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Abstract

Background: A latent behavior of a biological cell is complex. Deriving the underlying simplicity, or the fundamental
rules governing this behavior has been the Holy Grail of systems biology. Data-driven prediction of the system
components and their component interplays that are responsible for the target system’s phenotype is a key and
challenging step in this endeavor.

Results: The proposed approach, which we call System Phenotype-related Interplaying Components Enumerator
(SPICE), iteratively enumerates statistically significant system components that are hypothesized (1) to play an
important role in defining the specificity of the target system’s phenotype(s); (2) to exhibit a functionally coherent
behavior, namely, act in a coordinated manner to perform the phenotype-specific function; and (3) to improve the
predictive skill of the system’s phenotype(s) when used collectively in the ensemble of predictive models. SPICE can
be applied to both instance-based data and network-based data. When validated, SPICE effectively identified system
components related to three target phenotypes: biohydrogen production, motility, and cancer. Manual results
curation agreed with the known phenotype-related system components reported in literature. Additionally, using the
identified system components as discriminatory features improved the prediction accuracy by 10% on the
phenotype-classification task when compared to a number of state-of-the-art methods applied to eight benchmark
microarray data sets.

Conclusion: We formulate a problem—enumeration of phenotype-determining system component interplays—and
propose an effective methodology (SPICE) to address this problem. SPICE improved identification of cancer-related
groups of genes from various microarray data sets and detected groups of genes associated with microbial
biohydrogen production and motility, many of which were reported in literature. SPICE also improved the predictive
skill of the system’s phenotype determination compared to individual classifiers and/or other ensemble methods,
such as bagging, boosting, random forest, nearest shrunken centroid, and random forest variable selection method.

Background
Dynamic biological systems, such as cells, are inher-
ently complex. This complexity arises from the selective
and nonlinear interconnections of functionally diverse
system components to produce coherent behavior. The
key challenge is to reveal underlying simplicity from
complexity [1]. Unlike the four Maxwell’s equations
describing all the electro-magnetic phenomena from “first
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principles,” the fundamental rules that quantify the low
dimensional behavior of biological systems are yet to
be discovered.
Complementing approaches based on first principles,

where the underlying system model is described by a
system of equations, the data-driven modeling of sys-
tem behavior is a promising approach. It aims to inter-
relate data from disparate and noisy experiments and
observations to find informative features and link them
to formulate fundamental principles governing a com-
plex behavior. This process frequently begins with a
comprehensive enumeration of the system “components”
(e.g., co-regulated proteins in a cell) derived from exper-
imental data. Discovery of putative associations between
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these “components” can then be used to design in sil-
ico system models (e.g., positive and negative feedbacks,
information processing and signal transduction cascades)
to better understand real system behavior.
To somewhat simplify this intricate process, data-

driven characterization of a complex system behavior
often starts with defining a target set of system’s distinct
phenotypes of interest, such as thermo-resistance, acid-
tolerance, hydrogen production, and enumerating only
those key system components that could be responsi-
ble for or contributing to the given phenotype(s). For
example, if the target phenotype is ethanol production
by microbial cells via biomass degradation, then enu-
meration of phenotype-related system components would
identify all the groups of proteins involved in degra-
dation of cellulose to sugars, transport of these sug-
ars through the membrane, and their fermentation to
ethanol. Similarly, enumeration of all the cancer-related
cellular components would identify all the genes that
are likely related to the expression of cancerous cellular
phenotype.
The difficulty in enumerating all the phenotype-related

system components lies in dealing with the enormous
number of system components (or features) that could
easily reach thousands or even hundreds of thousands.
Such enormous feature space could easily lead to the prob-
lem, coined by Bellman as “the curse of dimensionality”
[2]. The problem gets complicated if one needs to select
all those features that would provide clear differentiation
between the true and merely feasible associations with
the target phenotype. In addition, hierarchical nature of
most biological systems leads to “short- and long-range”
interactions between the features, or system. For example,
hydrophobic residue pairs could enhance a propensity for
other adjacent hydrophobic pairs (“short-range” feature
correlation). On the other hand, highly specific residue
interactions may be under selective pressure to fit into
an overarching architectural motif (such as helix-turn-
helix motif ), thus contributing to “long-range” feature
dependencies.
Moreover, it is often the case that a coordinated,

not independent, action of several system components
determines what phenotype(s) a given system will likely
express. A system response represents a complex pro-
cess, involving a series of (frequently induced) interacting
events. Such non-linear cooperative or competing inter-
actions between the system components often form hier-
archical functional modules (e.g., communities) that act
not only on different spatial and temporal scales but also
in response to fluctuations induced by endogenous and
exogenous factors. Hence, the approaches that identify
individual components that confer a given system phe-
notype are likely not optimized to detect groups of such
interplays between system components. Instead, there is a

need for methods that aim to enumerate all the groups of
cross-talking system components that could be associated
with the system phenotypic state. We call this problem
the enumeration of system phenotype-determining com-
ponent interplays.
To address this problem, we propose an iterative,

classification-driven approach that comprehensively enu-
merates the set of feature subsets that discriminate
between different system phenotypes (or classes). We
define a system component (a protein or group of pro-
teins) as a feature in this paper. Given a set of observa-
tions about system components (features) with the cor-
responding assignment of the system’s phenotype (class),
our method measures the importance of feature sub-
sets to discriminate between system phenotypes. Despite
combinatorial complexity of the problem, our method
almost exhaustively explores feature subsets based on
information-theoretic selection and dense enriched sub-
graph enumeration process. Our method rests on a
hypothesis that if a subset of system components dis-
criminates between system’s functional states, then when
considered altogether, these components most likely form
a cross-talking phenotype-determining feature subset. It
also places the contribution of an entire feature subset
at the core of the analysis as opposed to the approaches
that first evaluate the importance of individual features
and then filters those that are associated with a particular
system’s phenotype. It further filters those feature subsets
that are statistically significant, and are thus assumed to
be relevant to the target phenotype(s). Our method can
be applied to both instance-based data such as microarray
patient sample data and network-based data such as gene
networks.
The major contributions of this work are as follows:

1. We propose an algorithm, named SPICE, to address
the new problem of enumeration of system
phenotype-determining component interplays. SPICE
iteratively enumerates all the groups of statistically
significant cross-talking system components, which,
to the best of our knowledge, no existing
methodologies are particularly
designed for.

2. We evaluate our method on both instance-based
data and network-based data to identify system
components related to three target phenotypes:
biohydrogen production, motility, and cancer. We
show that the identified phenotype-related
components are biologically relevant and consistent
with the results in literature.

