of network component k and ¢ (i)
is the i-th component of the vector ¢, which has length
N. The interpretation of ¢ (i) is Pr(component k is con-
nected with gene i |{G§B}). From this, the average neigh-
borhood closeness between network component k and
network component k' is obtained by

. 1 . )
b = - ’Z a(), kK e{l,...,K}. (6)
}GCk/

The interpretation of ¢i is Pr(component k is connected
with component l<’|{Gf;}). Hence, the average neighbor-
hood closeness ¢ provides structural information about
the involvement of individual genes between network
component k and k" utilizing the variability within the
data, as exploited by the bootstrap ensemble. We use the
average neighborhood closeness ¢y to define a K x K
similarity matrix U by

Uy = i (7)

For our analysis we are using U to define an error measure
dy, defined in section ‘Graph edit distance hierarchy error’.

Due to the probabilistic interpretation of ¢, which
implies that 0 < ¢ < 1, these components are easily
transformed into distance values by

Dy =1 — G (8)
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For our analysis we use the resulting K x K distance matrix
D for a hierarchical clustering in combination with the
“Ward” method. The overall procedure is summarized in
Figure 5.

Results

Consistency of bootstrap ensembles

We start our analysis by performing simulations to com-
pare the distributions of F-scores of an ensemble of
independently generated data sets with two bootstrap
ensembles. For an illustration of the generation of these
bootstrap data and the difference between the three types
of F-scores, see Figure 2. The colors of the arrows in this
figure correspond to the colors of the boxplots shown
in Figure 3. That means the blue boxplots correspond
to F-scores obtained for an ensemble of 300 indepen-
dently generated data sets. The red boxplots correspond
to 30000 (= 300 x 100) F-scores obtained by bootstrap-
ping each of the 300 data sets 100 times. We call this
bootstrap ensemble BE 1. The boxplots in green show the
300 averaged F-scores, i.e., each F-score is averaged over
100 bootstrap samples. We call this bootstrap ensemble
BE 2. Figure 3 shows the distribution of these F-scores
for scale-free networks in dependence of four different
sample sizes.

In general, one can see that the distributions of F-
scores of the two bootstrap ensembles are similar in range,
median and the interquartiles to the F-scores obtained
for the ensemble of independently generated data sets.
However, the F-scores for BE 1 (shown in red) con-
tain some outliers. This can be expected, because the
bootstrapping of the data leads in general to a loss of
information, due to the fact that not all samples are avail-
able for the inference task. For this reason, the median
F-scores decline slightly, as can be seen from Figure 3.
However, this decline is rather moderate, e.g., compared
to the overall increase for larger sample sizes. Further,
there are only few outliers, indicating that only very few
bootstrap data sets lead to atypical results. Hence, our
analysis demonstrates that the usage of bootstrap ensem-
bles leads to a good approximation compared to results for
and ensemble of independently generated data sets. Due
to the fact that the latter data are only available in simu-
lation studies, but not for real biological data, a bootstrap
ensemble is a valid approach to estimate the variability
of the population of inferred networks from an ensemble
of data sets. We repeated the above analysis for differ-
ent network topologies, including random networks and
directed acyclic graphs (not shown), and found qualita-
tively similar results as for the scale-free networks shown
above.

These results demonstrate that the bootstrap data lead
to very similar results as the independent data, indepen-
dent of the sample size. Hence, in the specific context
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Blue: 300 independently simulated gene expression data sets. Red: BE 1.

of network inference bootstrapping data is an efficient
means to generate an ensemble of data to resemble an
independently generated ensemble.

Inferrability of a hierarchical organization

Next, we evaluate the performance of our bootstrap
approach for the inference of a network with a hier-
archical structure. For this reason, we simulate gene
expression data by using a network with a defined hier-
archical organization of 8 interconnected MTM network
modules, see Figure 4. The individual network modules
are interconnected by 0, 3, 5, 10 and 15 edges. In total, we
analyze gene expression data sets for 5 ensembles, each
consisting of 100 data sets. In order to measure the per-
formance of our bootstrap approach for the inference of
the hierarchical organization of the network components
from the simulated data we developed two measures. The
first measure, d, is the dendrogram clustering error that
scores clustering errors of dendrogram splits between the
true hierarchical structure and the inferred hierarchical
structure (Figure 6). The second measure, dy, is the graph
edit distance hierarchy error that computes the graph edit
distance [46-48] between the reference adjacency matrix
of interconnected network modules and the inferred

similarity matrix U, described in section ‘Hierarchical
network organization’

We estimate for each simulated gene expression data
set a distance matrix D and a dendrogram of the inferred
network module hierarchy, obtained by application of the
“Ward” method. A summary of this procedure is given in
Figure 7.