3. Additionally, we apply our method to eight
benchmark microarray data sets to show its
effectiveness and robustness on the
phenotype-classification task.
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Related work
To the best of our knowledge, the proposed problem of
enumerating statistically significant component interplays
that are key contributors to the system’s phenotype has
not been addressed in literature. The problem resembles,
yet with quite apparent distinctions, the problems of fea-
ture selection, phylogenetic profiling, network alignment,
and frequent subgraph mining.
At a higher level, these problems could be divided

into two major categories depending on whether pairwise
relationships between system components are known.
If they are defined, then the system could be modeled
as a complex network, and multiple network alignment
approaches [3,4] that look for subgraphs that co-occur
across multiple network instances for the same system’s
phenotype are putative candidates for the target compo-
nent interplays. The key limitation of this strategy is that
such approaches aim to identify the component groups
that are present in all or most of a given set of network
instances and would likely miss those that are only com-
mon to a subset of the instances. Likewise, they are not
equipped with any means to suggest that these groups
are specific to the target system phenotype and not com-
mon to multiple system phenotypes. While the former
limitation is addressed by the approaches based on fre-
quent subgraph mining [5,6], similar comments would
still hold for the latter comment. In addition, the run-
time for these approaches grows exponentially; even the
most efficient ones, such as MULE [5] that enumerates
maximal frequent edge sets, took almost 57 days for a set
of 98 network instances (details available upon request).
While efficient heuristics have been reported [7], they
are tailored for specific network types (e.g., metabolic
networks).
For the second category, the system is often represented

by its set of components (i.e., features) that are defined
over multiple instances (i.e., observations) for each of the
finite set of system’s distinct phenotypes. In this case,
univariate approaches, such as those that, for the given
feature, look for a strong correlation between its pro-
file and the system’s phenotype profile across multiple
instances identify a set of putative candidates for com-
ponent interplays. Different correlation measures, such as
Pearson correlation, Mutual Information, Student’s t-test,
ANOVA, Wilcoxon rank sum, Rank products, and other
univariate filter feature selection techniques can provide
different candidate sets that could be further assessed with
set-theoretical approaches to provide either higher speci-
ficity (i.e., intersection of sets) or higher sensitivity (i.e., set
union).
A particular instance of such a strategy is phylogenetic

profiling [8], where different organisms that exhibit var-
ious (but finite) phenotypes (e.g., aerobic vs. anaerobic
growth) are considered as observations characterized by

the the presence or absence of particular genes (or compo-
nents). The underlying hypothesis behind this approach
is that candidate genes are more likely to be present in
phenotype-expressing organisms than in phenotype-non-
expressing organisms due to an evolutionary pressure to
conserve the phenotype-related genes [9]. While simple,
fast, and effective [10] in finding individual components
that are likely associated with the system’s phenotype,
such methods are quite limited in discovering of the
component interplays.
Multivariate feature selection approaches could be con-

sidered as the closest approximation to the proposed
problem. The multivariate feature selection approaches
can be broadly divided into the following categories: (1)
filter techniques (e.g., fast correlation-based algorithm
[11]), (2) wrapper techniques (e.g., GA/KNN method
(combining a Genetic Algorithm (GA) and the k-Nearest
Neighbor (KNN) method) [12]), and (3) embedded tech-
niques (e.g., random forest [13]). In filter techniques, the
relevance of features is evaluated according to some met-
ric, and the features with the top k ranking are then
selected for further analysis. Filter feature selection tech-
niques are simple, fast, and effective, but these techniques
often ignore the correlations between different features. In
biology, these correlations depict protein interactions and
should not be ignored. Wrapper methods take the depen-
dencies between the features into account, but suffer from
overfitting problem. Additionally, they are often compu-
tationally expensive. Embedded methods can be far less
computationally expensive than wrapper methods, but
these approaches are very specific to a given classification
algorithm.
Our work is also related to network-based identifica-

tion methods. Network-based identification methods aim
to incorporate pathway or gene network information (typ-
ically generated from expression datasets) information to
help identify functional modules, or improve the predic-
tion. Pathway-based methods [14,15] try to detect the
network pathways by assuming that the genes inside a
module are co-expressed. However, pathway-based meth-
ods ignore the detailed network topology, and a small
perturbation that is likely to affect many “modules” [16].
While integrating of gene expression information into
identification of gene modules is biologically meaning-
ful, gene-network based methods are rarely satisfactory
because they either focus on small networks by using
the greedy subgraph search algorithm [17,18] or focus on
detecting non-overlapping subnetworks [16,19,20].

Results and discussion
The nature of the proposed methodology, System
Phenotype-related Interplaying Components Enumerator
(SPICE) (seeMethod section), suggests that detected com-
ponent interplays (Steps 1-4) (1) could play an important
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role in defining the specificity of the system’s pheno-
type(s); (2) would likely exhibit stronger inter-component
relationships within the same group than between the
groups and are functionally coherent, likely, act in a coor-
dinated manner to perform the phenotype-specific func-
tion; and (3) collectively, could improve the predictive skill
of the system’s phenotypes (Step 5).

Phenotype-specificity determining components
Groups of enzymes associated with biohydrogen production
Biological hydrogen is a promising renewable energy
source [21], which can be generated by utilizing one
of three metabolic processes: light fermentation, dark
fermentation, or photosynthesis [22]. To date, a num-
ber of phylogenetically diverse microorganisms have
been identified as hydrogen producing. Such organ-
isms include photosynthetic bacteria, nitrogen-fixers, and
heterotrophic microorganisms [23]. In order to gener-
ate hydrogen, these organisms may rely upon one or
more metabolic routes. As such, the biohydrogen pro-
duction phenotype provides an opportunity to evaluate
the capabilities of SPICE to handle a relatively com-
plex phenotype. Identification of phenotype-related com-
ponents was based on the assumption that if a com-
ponent (i.e., a group of enzymes in a metabolic pro-
cess) is specific to biohydrogen production, then it
is likely evolutionarily conserved across H2-producing
organisms, and it is absent in most H2-non-producing
ones.
Our first experiment includes the data about 17 H2-

producing and 11 H2-non-producing microorganisms
(see Additional file 1) and compares SPICE’s performance
against the two commonly used statistical methods:

Mutual Information (MI) and Student’s t-test, and one
multivariate feature selection approach: SVM recur-
sive feature elimination (SVM-RFE). Among 17 H2-
producing microorganisms, four microorganisms utilize
bio-photolysis, fivemicroorganisms utilize light fermenta-
tion, and eight microorganisms utilize dark fermentation.
11 microorganisms are listed as non-hydrogen producing
because they are not associated with hydrogen production
based on literature review, or they lack hydrogenase [24],
one of the key enzymes involved in hydrogen production.
All microorganisms used in this experiment were verified
as completely sequenced using the NCBI database. The
input to SPICE is a matrix, with the enzyme EC num-
bers along the rows, 28 organisms (hydrogen producing
and non-producing) along the columns, and the entry in
each cell (i, j) is the copy number for enzyme i in organism
j. The last row of the matrix includes information about
the organism’s ability to express the hydrogen production
phenotype.
The mutual information method [25] assesses corre-

lation between the enzyme’s phylogenetic profile and
the organism’s H2-production profile across multiple
organisms. In addition, it reports a significance thresh-
old by shuffling the enzyme profile vectors and cal-
culating the mutual information with the organism’s
phenotype profile. Only those enzymes, whose mutual
information values lie above the confidence cutoff
are reported.
The Student’s t-test is another statistical method to

identify phenotype related enzymes, where we utilize the
enzyme phylogenetic profiles alone to measures statisti-
cal bias of enzyme copy numbers in one phenotypic group
of organisms vs. the other. The test results are filtered
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Figure 1 Fermentation of glucose to generate acetate. Schematic of key metabolic pathways for hydrogen production in Clostridium
acetobutylicum. Arrows with larger width indicate a series of reactions. Arrows with narrow width indicate individual reactions. Enzymes: 1, glycolytic
enzymes; 2, pyruvate ferredoxin oxidoreductase (E.C. 1.2.7.1); 3, hydrogenase (E.C.1.12.7.2); 4, phosphotransacetylase (E.C. 2.3.1.8); 5, acetate kinase
(E.C. 2.7.2.1).



Chen et al. BMC Systems Biology 2012, 6:40 Page 5 of 19
http://www.biomedcentral.com/1752-0509/6/40

so that only enzymes with the p-value less than 0.05 are
considered significant.
Guyon et al. [26] proposed the SVM-RFE algorithm

to rank the features (enzymes) based on the value of
the decision hyperplane given by the SVM. The fea-
tures with small ranking scores are removed. The top
240 enzymes (out of 1,229 enzymes) are considered
significant.
Figure 1 and Figure 2 show the pathway and key

enzymes for hydrogen production from the fermentation
of glucose to acetate (Figure 1) and butyrate (Figure 2) in
Clostridium acetobutylicum. Within this process, glucose
is broken down through a series of glycolytic enzymes to
generate pyruvate. Pyruvate is then converted to acetyl-
CoA through the action of pyruvate ferredoxin oxidore-
ductase. During this step, hydrogen gas is produced when
pyruvate is oxidized, thus resulting in the formation of
CO2 plus H2. Production of hydrogen via this route
is mediated through two enzymes—pyruvate ferredoxin
oxidoreductase and hydrogenase. Acetyl-CoA generated
produced from pyruvate can then enter a number of
pathways, including the acetate and butyrate formation
pathways.
While production of hydrogen occurs predominately

during formation of Acetyl-CoA and not in the sec-
ondary pathway (e.g., conversion of Acetyl-CoA to

acetate), acetate and butyrate fermentation pathways play
an important role in the overall yield of hydrogen by
microorganisms. In metabolic engineering studies, the
goal is to generate the highest theoretical yield of hydro-
gen through alteration of metabolic routes or key enzymes
related to hydrogen production.
For enhanced hydrogen production, acetate is the

desired end product because of its higher hydrogen
yield compared to other by-products, such as butyrate
[27,28]. Specific differences in conversion efficiencies can
be observed by comparing the two chemical reactions
below:

C6H12O6 + 2H2O → 2CH3COOH
+ 2CO2 + 4H2 : glucose into acetate

C6H12O6 → CH3CH2CH2COOH
+ 2CO2 + 2H2 : glucose into butyrate

The first reaction shows that the maximum theoretical
hydrogen yield is 4 H2 per mol of glucose produced when
acetate is the end product [29,30], compared to a maxi-
mum theoretical hydrogen yield of 2 H2 with butyrate as
the end product [27,31,32]. During acetate and butyrate
formation, 2 mols of hydrogen are generated during reac-
tion 3 when pyruvate ferredoxin oxidoreductase reduces
ferredoxin (Fd) and hydrogenase immediately oxidizes it
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Figure 2 Fermentation of glucose to generate butyrate. Schematic of key metabolic pathways for hydrogen production in Clostridium
acetobutylicum. Arrows with larger width indicate a series of reactions. Arrows with narrow width indicate individual reactions. Enzymes: 1, glycolytic
enzymes; 2, pyruvate ferredoxin oxidoreductase (E.C. 1.2.7.1); 3, hydrogenase (E.C.1.12.7.2); 4, acetyl-CoA acetyltransferase (thiolase) (E.C. 2.3.1.9); 5,
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to generate H2 (Figures 1 and 2). When acetate is the
only end product as depicted in Figure 1, then additional
hydrogen is produced when 2NAD+ is reduced to form
2NADH + 2H+ (reaction 3). An illustration of the two
reactions is shown in Figure 1 (acetate) and Figure 2
(butyrate).
Due to the importance of acetate and butyrate pro-

duction in the generation of hydrogen production, we
evaluated the ability of SPICE to identify these two path-
ways. Results show that SPICE identified all of the acetate
pathway’s constituent enzymes, including acetate kinase
(E.C. 2.7.2.1), as being significant. In contrast, the Stu-
dent’s t-test and the MI method did not find any of the
enzymes, and SVM-RFE detected acetate kinase. Addi-
tionally, all five enzymes active in the butyrate pathway
[28] were found by the SPICE method. Among these, only
three were discovered by the SVM-RFE, two were found
by the Student’s t-test and none by the MI method.
Within facultative anaerobes like Escherichia coli,

hydrogen gas may be produced directly through the pro-
duction of formate. In this pathway, pyruvate is converted
to formate and acetyl-CoA with the use of pyruvate for-
mate lyase (E.C. 2.3.1.54) [33]. The formate hydrogen
lyase complex made up of formate dehydrogenase and
ferredoxin hydrogenase breaks down the formate into
hydrogen gas and carbon dioxide [28]. In this study, pyru-
vate formate lyase was found by the SPICE method to be
significant.
Table 1 shows that SPICE detected all the enzymes (see

Additional file 2) specific to the three pathways in facul-
tative anaerobes, such as Escherichia coli, while mutual
information could not even discover a single enzyme,
Student’s t-test could only detect 2 enzymes, and SVM-
RFE could find four out of 7 enzymes. Thus, SPICE outper-
formed, in terms of sensitivity, the existing state-of-the-art
methods based on Student’s t-test, MI, and SVM-RFE.
The enzymes identified by SPICE are next described in the
context of their corresponding metabolic pathways.