Dendrogram clustering error

The dendrogram clustering error, d;, measures the num-
ber of clustering errors from the lowest to the highest
split, s;, between the inferred hierarchical structure and
the underlying true hierarchical reference structure RH
(Figure 4). A split, s;, in the dendrogram describes either
(a) a cluster of two network modules or (b) a cluster of
network modules to a cluster of network modules. We
calculate the clustering error d; by

dy =) f(silRH). )

The binary error function f(s;|RH) € {0,1} scores the
clustering error of a split as follows. Suppose, the refer-
ence hierarchy RH is resembled in split s; for the cases (a)
two clustered modules share the same parent module or
(b) have a parent/child relationship. A clustering error of a
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Figure 6 Simulated gene expression data are generated from a network with a defined hierarchical structure (RH). From the simulated
data, the distance matrix D is estimated. The inferred hierarchy of the network modules is obtained from a hierarchical clustering of matrix D. The

graph edit distance

f

split is counted as 1 if neither of the two cases is true, oth-
erwise it is zero. For the case of a network module being
clustered to a cluster of network modules, the relation
(a) or (b) must be given to at least one network mod-
ule of the cluster. The dendrogram distance d; scores the
total clustering error from the lowest to the highest split
s; in the dendrogram. The maximal number of clustering
errors is the total number of splits defined in the dendro-
gram. An example for the calculation of the error score d;
is shown in Figure 6. In order to obtain a null model of
the dendrogram clustering error that corresponds to the
random clustering of network modules, we generate refer-
ence networks with permuted module labels. That means,
we assume a network with a modular structure as shown
in Figure 4, but permute the labels of the corresponding
modules within this network.

In Figure 8 A we show the empirical cumulative dis-
tribution function (ecdf) of the dendrogram clustering
error d; for a variety of networks with different numbers
of module interconnecting edges. For the null model,
that means for networks resembling a random hierarchy
structure as defined above, only about 20% of the cases
reach a clustering error with < 1. This is similar to the

results obtained for networks with no interconnections
between modules (black). Interestingly, already for 3 con-
nections between modules (red) we observe that 40% of
these networks have a clustering error < 1. The results
for 5 (green) and 10 (blue) module interconnecting edges
show 70% and 80% with a clustering error < 1. Finally, for
15 module interconnecting edges all hierarchy networks
can be recovered with d; < 1.

Graph edit distance hierarchy error

The graph edit distance hierarchy error, ds, is a measure
for the error of the inferred module hierarchy. The refer-
ence hierarchy is described by the adjacency matrix R for
the modules. Here an entry of R;; = 1 denotes that the two
network modules i and j are connected. We measure the
distance between the true underlying hierarchy R and the
inferred similarity matrix U, given by Eq. 7, by

dy =Y IRij — Uy

bj

(10)

In Figure 8 B we show the the empirical cumulative distri-
bution function (ecdf) of the graph edit distance hierarchy
error dy. The values of dy decrease with an increasing
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Figure 7 Example for the functioning of d;. The reference hierarchy RH describes network modules that are directly connected by a parent/child
relation or by network modules that share the same parent network module. The scoring function evaluates each cluster from the lowest to the
highest split s; in the dendrogram. In the given example, the inferred dendrogram contains a total of one clustering error (split sa).

di = > f(siIRH)

Total errord1=1
1236857

0

number of interconnecting edges between the network
modules. This means adding edges between the network
modules helps in reducing the inference error. For the
networks with no interconnections between the network
modules (black) dy is largest, as expected. These results
correspond to the absence of a hierarchy between the net-
work modules. Overall, the results for ds are similar to d
demonstrating that regardless of the chosen error mea-
sure a relatively low number of interconnecting edges is
sufficient to enable the recovery of at least parts of the
present hierarchy in the network.

Analyzing network components of the B-cell C3NET gene
regulatory network

We infer a C3NET [18] gene regulatory network from
344 samples of the B-cell lymphoma microarray gene
expression data set from [21]. The resulting B-cell C3NET
gene regulatory network comprises 9, 684 genes and 9, 221
edges distributed over 463 separate network compo-
nents (with > 1 gene). For a cross-dataset validation,
we further inferred two additional C3NET gene regu-
latory networks from the DLBCL data sets in [25,27].

The DLBCL-C3NET gene regulatory network of the Lenz
GSE11318 dataset comprises 8,727 genes and 8,134
edges and the DLBCL-C3NET gene regulatory network of
the Salaverria GSE22470 dataset comprises 8,664 genes
and 8,108 edges. Figure 9 shows a summary of the size
distributions of the inferred network components.

For the B-cell C3NET gene regulatory network, the K =
25 largest network components (5% right quantile) have >
100 genes and comprise a total of 4,673 genes represent-
ing 48% of all genes in the network. The giant connected
component consists of 884 genes and 883 edges. For the
two DLBCL-C3NET gene regulatory networks the largest
K = 25 network components of the inferred networks
comprise 3,331/3,477 genes representing 38%/40% of all
genes in the entire gene regulatory network. The giant
connected components of the two DLBCL gene regulatory
networks consist of 299/395 genes and 298/394 edges.

Functional Network Analysis

In order to obtain a biological interpretation of the
inferred B-cell C3NET gene regulatory network, we per-
form a Gene Ontology [40] enrichment analysis for



Simoes et al. BMC Systems Biology 2012, 6:38
http://www.biomedcentral.com/1752-0509/6/38

Page 10 of 21

e
«
S -
©
S -
—
K=}
o
(1)
<
S
N
S
10
° 15
Se em e random hierarchy

T T T T T
0 1 2 3 4

clustering error (d,)

dy. B) Graph-edit distance hierarchy error.

Figure 8 Simulation study for the reconstruction of the hierarchical organization within a network. Shown are the results for 100 simulated
gene expression data sets generated from networks with network modules connected by 0, 3, 5, 10 and 15 edges. A) Dendrogram clustering error

e
[s0)
©
© |
— o
©
(3]
(]
<
o
o
S ] - 0
- 3
5
° - 10
S - 15
T T T T
0 5 10 15
graph edit distance hierarchy error (d,)

each of the K =25 largest network components. To
perform this analysis, the inferred network component
are used to define gene lists for which we perform an
enrichment analysis.

The Tables 1, 2 and 3 present results for the giant con-
nected component. In these tables, the top 15 enriched
GO terms with a significant p-value < 5e~* are shown.
The three tables correspond to the Gene Ontology cat-
egories Biological Process (Table 1), Molecular Function
(Table 2) and Cellular Component (Table 3). The genes
in the giant connected component show an enrichment
in biological processes for G-protein-coupled-receptor

protein signaling pathway (89 genes), cell-cell signaling
(87 genes) and calcium ion transport (26 genes) (Table 1).
The cellular component analysis shows an enrichment,
e.g., for plasma membrane proteins (264 genes), ion chan-
nel complexes (125 genes) and cell junction proteins (48
genes) (Table 3). The molecular function analysis shows
an enrichment, e.g., for G-protein coupled receptor activ-
ity (60 genes) and ion channel activity (38 genes) (Table 2).

To study the biological relation and functional diversity
between the individual network components, we cluster
the network components according to the results of the
Gene Ontology enrichment analysis from the category

Basso GSE2350 dataset (Nat. Genet. 2005)

Salaverria GSE22470 dataset (Blood 2011)

Lenz GSE11318 dataset (PNAS 2008)
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Figure 9 Histogram of the size of the 463 separate network components of the inferred B-cell C3NET gene regulatory network inferred

from the Basso GSE2350 dataset (left). Middle and right: DLBCL-C3NET gene regulatory networks with 556 separated network components for
the Salaverria GSE22470 dataset and 593 separated network components for the Lenz GSE11318 dataset.
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Cellular Component. Specifically, we conduct a clustering
analysis of GO terms for the K = 25 network components
in the following way. From testing 1,020 GO terms of the
category Cellular Component we find that 529 of these test
at least for one network component significant.

The functional hierarchical clustering of the network
components is generated from the overlap of significant
Gene Ontology terms between all pairwise compar-
isons of the Gene Ontology enrichment analysis of the
individual network components. A pairwise distance
matrix is computed from the shared number of Gene
Ontology terms for a significance level of « = 0.05. For
the hierarchical clustering we use the “Ward” method, see
Figure 10 A (first column).

The numbers of the leaves in the dendrogram corre-
spond to the rank-labels of the network components,
whereas ‘1’ corresponds to the GCC. The provided GO
terms correspond to the most frequently enriched terms
found in the corresponding branches of the dendrogram.
The hierarchical clustering based on the functional GO
analysis of the network components separates the dendro-
gram into two principle branches. The first branch, shown
in red, consists of highly enriched extracellular proteins,
intrinsic and integral membrane proteins, cell junction
and ion channel complex proteins. The second branch,
shown in blue, is highly enriched for intracellular proteins
from the nucleus, mitochondrion and cytoplasm.

In order to provide a comparison with the gene regula-
tory networks inferred from the two DLBCL gene expres-
sion data sets, we perform the same analysis for the Lenz
GSE11318 dataset and the Salaverria GSE22470 dataset
(Figure 10). The network components of the DLBCL
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gene regulatory networks show a similar bipartition as
observed for the Basso GSE2350 gene regulatory network
separating into two principle branches for the peripheral
and the intracellular regions of the cell. A major difference
is that the DLBCL gene regulatory networks show a bipar-
tition within the principle branch enriched with genes of
the peripheral regions.

Hierarchical organization of the B-cell C3NET gene
regulatory network

Next, we study the hierarchical organization of the K = 25
largest network components of the B-cell gene regulatory
network. This analysis is similarly conducted as for the
simulated data, described in section ’Inferrability of a
hierarchical organization! That means, first, we gener-

ate b = 100 bootstrap data sets from which we infer

b=100 .
an ensemble of networks {GﬁB }i=1 . Then, we determine

from these networks a distance matrix D, which we use
for a hierarchical clustering. As agglomeration clustering
method we use again the “Ward” method.

The resulting dendrograms are shown in Figure 10 B
(second column). Also in these dendrograms, the rank-
labels of the network components correspond to the leaf
labels. As for the clustering of significantly enriched GO
terms between the individual network components, we
observe a bifurcation into two principal branches. Though
the subgroupings of individual components differ to some
extend in the respective categories, one can see that
the same two principal branches are obtained as for the
clustering of the GO terms in Figure 10 A. The first
branch corresponds to the extracellular and membrane

Table 1 GO category Biological Process: Enrichment analysis of the genes in the giant connected component