COGmodules corresponding to biohydrogen production
To expand our study beyond metabolic subsystems to
include possible regulators, transporters, and others, in

our next experiment, we replace enzymes in the matrix
with the clusters of orthologous groups (COGs) [34]. We
obtain COG–organism association information from the
STRING database. The new COG-centric matrix for this
experiment can be found in Additional file 3.
The set of enumerated COG modules with the statisti-

cally significant p-value of 0.05 is provided in Additional
file 4. SPICE was able to identify COG modules that are
known to be associated with hydrogen production based
on our literature review and prior knowledge. Next, we
will briefly summarize some of these modules.

COGmodules related to nitrogenase In addition to the
metabolic pathways described above, other key enzymes
are known to be associated with hydrogen production in
a number of microorganisms [35-37]. Examples of such
enzymes include nitrogenase and hydrogenase enzyme
complexes. Hydrogen producing organisms capable of
fixing nitrogen contain enzyme complexes, termed nitro-
genases. Within nitrogenase complexes, nitrogen gas is
converted to ammonia, inadvertently resulting in the pro-
duction of hydrogen gas as a byproduct [23,36].
Evaluation of the COG modules generated by SPICE

indicated the presence of two modules, each containing
an essential component of enzyme complex nitrogenase.
In the first module, two COGs (COG2710 and COG0120)
were identified. COG2710 is associated with expression of
the molybdenum–iron protein (NifD) [23] and COG0120
is associated with the protein—Ribose 5-phosphate iso-
merase (RpiA). NifD protein is one essential component
of nitrogenase, serving as the binding site for substrates
during nitrogen-fixation [23,38]. RpiA takes a vital part
in carbohydrate anabolism and catabolism through its
participation in the Pentose Phosphate Pathway (PPP)
and Calvin Cycle [39]. In addition, studies of central
metabolism indicate that RpiA is a protein highly con-
served across manymicroorganisms [39]. However, in this
study, RpiA was paired with NifD, suggesting that both
proteins may be associated with nitrogen-fixation, hence
biological hydrogen production. In terms of hydrogen
production, metabolism of and the ability to metabolize

Table 1 H2-related enzymes detected by different methods

Pathway Enzyme Enzyme Name t MI SVM-RFE SPICE

Acetate 2.7.2.1 acetate kinase + +

Butyrate

1.3.99.2 butyryl-CoA dehydrogenase + +

2.7.2.7 butyrate kinase + + +

1.1.1.157 3-hydroxybutyryl-CoA dehydrogenase +

2.3.1.19 phosphate butyryltransferase + +

2.3.1.9 acetyl-CoA C-acetyl-transferase + +

Formate 2.3.1.54 pyruvate formate lyase +

Note: t: Students’ t-test;MI: Mutual Information.
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specific carbohydrates play an indirect role in the over-
production of hydrogen. One example is theC. butyricum.
Metabolic studies of the C. butyricum demonstrate the
ability of this bacterium to digest a variety of carbo-
hydrates and to produce hydrogen via degradation of
carbohydrates [40].
Another role RpiA may play is the production of

NADPH required for fixing nitrogen [41]. In nitrogen
fixers, the oxidative pentose phosphate cycle has been
reported as active. During oxidative PPP, Riboluse-5-
phosphate is converted to ribose-5-phosphate by Rpi.
During this reaction, NADPH is generated, thus allow-
ing for N assimilation, N-fixation, and production of
hydrogen.
The second nitrogenase-related module identified by

SPICE contains COG1348 (NifH) and COG3883 (Unchar-
acterized). Similar to NifD, NifH is also considered to
be an essential component of nitrogenase. It is respon-
sible for assisting with the biosynthesis of co-factors for
NifD [42]. COG3883 is uncharacterized. While we can-
not predict the role of the protein from this module,
its presence suggests that it is either associated with
the nitrogen fixation or hydrogen production pheno-
type.

COG modules corresponding to hydrogenase Hydro-
genase enzyme complexes are key enzymes involved in
the uptake and production of biological hydrogen [35].
Analysis of hydrogenase enzymes have identified three
different types, each associated with a number of acces-
sory proteins necessary for activation [35,43]. These
include the [NiFe]-hydrogenase, [FeFe]-hydrogenase, and
non-metal containing hydrogenase enzyme [35]. Due
to the importance of hydrogenase in both hydrogen
production and hydrogen uptake, several studies have
examined the role of hydrogenase enzymes in a num-
ber of different hydrogen-producing organisms [44,45].
These studies have found many microorganisms, includ-
ing Clostridium acetobutylicum, capable of having both
hydrogen uptake (e.g., [FeFe]-hydrogenase) and hydro-
gen evolving enzymes (e.g., [NiFe]-hydrogenase). In this
study, SPICE predicted the presence of both hydrogen
uptake and hydrogen evolving enzymes as related to
the hydrogen production phenotype. Categorization of
hydrogen uptake hydrogenases may be due to the absence
of hydrogenase in microorganisms present in our data
set.
In this study, SPICE identified one module con-

taining a hydrogen evolving hydrogenase. Within this
module two COGs, COG4624 (iron only hydroge-
nase) and COG3541 (predicted nucleotidyltransferase)
were present. The protein ID for COG4624 was
not identified in the literature review; however, [Fe]-

hydrogenases are responsible for producing hydrogen
[46]. Nucleotidyltransferases are proteins involved in a
number of biological processes ranging from DNA repair
to transcription [47]. Since these proteins are gener-
ally involved in DNA and RNA-related processes, it is
unclear why a predicted nucleotidyltransferase was paired
with hydrogenase. To understand the interaction between
these two proteins, experimental molecular analysis is
necessary.
Another COG module found by SPICE contains

COG0068 and COG0025, which are associated with
expression of two hydrogenase uptake proteins—
hydrogenase maturation factor (HypF) and NhaP-type
Na+/H+ and K+/H+ antiporters (Nhap). HypF has been
found as a carbamoyl phosphate converting enzyme
(or an auxiliary protein) involved in the synthesis of
active [NiFe]–hydrogenases in Escherichia coli and
other bacteria [48]. NT01CX 0020, an orthologous
group of COG0025, is associated with expression of
sodium/hydrogen exchanger protein (NHE3). NHE3 has
been found to play an important role in hydrogen pro-
duction of Acidaminococcus fermentans, Escherichia coli
and bacterial communities within a dark fermentation
fluidised-bed bioreactor [49-51].
SPICE also identified three other types of hydrogenase

maturation proteins—HypC, HypD, and HypE. COGs
corresponding to these proteins are COG0298 (HypC),
COG0409 (HypD), and COG0309 (HypE). Understand-
ing complexes, such as uptake hydrogenase enzymes, is
important for deciphering regulatory mechanisms and
activity of these key enzymes. For example, in studies eval-
uating accessory proteins present in [NiFe]-hydrogenase
complexes, HypCDEF proteins are described as regulators
for maturation of uptake hydrogenase through participa-
tion in development of the active center [35,52]. If one
of the Hyp proteins is missing, the entire complex is
inactivated.
In H2–producing microorganisms such as Escherichia