GOID Term All Sig Exp p-value
GO:0007186 G-protein coupled receptor protein signaling pathway 450 89 38.65 14e-14
GO0:0050877 neurological system process 567 99 48.70 14e-12
G0:0032501 multicellular organismal process 2714 317 233.12 1.7e-12
GO:0003008 system process 858 127 73.70 1.2e-10
G0:0007267 cell-cell signaling 532 87 45.70 1.3e-09
GO:0007166 cell surface receptor linked signaling pathway 1071 145 91.99 2.9e-09
G0:0019226 transmission of nerve impulse 312 58 26.80 9e-09
G0:0023033 signaling pathway 1127 148 96.80 1.6e-08
GO:0023052 signaling 2504 279 215.08 3.4e-08
GO:0023060 signal transmission 2154 246 185.02 4.6e-08
GO:0023046 signaling process 2155 246 185.10 4.9e-08
GO:0030001 metal ion transport 281 51 24.14 1.6e-07
G0:0007268 synaptic transmission 274 50 2354 1.8e-07
GO:0070838 divalent metal ion transport 114 27 9.79 8.1e-07
GO:0006816 calcium ion transport 112 26 9.62 2e-06
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Table 2 GO category Molecular function: Enrichment analysis of the genes in the giant connected component

GOID Term All Sig Exp p-value
GO:0004930 G-protein coupled receptor activity 247 60 2135 5.2e-14
GO:0004872 receptor activity 797 121 68.89 1.1e-10
GO:0004888 transmembrane receptor activity 547 88 47.28 3.3e-09
GO:0004871 signal transducer activity 1118 150 96.63 4.6e-09
GO:0060089 molecular transducer activity 1118 150 96.63 4.6e-09
GO:0005509 calcium ion binding 528 85 45.64 6.2e-09
GO:0046873 metal ion transmembrane transporter activity 166 35 14.35 4.8e-07
GO:0042165 neurotransmitter binding 51 17 441 6.2e-07
GO:0005261 cation channel activity 138 30 11.93 1.6e-06
GO:0005216 ion channel activity 198 38 7.1 1.9e-06
GO0:0022836 gated channel activity 176 35 15.21 2e-06
GO:0015267 channel activity 215 40 18.58 2.3e-06
G0:0022803 passive transmembrane transporter activity 215 40 18.58 2.3e-06
GO:0022857 transmembrane transporter activity 510 74 44.08 4.2e-06
G0:0022838 substrate-specific channel activity 206 38 17.81 5e-06

intrinsic proteins enriched network components and the
second branch belongs to intracellular network compo-
nents enriched by genes in the nucleus, mitochondria and
cytoplasm.

We would like to emphasize that the generation of
both dendrograms is based on complementary informa-
tion. Figure 10 A is obtained from dissimilarity values
among GO terms, not considering the inferred interac-
tions among genes. In contrast, Figure 10 B is obtained
from a structural analysis of the inferred network,

not considering GO terms. This demonstrates that the
extracted information from two complementary analy-
sis methods leads to coinciding information with respect
to the principle separation of cellular components of a
biological cell.

Further, we compare the results of the B-cell C3NET
gene regulatory network to the DLBCL-C3NET
gene regulatory networks inferred from the Lenz
GSE11318 dataset and the Salaverria GSE22470 dataset
(Figure 10 B). Although the subgroupings between the

Table 3 GO category Cellular component: Enrichment analysis of the genes in the giant connected component

GO ID Term All Sig Exp p-value
GO:0016021 integral to membrane 2201 282 193.28 2.2e-14
GO:0031224 intrinsic to membrane 2260 285 198.46 1.2e-13
GO:0044459 plasma membrane part 1388 195 121.89 4e-13

GO:0044425 membrane part 2739 327 240.53 1.1e-12
G0O:0005886 plasma membrane 2084 264 183.01 1.3e-12
GO:0005887 integral to plasma membrane 900 131 79.03 9e-10

GO:0031226 intrinsic to plasma membrane 915 132 80.35 1.4e-09
G0O:0016020 membrane 3462 372 304.02 4.3e-08
GO:0034702 jon channel complex 125 31 10.98 6.7e-08
GO:0005576 extracellular region 1077 136 94.58 3e-06

GO:0034703 cation channel complex 80 21 7.03 3.4e-06
G0O:0034704 calcium channel complex 22 10 1.93 6.2e-06
GO:0005903 brush border 31 11 272 3.6e-05
GO:0005891 voltage-gated calcium channel complex 17 8 149 4e-05

GO:0030054 cell junction 327 48 28.72 0.00024
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Basso GSE2350 dataset (Nat. Genet. 2005)
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Salaverria GSE22470 dataset (Blood 2011)
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A) Functional GO analysis B) Structural network analysis

Figure 10 Hierarchical organization of the K= 25 largest network components of the B-cell C3NET gene regulatory network inferred
from the Basso GSE2350 dataset and the DLBCL gene regulatory network inferred from the Salaverria GSE22470 dataset and the Lenz
GSE11318 dataset. The numbers of the network components correspond to the leaves of the dendrogram. The GCC corresponds to number ‘1'. A)
Clustering of the GO enrichment analysis, category Cellular Component. We show GO terms from the top ranked frequency counts of GO terms for
the branches, indicted by the vertical color bars. B) Hierarchical clustering of the structural network components. Left and right: The red part of a
dendrogram represents network components with Gene Ontology terms enriched with extracellular and membrane proteins. Green and blue
network components are enriched with intracellular proteins.




Simoes et al. BMC Systems Biology 2012, 6:38
http://www.biomedcentral.com/1752-0509/6/38

functional and structural hierarchical clustering differ
to some extend, overall, the network components of the
two DLBCL gene regulatory networks show a similar
clustering into two major branches of peripheral and
intracellular regions. However, the bipartiton of the struc-
tural network components (second column in Figure 10)
is less pronounced as observed for the B-cell C3NET gene
regulatory network for the Basso GSE2350 dataset.

Identification of novel key signaling pathways in B-cell
lymphoma

Hub genes of the B-cell C3NET gene regulatory network
are genes with the largest node degree among all genes in
the network. Intuitively, such genes are the most interest-
ing targets to study as they are more likely to be associated
with multiple pathways, e.g., signaling pathways and thus
form putative key regulators for a large diversity of biolog-
ical processes.

From the entire B-cell C3NET gene regulatory network,
we extracted the largest 25 hub genes with more than 20
connections. In Table 4 we give an overview of these hub
genes including their gene identifiers and a selected GO
term in order to facilitate the interpretation of their func-
tional context. The selected hub genes play crucial roles
in signaling processes such as receptors, ion channels and
transporters, cell adhesion proteins and transcription fac-
tors. To our knowledge these genes were not studied in
B-cell lymphoma to date (Table 4).

The structure of the giant connected component (GCC)
network consists of small, interconnected network mod-
ules with intramodular hub genes consisting in total of
884 genes and 883 edges (Figure 11). The GCC con-
tains the largest hub gene (CACNA IF) of the entire B-cell
C3NET gene regulatory network, and in total 7 of the
top-ranked 25 hub genes (Figure 11). We highlighted the
hub genes in the GCC network in Figure 11 and find
that these are involved in adhesion, signaling and prolif-
eration processes. In the following, we discuss some of
these hub genes in more detail. The largest hub gene,
with a total of 46 connections, is the calcium channel
subunit CACNAIF. This gene belongs to the class of volt-
age gated calcium channels that regulate calcium influx
and intracellular processes such as signaling pathways
and gene expression. In particular, CACNAIF was found
to be highly expressed in human lymphoid tissues such
as plasma cells within germinal centers and therefore
assumed to play a role in immune responses [49]. CLDN9
(35 gene neighbors) is a member of tight junction pro-
teins which establish a permeability barrier between cells
that play also a role in transport and signalling processes
and have also been observed to be important for HPC
virus entry[50]. CALCA (32 gene neighbors) calcitonin
lowers calcium concentrations and plays a role in adhe-
sion, cell migration and cell differentiation [51]. NR5A1
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(27 gene neighbors) is a transcription factor that regu-
lates cell growth, cell differentiation and developmental
processes [52]. SNX29 (26 gene neighbors) belongs to a
protein family involved in protein membrane trafficking
that have a variety of protein motif binding domains [53].

Influence of activator and repressor links

In this section we study the inferrability of activator and
repressor links. First we determine the correlation coeffi-
cient of all significant edges in the inferred network and
obtain their corresponding p-values from testing for a
vanishing Pearson correlation coefficient. Second, we con-
duct a multiple testing correction using the Benjamini-
Hochberg procedure [45]. The edges that are statisti-
cally significant are identified as activator correspondingly
repressor edges if the sign of the correlation coefficient is
positive respectively negative.

In the inferred B-cell C3NET gene regulatory network,
we identify a total of 847 repressor edges and 8, 372 acti-
vator edges. The estimated true reconstruction rate for
repressor and activator edges is obtained from the boot-
strap ensemble. A two-sample Kolmogorov-Smirnov test
[43] comparing the distributions of the true reconstruc-
tion rates indicates a significant difference between these
two distributions with a p-value of p = 2.2 x 1071°, Fur-
ther, we find that activator edges are easier to infer than
repressor edges, because activator edges have statistically
a higher true positive rate than repressor edges.

Relationship of node degrees in the gene regulatory
network and gene expression values
Next, we investigate the node degrees of genes in the
inferred B-cell C3NET gene regulatory network and com-
pare these with the variances of their gene expression
values. We perform a Joess (locally weighted scatter-
plot smoothing) [54] regression on the logarithm of the
variances of the gene expression values and the corre-
sponding node degree for each gene. We observe a pos-
itive correlation for genes up to a node degree of 7. In
contrast, genes with a higher node degree show a negative
correlation (results not shown). Thus, genes with a higher
node degree in the inferred B-cell C3NET gene regulatory
network show a smaller variation in their expression pro-
file among the different samples of the expression data set.
Similarly, the connection between the gene expression
variation and the node degrees in a protein-protein net-
work was studied in [55]. There it was shown that with
an increasing degree of the proteins, the gene expression
variation decreases. Hence, for degrees larger than 7, both
results coincide, however, for smaller degrees there seem
to be differences between a protein-protein network and a
gene regulatory network.
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Table 4 Top 25 hub genes with a degree (deg) larger than 20 found in the B-cell ymphoma gene regulatory network -
genes are described by their Entrez gene id, gene symbol, and, if available, one selected annotation term from GO
(category Biological Process), bc refers to the betweenness centrality and the number in brackets to its rank with respect

to the bcvalues

Entrez Symbol deg/bc(rank) Description

778 CACNATF 46/282019(1) calcium channel, voltage-dependent, L type, alpha 1F subunit (calcium ion
transport GO:0006816)

2949 GSTM5 38/14454(39) glutathione S-transferase mu 5 (metabolic process GO:0008152)

7275 TUB 37/16818(35) tubby homolog (mouse) (response to stimulus GO:0050896)

9080 CLDN9 35/65406(6) claudin 9 (calcium-independent cell-cell adhesion GO:0016338)

3363 HTR7 33/1436(406) 5-hydroxytryptamine (serotonin) receptor 7 (adenylate cyclase-coupled)
(signal transduction GO:0007165)