coli, hydrogenase maturation proteins act as regulators
for maturation of uptake hydrogenase in development
of the active center [35,36]. Regulation is conducted by
inserting Fe, Ni, and diatomic ligands of HypA–F proteins
into the hydrogenase center for activation and matura-
tion [53]. To carry out this process, HypE and HypF are
in charge of synthesis and insertion of Fe cyanide ligands
into the hydrogenase’s metal center, and HypC and HypD
are responsible for construction of the cyanide ligands
[36,54].
In addition, SPICE identified two hydrogenase proteins

associated with anaerobiosis [55]. They are COG0374
(HyaB) and COG0680 (HyaD). Unlike the Hyp proteins,
which are accessory proteins involved in the assembly of
the metallocenters, Hya proteins are responsible for the
maturation of hydrogenase-1 [46].
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Other COG modules related to biohydrogen Other
biohydrogen production-related COGs, such as COG-
0374, COG0375, COG3261, COG0680, COG4624 and
others, shown under the hydrogenase category in
STRING database are detected as part of other modules
by SPICE. As mentioned earlier, hydrogenase is one of the
key proteins (or enzymes) involved in hydrogen produc-
tion and uptake [24]. The complete list of all the identified
putative biohydrogen-related COGmodules is available in
Additional file 4.

Motility-related COGmodules
For a large-scale experiment, we set up another experi-
ment on a different phenotype—motility. A total of 141
organisms including 56 non-motile organisms and 85
motile organisms were chosen from Slonim et al. [8]. For
p-value of less than 0.01, SPICE detected 96 modules. The
input data and results can be found in Additional files 5
and 6, respectively.
One of the motility phenotype-related COG mod-

ules contained COG1338, COG0265, COG1484, and
COG3420. Among the four COGs, COG1338, whose
function is associate with the expression of flagel-
lar biosynthetic protein (Flip), has a high correlation
with flagellar assembly pathway [56]. Flagellar assem-
bly pathway, which enables the movement of microor-
ganisms, is well-known to be important for bacterial
motility [56,57]. Proteins associated with the other three
COGs include uncharacterized serine protease (YyxA)
and two hypothetical proteins. YyxA in a motile organ-
ism, Bacillus amyloliquefaciens, has a similar phylogenetic
profile to chemotaxis-related proteins [58]. Chemotaxis
pathway, which is also important for bacterial motil-
ity, determines how the microorganism moves accord-
ing to its environment [8]. Chemotaxis pathway and
flagellar assembly pathway function together to guide
bacteria’s direction of movement [8]. The phylogenetic
profile of the other two hypothetical proteins (associate
with COG1484 and COG3420) are shown to be corre-
lated with the pattern of motility across many bacterial
genomes [8].
Additionally, SPICE enumerated other COG modules

that contained other known flagellar-related COGs like
COG1516, COG1345, and COG1815 and other known
chemotaxis-related COGs such as COG0840, COG0643,
and COG0835, supported by literature [8,56,57]. Besides
flagellar-related and chemotaxis-related COGs, type III
secretion system-related COGs, such as COG1766,
COG1684, COG1987, and COG1338, were also found in
some of our enumerated modules. The type III secre-
tion system is found to be highly correlated with bacterial
motility, because some of its protein structure is very
similar in structure, function, and gene sequence to the
flagellar assembly system [56,59].

Cancer-related genes
Identifying all the genes that could discriminate tumor
cells from normal cells in microarray gene expression
data is non-trivial [60]. Again, the task is not to find a
single “best”-discriminating gene set, but enumerate as
many cancer-related genes and groups of genes as possible
provided they are associated with cancer expression phe-
notype; this task is becoming particularly important in the
context of personalized medicine.
Leukemia cancer data was selected to show the effec-

tiveness of our method to detect phenotype-related gene
modules in biological networks. Leukemia data can be
downloaded from Broad Institute Cancer Program Data
(http://www.broadinstitute.org/cgi-bin/cancer/datasets.
cgi). It contains 72 measurements for the expression of
7,129 genes, corresponding to the samples taken from
bone marrow and peripheral blood. Out of these samples,
47 samples are classified as ALL (Acute Lymphoblastic
Leukemia), and 25 samples are classified as AML (Acute
Myeloid Leukemia).
The first 11 genes identified by SPICE were used as

seed set, and a total of 145 phenotype-associated gene
functional modules (see Additional file 7) were gener-
ated by DENSE algorithm in the Leukemia network.
5 out of the 11 seed genes are filtered out by our
method. Table 2 shows the first 5 models identified by
our algorithm. Specifically, gene KIAA0016 found by our
model 1 is highly correlated with anti-cancer agents [61].
KIAA0016 encodes TOMM20—a mitochondrial import
receptor [62]. TOMM20 has been shown to interact with
a central anti-apoptotic Bcl-2 (B-cell lymphoma 2) gene
[63]. The expression of Bcl-2 has been used as a prognostic

Table 2 Cancer-related genes found by SPICE on Leukemia
network

Model ID Gene ID Gene description

Model 1

210 KIAA0016

284 KIAA0035

6889 Cellular nucleic acid binding protein

Model 2

210 KIAA0016

284 KIAA0035

744 KIAA0242

Model 3
4847 Zyxin

4229 SPI1 Spleen focus forming virus

Model 4

1882 CST3 Cystatin C

630 FCN1 Ficolin

1157 PI Protease inhibitor 1

Model 5
1882 CST3 Cystatin C

5956 PSAP Sulfated glycoprotein 1

Note: More cancer-related genes are found by other models.

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi


Chen et al. BMC Systems Biology 2012, 6:40 Page 9 of 19
http://www.biomedcentral.com/1752-0509/6/40

marker for acute myeloid leukemia [64]. KIAA0035, Cel-
lular nucleic acid binding protein andKIAA0016 belonged
to a functional module in the Leukemia network. Our
method also detected an overlapping functional module
with only one gene (KIAA0242) difference to model 1.
Zyxin found by our model 3 plays a vital role in mitosis
[65], and the LIM Domain of Zyxin is known to interact
with leukemogenic bHLH proteins, such as TAL1, TAL2,
and LYL1 [66].

Predictive skill
Data
Eight publicly available multi-phenotype-genotype data-
sets are used in this study. Table 3 summarizes some
characteristics of these datasets, their sources, and the
best-to-date performance reported in literature. For com-
parison purposes, the last column indicates SPICE’s
performance.