1579 CYP4ATT 32/24724(25) cytochrome P450, family 4, subfamily A, polypeptide 11 (long-chain fatty
acid metabolic process GO:0001676)

796 CALCA 32/46142(11) calcitonin-related polypeptide alpha (endothelial cell proliferation
GO:0001935)

7546 ZIC2 28/6978(95) Zic family member 2 (odd-paired homolog, Drosophila) (cell differentiation
GO0:0030154)

1993 ELAVL2 28/9991(62) ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen B)
(NA)

1549 CYP2A7 27/33469(17) cytochrome P450, family 2, subfamily A, polypeptide 7 (oxidation-
reduction process GO:0055114)

5554 PRH1 27/8093(77) proline-rich protein Haelll subfamily 1 ( NA)

2516 NR5A1 27/248679(2) nuclear receptor subfamily 5, group A, member 1 (cell-cell signaling
G0:0007267)

11222 MRPL3 27/12748(45) mitochondrial ribosomal protein L3 (translation GO:0006412)

92017 SNX29 26/159597(3) sorting nexin 29 (cell communication GO:0007154)

6534 SLC6A7 25/46858(10) solute carrier family 6 (neurotransmitter transporter, L-proline), member 7
(proline transport GO:0015824)

115703 ARHGAP33 25/28006(21) Rho GTPase activating protein 33 (signal transduction GO:0007165)

40 ACCN1 24/5548(113) amiloride-sensitive cation channel 1, neuronal (sodium ion transport
G0O:0006814)

1943 EFNA2 23/34712(16) ephrin-A2 (cell-cell signaling GO:0007267)

7047 TGM4 23/147229(4) transglutaminase 4 (prostate) (peptide cross-linking GO:0018149)

343 AQP8 22/17440(34) aquaporin 8 (water transport GO:0006833)

9127 P2RX6 22/63918(7) purinergic receptor P2X, ligand-gated ion channel, 6 (signal transduction
GO:0007165)

2797 GNRH2 21/2976(202) gonadotropin-releasing hormone 2 (signal transduction GO:0007165)

5545 PRB4 21/9246(66) proline-rich protein BstNI subfamily 4 ( NA)

4706 NDUFAB1 21/11907(49) NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8kDa
(electron transport chain GO:0022900)

553 AVPR1B 21/5080(130) arginine vasopressin receptor 1B (signal transduction GO:0007165)

Cross-dataset validation for cellular component
subnetworks

We perform a cross-dataset validation studying the struc-
tural similarity of our B-cell C3NET gene regulatory net-
work with two additional DLBCL-C3NET gene regulatory
networks we inferred from observational germinal center
tumor data sets from [27] (Lenz GSE11318 dataset) and
[25] (Salaverria GSE22470 dataset). In order to assess the

structural similarity between networks, we use the (ver-
tex) betweenness centrality measure [44] in combination
with Spearman’s rank correlation coefficient [43]. We use
Spearman’s rank correlation coefficient to test if structural
components of two networks are similar to each other
with respect to the order of the vertex betweenness cen-
trality values of the genes. Specifically, in the following,
we study two different scales of the networks. First, we
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Figure 11 The giant connected component consists of 884 genes. The ensemble support values of the individual edges are shown from red
(high support) to blue (low support). The 7 largest hub genes of the giant connected component are highlighted, and a GO term from the category
Biological Process is included: CACNATF (46),CLDN9 (35), CALCA (32), NR5AT (27), SNX29 (26), SLC6A7 (25) and TGM4 (23) and P2RX6 (22). Here, the

number in bracket corresponds to the number of direct gene neighbors.

compare the entire networks using all genes. This cor-
responds to a global comparison. Second, we compare
subnetworks defined as cellular components according to
the gene ontology database. This corresponds to a local
comparison.

From the global comparison, we find that the B-cell
C3NET gene regulatory network shows a significant cor-
relation of » ~ 0.12 (p < 2.2719) to the DLBCL-C3NET
gene regulatory networks of the Salaverria GSE22470

dataset and r ~ 0.14 (p < 2.2716) to the DLBCL-C3NET
gene regulatory network of the Lenz GSE11318 dataset.
A comparison between the two DLBCL-C3NET gene reg-
ulatory networks shows also a significant correlation of
r~024(p <2271,

For the local comparisons, we test a total of 435 cellu-
lar components (corresponding to gene sets) that can be
found in the networks having more than 10 genes. From
these cellular components, we identify the ones with a
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statistically significant Spearman rank correlation coeffi-
cient between profile vectors whose components corre-
spond to the vertex betweenness centrality values of the
genes in cellular components. To the resulting nominal p-
values, we are applying the Benjamini-Hochberg multiple
testing correction procedure [45] to control the FDR at a
level of 5%.