Evaluationmethodology
For two-class, 10-fold cross-validation are employed. 10-
fold cross validation has been proved byWitten and Frank
[76] to be a good way to evaluate the performance of a
classifier. In 10-fold cross-validation, the original data is
partitioned into 10 different subsets. Each of the 10 sub-
sets is used as the test set, and nine other subsets are used
as training set. For multi-class datasets, 3-fold cross val-
idation is used to ensure that each subset can have all
different classes of samples.
Bootstrapping validation, via commonly used bootstrap

estimators, e0 bootstrap and .632 bootstrap [77], is also
applied. In e0 bootstrap, the training data consists of n
instances by re-sampling with replacement from the orig-
inal data of the same size of n. And the test data is the
set difference between original data and training data.
Thus, if the training data has j unique instances, then the
test data will be the other n-j instances on the original
data. The error rate on the test data is treated as the e0

estimator, while the .632 bootstrap also takes the training
error into consideration, and uses the linear combination
of 0.368 ∗ ε + 0.632 ∗ e0 as the estimated error rate, where
ε is the training error. For good error estimation, we use
≈ 200 iterations [77] and report the average error rate.
Bagging [78], boosting [79], random forest [80], near-

est shrunken centroid method (PAM) [81], and random
forest variable selection (varSelRF) [82] ensemble learn-
ing techniques are employed as benchmark methods. The
ensemble size used for these methods is the same as the
one used for SPICE.
We utilize different skill metrics including accuracy,

sensitivity, specificity, precision, F1-measure, variance,
Heidke Skill Score (HSS) [83], Peirce Skill Score (PSS) [83],
and Gerrity Skill Score (GSS) [83]. Accuracy is defined as
the ratio of the number of correctly classified data points
to the total number of data points in the test set. The HSS
measures howwell a forecast did as to a randomly selected
forecast. PSS, also called “true skill statistic,” is another
popularly skill score computed by the difference between
the hit rate and the false alarm rate. GSS, also known as
“threat” score or critical success index, is a particular use-
ful measure of skill for situations where the occurrences
of the event to be forecast are substantially less frequent
than the non-occurrences [83].

Skill metrics evaluation
Figure 3 shows cross validation accuracy of SPICE com-
pared to bagging, boosting, random forest, PAM, and
varSelRF ensemble methods. We report the accurate
results of bagging, boosting, random forest, PAM, and
varSelRF by using the default parameters. CART decision
tree is used as the base classifier for bagging, boosting, and
SPICE. To be consistent, we use 11 iterations as the stop-
ping criterion (or the maximum ensemble size) for all the
methods. SPICE outperforms bagging, boosting, random
forest, PAM and varSelRF by up to 33%, 13%, 18%, 10%,
and 24%, respectively.

Table 3 Performance comparison onmicroarray data sets

Dataset Features Samples Classes Source CV Acc.r (%) Acc.� (%) SPICE (%)

Leukemia 7129 72 2 [60] 10-fold 91.2 97.14 [67] 98.6

Colon cancer 2000 62 2 [68] 2:1 RP 87.14 87 [69] 89

B-cell lymphoma 4026 96 2 [70] 5:3 RP 92.1 93.55 [71] 94.7

Prostate 6033 102 2 [60] 10-fold 73.5 87 [72] 93.1

Lymphoma 3class 4026 62 3 [68] 2:1 RP 99.05 97.36 [73] 100

SRBCT 2308 63 4 [68] 2:1 RP 98.7 98.7 [69] 98.7

CNS∗ 74 60 2 [60] 10-fold 88.3 75 [74] 96.7

Prostate outcome∗ 208 21 2 [60] 10-fold 85.7 90 [75] 100

Notes: *: Discretized data; CV: Cross-validation; RP: Random partition; r: Accuracy from source reference; � : Accuracy reported in a recent literature.
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Figure 3 Comparison of prediction accuracy of SPICE to other ensemble classifiers on eight microarray datasets.

Table 4 summarizes SPICE’s skill on two-class microar-
ray data using five metrics: accuracy and its variance,
sensitivity, specificity, precision, and F1-measure; it also
reports an average number of features per model. Table 5
summarizes SPICE’s skill on multi-class microarray data
using five metrics: accuracy and its variance, HSS, PSS,
and GSS.

Different weighting schemes’ test
One factor that may influence the results of SPICE method
is the weights assigned to different candidate classifiers
in the ensemble for determining the phenotype. Here, we
test three different weighting schemes described in Step 5:
bringing component interplays altogether section: major-
ity voting, training accuracy-based voting, and internal
cross-validation-based voting. The experimental results

Table 4 SPICE performance on two-class microarray data
sets

Metric Leukemia Colon B-cell lymphoma Prostate

Accuracy 0.99 0.87 0.95 0.93

Variance 0.001 0.001 0.000 0.000

Sensitivity 0.98 0.90 1 0.9

Specificity 1 0.82 0.85 0.96

Precision 1 0.90 0.92 0.95

F1-measure 0.99 0.90 0.96 0.93

Features 2.23 2.61 2.52 3.33

show that there is no bearing on prediction accuracy
by choosing different weighting schemes for a majority
of microarray datasets, although the training accuracy-
based voting and internal cross-validation-based voting
performed slightly better (3–5%) than the majority voting
scheme on few datasets like the B-cell lymphoma dataset.
However, all weighting schemes highly outperformed any
single classifier in the ensemble.

Robustness assessment
To assess robustness, we applied bootstrapping using both
e0 and .632 bootstrap estimators with 200 bootstrap-
ping trials. Bootstrapping is applied to all three categories
of data sets. Leukemia data is the original 2-class data
without any preprocessing, CNS data is the discretized
data, and Lymphoma 3class data is multi-class data with
logarithmic transformation and standardization. Table 6

Table 5 SPICE performance onmulti-class microarray data
sets

Metric Lymphoma 3class SRBCT

Accuracy 1.0 0.98

Variance 0.000 0.005

HSS 1 0.98

PSS 1 0.981

GSS 1 0.98
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Table 6 Bootstrapping performance of SPICE

Data e0 ε .632 10-fold cross

validation

Leukemia 0.037 0 0.024 0.014

CNS 0.044 0.031 0.007 0.030

Lymphoma 3class 0.027 0 0.017 0.000

shows that SPICE provides bootstrap error rates compara-
ble with cross-validation results.

Ensemble statistics
Figure 4 shows the ensembles built by SPICE on Leukemia
and Lymphoma 3class data, using 11 or fewer classifier
models (Figure 4(a)), with each model including 2–3 fea-
tures (Figure 4(b)). The fact that the ensemble uses infor-
mation from multiple diverse models and achieves a good
accuracy with only a few features per model is a good
indicator for our classifier ensemble methodology.