From the comparisons of the B-cell C3NET gene reg-
ulatory network with the DLBCL-C3NET gene regula-
tory network obtained from the Lenz GSE11318 dataset,
we identify 95 (21%) gene sets, and for the comparison
of the B-cell C3NET gene regulatory network with the
DLBCL-C3NET gene regulatory networks obtained from
the Salaverria GSE22470 dataset, we find 72 (16.5%) gene
sets with a statistically significant correlation. In total, 58
terms are simultaneously significant in both network com-
parisons. These terms involve the basal part of cell, cell
periphery, endosome and 17 gene sets sharing the parental
term GO:0032991 macromolecular complex, e.g., histone
mehyltransferase complex, anaphase-promoting complex,
ribosome and cation chanel complex. In Table 5, we
show the 30 Gene Ontology cellular component gene sets
with the highest structural similarity between the B-cell
C3NET gene regulatory network and the two DLBCL-
C3NET gene regulatory networks. Each of the presented
terms is statistically significant in both comparisons and
the subscript ‘ave’ indicates the averaged values over these
two comparisons.

Discussion

In this article, we inferred a B-cell gene regulatory network
from B-cell lymphoma gene expression data [21] using the
C3NET algorithm [18]. We found that the inferred B-cell
C3NET gene regulatory network is characterized by indi-
vidual network components that are organized by smaller
interconnected network modules with intramodular hub
genes. Further, we found that the giant connected compo-
nent of the network is composed of 884 genes which show
a significant enrichment for plasma membrane proteins
that are involved in G protein signaling pathways and ion
channel complexes. From the literature, it is known that
ion channels play a key role for the signal transduction
mechanism in lymphocytes [56]. Additionally, we found
that the 25 largest components of the entire network can
be categorized into two major classes. The first class,
including the largest network component, is enriched by
genes that are located at the membrane and the extracel-
lular space at the physical periphery of the cell whereas
the second class comprises network components located
in the intracellular organelles such as in the cytoplasm,
nucleus and mitochondrion. Further, the hub genes of the
B-cell C3NET gene regulatory network were identified
to play crucial roles in cell signaling, adhesion and cell
proliferation processes.
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It is believed that B-cell lymphoma subtypes show
characteristic gene expression profiles of B-cells that are
arrested in specific developmental stages [57]. The emer-
gence of a lymphoma phenotype is thus understood to
result from an impairment of pathways that control B-cell
differentiation, proliferation and apoptosis processes [57].
The organizational structure of gene regulatory networks
is a rich source of information to study specific molecular
mechanisms of B-cell lymphoma. However, the combina-
tion of observational and experimental conditions from
a variety of different B-cell lymphoma, including trans-
formed and untransformed cells, as for our data [21], does
not allow to infer a gene regulatory network for one par-
ticular subtype of B-cell lymphoma. Thus we are of the
opinion that our inferred B-cell C3NET gene regulatory
network represents an average representation of B-cell
lymphoma reflecting different phenotypic subtypes with
which the information conveyed by the gene expression
values is associated.

In [18] it has been demonstrated that not all regions
within a network can be inferred with the same infer-
ence accuracy. That means, the inference of networks is
heterogeneous with respect to distinct edges in the net-
work. It has been shown that moderately interconnected
genes are easier to infer. This corresponds to the edges
of linearly connected genes and the edges toward the
leaf nodes of the network that are at the ’periphery’ of
the network. The results in [18] have been obtained for
simulated data. However, for a real biological gene regu-
latory network it was unclear what genes correspond to
the periphery of this cellular network. In contrast, in this
paper we demonstrated that the periphery of the inferred
B-cell C3NET gene regulatory network is centered around
transmembrane proteins and the linear parts of the gene
regulatory network correspond to signaling pathways and
transmembrane receptor or ion channel proteins involved
in signaling cascades. We would like to note that these
transmembrane proteins could form putative drug targets
for B-cell lymphoma.

The C3NET algorithm selects at most one edge for each
gene, having maximum mutual information value. There-
fore, this algorithm intends to capture the conservative
causal core of the whole regulatory network only. This
is in contrast to many other network inference methods
[17,21,58]. For this reason, it is no surprise that a previ-
ous analysis of the same data set employing a different
network inference method [17] found that their inferred
regulatory network is governed by major hub genes, which
mark key regulators such as transcription factors [21].
In particular, the network inferred by ARACNE con-
sisted of 129,000 edges and their major hub genes are
reported to be cell cycle regulators. In contrast to these
results, we found by our analysis a network with 9, 684
genes and 9,221 edges enriched for signaling pathways
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Table 5 Network similarity analysis for cellular components between the B-cell C3NET gene regulatory network and the
Lenz and Salaverria gene regulatory network for 30 from the 58 cellular component subnetworks with the highest
correlation coefficient of the betweenness centrality, significant in both comparisons - the columns denote the size
(number of genes) of a Gene Ontology term represented in the subnetworks, betw,,4 the average betweenness for the
two comparisons, rqyg Spearman’s rank correlation coefficient and p4y4 the FDR adjusted p-value

GOID Term Size betwgyg Tavg pvalayg(FDR)
GO:0045178 basal part of cell 47 230 0.51 1.83e-03
G0O:0035097 histone methyltransferase complex 126 187 037 1.98e-02
GO:0031967 organelle envelope 109 212 034 4.20e-03
GO:0034361 very-low-density lipoprotein particle 67 183 033 2.45e-02
GO:0055037 recycling endosome 82 167 0.31 1.38e-02
GO:0034364 high-density lipoprotein particle 169 172 0.28 2.23e-04
GO:0031461 cullin-RING ubiquitin ligase complex 429 183 0.25 1.17e-04
GO:0030017 sarcomere 325 235 0.24 7.26e-03
GO:0044422 organelle part 350 167 0.21 4.00e-04
GO:0005680 anaphase-promoting complex 295 156 0.20 6.33e-04
GO:0044441 cilium part 654 355 0.20 4.17e-07
GO:0005788 endoplasmic reticulum lumen 368 245 0.20 6.16e-03
GO:0044445 cytosolic part 625 354 0.19 3.07e-06
GO:0005665 DNA-directed RNA polymerase II, core complex 640 264 0.19 5.20e-05
GO:0005789 endoplasmic reticulum membrane 656 247 0.18 8.14e-06
GO:0005903 brush border 2234 414 0.17 2.09e-06
GO:0044432 endoplasmic reticulum part 983 410 0.17 1.43e-07
GO:0005765 lysosomal membrane 1894 338 0.17 2.12e-04
GO:0034703 cation channel complex 923 277 0.17 743e-07
GO:0071944 cell periphery 290 198 0.16 1.10e-02
GO:0035085 cilium axoneme 1586 261 0.16 2.62e-10
GO:0005769 early endosome 1585 329 0.16 1.76e-09
GO:0005773 vacuole 1585 285 0.16 2.62e-10
GO:0005768 endosome 1585 324 0.16 1.56e-02
G0:0044309 neuron spine 708 317 0.16 8.22e-05
GO:0044440 endosomal part 3021 287 0.16 1.44e-05
GO:0000313 organellar ribosome 1545 240 0.16 6.90e-04
GO:0005669 transcription factor TFIID complex 1480 308 0.15 5.94e-09
GO:0008305 integrin complex 1609 307 0.15 3.14e-09
G0O:0008180 signalosome 1272 245 0.15 1.56e-02

and transmembrane receptors characterizing the physical
periphery of a cell rather than its nucleus. From this and
the conservative characteristics of C3NET, we conclude
that the strongest signal within the data set [21] is actually
from signaling pathways rather than from transcription
regulation. Doubtlessly, the later is present too, however,
with a reduced strength.

Another difference to the study in [21] is that we intro-
duced in this article a novel bootstrap approach to reveal
the hierarchical organization of the B-cell C3NET gene
regulatory network. Due to the inferential characteristics

of C3NET the resulting network inferred from using
all 344 microarray samples resulted in several separate
network components which we used to define network
modules. That means, there is no need to apply module
finding algorithms [59-61] but we obtain such modules
naturally by the application of C3NET. In order to infer
the hierarchical organization of these modules, we uti-
lized a bootstrap ensemble, from which we estimated an
ensemble of networks. Combining the ensemble of these
networks with the information about the network com-
ponents obtained from the complete data set, allowed
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us to obtain a structural clustering reflecting the hier-
archical organization of these network components. We
would like to emphasize that this hierarchical clustering
does not utilize information about GO terms. This is in
contrast to the hierarchical clustering of GO terms pre-
sented in Figure 10 A. Nevertheless, we identified the
major branches in Figure 10 B that correspond well to
the clustering of the GO terms in Figure 10 A. We would
like to indicate that our results confirm findings pre-
sented in [15]. It was found that the yeast and the E. coli
protein network can be separated into two highly mod-
ular subnetworks which showed a functional enrichment
for intracellular and extracellular processes. Hence, this
may hint to a fundamental organization scheme of cellu-
lar networks. A potential hypothesis derived from these
results is that the hierarchy among the network compo-
nents may reflect aspects of the information flow between
these components [62,63].

There are several advantages resulting form our
approach, we would like to highlight. First, our investiga-
tion of the hierarchical organization of the B-cell C3NET
gene regulatory network is at the abstraction level of net-
work components or modules, but not genes. As such it
resembles a systems approach [64-66]. This leads to a
tremendous reduction in the complexity of the problem,
and specifically in the interpretation of the obtained den-
drograms shown in Figure 10. Second, on a technical
note the size of the bootstrap ensemble was chosen large
enough so that a further increase in its size does not lead
to a modification of the obtained clustering. For this rea-
son, the obtained results are stable. Third, the merit of
bootstrapping is well known in many branches of statis-
tics [22,67], where it is frequently used to quantify the
variability within the data. In our approach, we utilize the
data variability by exploiting mutual information values
which are too weak in the whole data set to either pass
a statistical test or which are not the maximum mutual
information value for any gene. For example, there may be
genes that have several significant interactions with other
genes within a very small margin. For such cases, the boot-
strapping allows to favor different gene pairs, because a
slight change in the constitution of a data set may lead
to alternating selections regarding the maximum mutual
information valued gene pair.

Finally, we would like to note that results from our
reanalysis of the data set [21] demonstrate that the biologi-
cal information buried within large-scale high-throughput
data is rich allowing to investigate a multitude of different
biological questions.

Conclusions

With the increasing quality of network inference algo-
rithms, we are heading toward the next major challenge
we are facing in the post-genomic era, namely: What do
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the inferred networks mean? An analysis of the hierarchi-
cal organization of a network is just one aspect thereof,
but we think, an import one. Due to the fact that one can
study the hierarchy among genes, pathways, subnetworks
or combinations thereof the complexity of this problem
might be unprecedented. The bootstrap approach pre-
sented in this paper represents a simple, yet, flexible
method in order to tame the complexity of the problem
resulting, additionally, in an interpretable structure.
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