Algorithm efficiency
Figure 5 shows the runtime of SPICE and the benchmark
methods on eightmicroarray datasets with 30 iterations as
the stopping criterion. Our experiments were conducted
on a PC with an Intel Core 2 Duo CPU (2.2GHz) and 6GB
of RAM. All algorithms were implemented in the Matlab
programming language.

For the eight datasets we tested, it shows that our
SPICE algorithm is much faster than bagging and boost-
ing. While SPICE is slower than random forest on some
datasets, SPICE could achieve better prediction accuracy
on those datasets.

Generalization
SPICE can be considered one of meta-learning ensemble
algorithms [84], because SPICE can employ an arbitrary
base classifier. Table 7 shows its effectiveness compared
to a single classifier using different base classifiers on the
Colon cancer dataset with the 10-fold cross-validation.
SPICE improves the prediction accuracy of a single classi-
fier, namely by about 30%, 14%, and 7% for Naı̈ve Bayes,
CART decision tree, and linear SVM, respectively. Thus,
SPICE can be applied to improve some base classifiers
other than decision tree, which makes SPICE more useful.

Conclusion
In this paper, we addressed the important and challeng-
ing problem of enumerating statistically significant and
application-relevant component interplays that are key
contributors to the system’s phenotype. We presented
SPICE, an effective, iterative feature subsets enumera-
tion method that discriminates between different sys-
tems’ phenotypic states on both instance-based data and
network-based data. SPICE successfully identified cancer-
related genes from various microarray data sets and found
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Figure 4 Ensemble statistics.
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Figure 5 The runtime of SPICE compared to other methods.

enzymes or COGs associated with biohydrogen produc-
tion and motility phenotype by microbial organisms.
SPICE also improved the predictive skill of the system’s
phenotype determination by up to 10% relative to indi-
vidual classifiers and/or other ensemble methods, such
as bagging, boosting, random forest, nearest shrunken
centroid, and random forest variable selection method.

Method
The key steps underlying SPICE are shown in Figure 6.
At a higher level, SPICE first identifies a candidate com-
ponent (feature) set (Step 1: identifying candidate com-
ponent interplays section), it then scores its phenotype
specificity-determining skill (Step 2: scoring candidate
component interplays section) along with statistical sig-
nificance assessment (Step 3: assessing statistical signif-
icance section). These three steps are repeated in an
iterative fashion by “knocking out” the selected candi-
date component sets until the stopping criterion is met
(Step 4: iterative “knock-out” of component interplays
section). Finally, the ensemble of classifiers is formed to
predict the system’s phenotype(s) given the values of all
its component-interplay groups (Step 5: bringing compo-
nent interplays altogether section). An additional step is
added between Step 4 and Step 5 to ensure that the iden-
tified systems components are more strongly linked to

Table 7 Accuracy improvement over a single base classifier

Classifier Single classifier SPICE

Decision Tree (CART) 0.73 0.87

Naı̈ve Bayes 0.57 0.87

Linear SVM 0.82 0.89

the phenotype through comparative analysis of biologi-
cal networks (Detecting biologically relevant component
interplays through biological networks section). Next, we
explain each of these steps in more detail.

Step 1: identifying candidate component interplays
We hypothesize that if the component is key to defining
the system’s phenotype, then its value distributions will be
separable between the observations from different pheno-
types. If the separation is strong, then such a component,
alone, is likely able to discriminate system phenotypes.
And almost any method, such as entropy-based, would
likely succeed in detecting those components. However,
with real data sets such a strong separation is less likely.
Hence, one should strive for discovery of separation sig-
nals that while being weaker at the individual component
level, they—as a group—should be able to discriminate
between system phenotypes.
Therefore, the effective analysis should not only include

an individual component with a strong discriminatory
signal, but also extend to a group(s) of interplaying com-
ponents out of a set of thousands of components. This
creates a multiplicity of possible combinatorial interplays
to search for and excludes a possibility for a brute-force
enumeration. Thus, our goal is to provide a framework
for automatic exploration of such combinatorial interplays
that could offer both the computational efficiency and the
application domain relevance.
To address this issue, we propose to employ the multi-

level paradigm via divide-and-conquer strategy. The mul-
tilevel paradigm is known for its effectiveness when
solving very large-scale scientific problems. In the con-
text of linear systems of equations, for instance, algebraic
multi-grid methods, have been devised to solve linear
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Figure 6 The overview of SPICE’s key steps.

systems by essentially resorting to divide-and-conquer
strategies that utilize the relationship between the mesh
and the eigen-functions of the operator. In the data anal-
ysis field, however, methods that take advantage of the
multi-level paradigm are less explored. A few recent stud-
ies include [85] as well as the top-down divisive clustering
or spectral graph partitioning techniques.
Specifically, the intuition behind our approach stems

from the well-known concept of modularity, introduced
by Hartwell et al. [86], as a generic principle of complex
system’s organization and function. These functionally
associated modules often combine in a hierarchical man-
ner into larger, less cohesive subsystems, thus revealing
yet another essential design principle of system organi-
zation and function–hierarchical modularity. Thus, our
method first identifies modules of system components
with putatively stronger associations within the modules
than between the modules. This process divides all system
components into modules that likely function together to
define what phenotypic state the system is in. The process
further conquers each of these modules in order to refine
the specificity of the inter-component relationships within
the module.
Figure 7 shows an illustration of this divide-and-

conquer approach to multilevel dimension reduction. The
sample artificial input set shown contains two substruc-
tures: points from a multivariate Gaussian distribution
(grey) and the three groups of colored points arranged

into nested rings (top). (Note that the color of the points
is only there to show how the data groups together before
and after the partition followed by dimension reduction).
The standard PCA result performed on the monolithic set
is mediocre, i.e., distinguishing the four different groups is
impossible using only linear PCA. After partitioning the
set, the “appropriate” technique is applied to each parti-
tion (bottom): the kernel PCA to the nested ring points
(left partition) and the linear PCA to the Gaussian clus-
ter (right partition). As a result, not only is the size of the
data reduced for each partition, but also the four groups
become distinguishable using only the first principal
component.
Unlike the example in Figure 7, in the context of our

problem, we deploy decision tree-based procedure to
divide the feature set into non-overlapping partitions and
apply the “appropriate” classification technique to each
partition. The reason is that due to highly underdeter-
mined nature of our problem, subsampling of the input
data sample could possibly lead to an unreliable infer-
ence methodology. Likewise, due to a possibly non-linear
interplay between the system’s features, it would be more
desirable to divide the system components into “blocks”
with possibly stronger interconnects within the blocks
and weaker inter-connects between the blocks. This strat-
egy is inspired by the modularity principle of complex
systems. Thus, a higher-level supervised separation of the
high dimensional feature space into the rectangular shape
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Figure 7 An illustration of divide-and-conquer strategy for multi-level dimension reduction.

hyperspaces is achieved via information-theory driven
decision boundaries with a subsequent refinement of
decision boundaries within the identified subspaces (see
Step 2).
We propose a decision tree-based methodology for our

feature space partitioning. The features in a decision tree
are considered as one feature subset, and each feature is
a system component. There are multiple reasons for why
we choose decision tree based methodology, including (a)
efficiency to process many features (unlike BBNs that are
exponential in the number of features), (b) inherentlymul-
ticlass by nature, and (c) the ability to handle continuous
and multi-variate types of features (unlike NNs for which
distance metrics are poorly defined for mixed data types),
among others. We use the CART-decision tree algorithm
[87] to select a set of discriminatory features from the
available feature space. Basically, CART builds a decision
tree by choosing the locally best discriminatory feature at
each split step based on the Gini Index Impurity Function.
To avoid overfitting, CART employs backward pruning to
build smaller, more general decision trees. CART chooses
features in a multivariate fashion, which allows the feature
selection process to find a set of discriminatory features
instead of considering one feature at a time.
More importantly, especially, in the context of under-

determined or unconstrained problems, CART’s inherent
feature pruning capability often leads to a fewer number
of components, or smaller size modules. This is a

desirable property for building a more robust classifier
downstream of our analysis pipeline (Step 2 and Step 5).
Also, decision boundaries themselves could result in rules
that are more interpretable and could provide additional
insights to domain scientists on the magnitude of the
feature attributes that affect a system’s phenotype. The
reason is that not only is it important to know what group
of features is contributing to the system’s phenotypic state
but to what extent the feature values could change the
system’s phenotypic state. For example, if the expression
of a particular gene becomes above a certain threshold,
then this causes a “knock-out” of a particular metabolic
pathway. With decision trees, the full feature space gets
partitioned into hypersubspaces by the decision rules
of the form of ai ≤ fi ≤ bi. Once this high-level factors
contributing to the system’s phenotype are learned, more
complex (e.g., non-linear or conditional) relationships
between the components in the group could be learned
by more sophisticated classifiers, such as BBNs or kernel
SVMs (see Step 2).

Step 2: scoring candidate component interplays
Candidate system’s components identified in Step 1 are
next assessed in terms of their collective ability to con-
tribute to the system’s phenotypes. Basically, the goal
is to define a scoring function that could measure how
well this group of components (features) discriminates
between system phenotypic states. On the one hand,
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mutual information (MI) for an individual component
could be used with its proper generalization to a group
of components. However, robust probability estimation—
an essential step in MI definition—requires a large sample
size, which is often unavailable for underdetermined sys-
tems. Moreover, the generalized MI is biased toward the
presence of a component in the group with high informa-
tion content.
Due to these limitations, we define a scoring function in

terms of classification accuracy provided by multivariate
discriminant methods, such as SVMs, BBNs, neural net-
works, or decision trees. Specifically, we ask a question: if
only a candidate component set were used to determine
the system’s phenotypic state, how much predictive skill
this set could have. Since individual components within
the candidate group could be related to each other in a
complex manner, we first let a proper classifier (e.g., ker-
nel SVM or BBN) learn this complex relationships from
the entire group of features and choose the accuracy of
the best performing classifier as the scoring measure of
the putative components’ interplay (see Line 6–7 in Algo-
rithm 2 of Additional file 8). Note that different candidate
groups may require different classifiers—the best per-
forming classifier model is chosen both for Step 3 and for
Step 5. [For our experiments, we use training accuracy].

Step 3: assessing statistical significance
Given a candidate feature set (Step 1) and its predictive
skill score (Step 2), we next assess statistical significance
of this score, namely, how likely a similar skill score
could be observed at random. Specifically, we want to use
the confidence level for the classification accuracy to sift
phenotype-specificity determining component groups. It
is expected that the statistically significant, highly scored
component groups are application-significant. For exam-
ple, a group of candidate genes could be biologically
significant for biohydrogen production or cancer pheno-
type expression (see Phenotype-specificity determining
components sections).
It is worth observing that, generally, sample instances

within the same system phenotype tend to bemore similar
than those from the other phenotypes. Hence, separation
of feature value distributions between the samples from
different states will be relatively clearer, and thus classi-
fication accuracy—as a measure of feature set’s discrimi-
natory power—can be biased. This implies that standard
statistical testing like shuffling the phenotype (class) labels
is not acceptable.
Thus, to provide a robust assessment of statistical signif-

icance, wemeasure an empirical p-value of each candidate
feature set using the Monte Carlo procedure described
in [88]. Specifically, for each feature subset, we randomly
sampleN feature subsets (N = 1, 000) from the entire fea-
ture set of the same size as our candidate set, and compute

the corresponding accuracies of the classifiers built from
these feature sets. Then, we estimate an empirical p-value
of the target feature subset as p = (R+ 1)/(N + 1), where
N is the total number of random samples (N ∼ 1, 000)
and R is the number of these samples that produce a test
statistic greater than or equal to the value for the target
feature subset. This corresponds to the percentile where
our target score falls onto within the accuracy distribu-
tion for N samples. In our experiments, the selected p-
value meets 95% confidence level. Please find the detailed
pseudo-code for the statistical significance assessment in
Additional file 8.

Step 4: iterative “knock-out” of component interplays
The candidate component-interplay group identified in
Steps 1-3 is probably not the only group of system com-
ponents that is responsible for a system’s behavioral phe-
notypic state. For example, such a group of enzymes could
contribute to a direct conversion of a particular type of
sugar to ethanol, but there could still be other groups of
genes required for ethanol production, such as regula-
tors of these enzymes’ expression in the cell, transporters
of different sugars from the environment into the cell, or
stress response regulators that detect toxin (i.e., ethanol)
concentration level in the cell. In addition, if a subsys-
tem is critical for a specific system’s function, then it often
gets replicated (e.g., multiple gene copy numbers in the
genome) in the complex system; this redundancy con-
tributes to system’s robustness. Therefore, our task is not
simply to identify a single “best” group but, ideally, to
enumerate them all.
The combinatorial nature of this task necessitates

heuristic approaches. Our strategy is inspired by the
way biologists often conduct their mutagenesis studies.
Namely, they knock-out a group of genes (e.g., via gene
deletion) and observe the mutant system’s response. By
analogy, our methodology knocks-out the selected can-
didate feature sets and proceeds with Steps 1-3 on the
mutant system in an iterative fashion until some stopping
criterion is met (see Line 3 in Algorithm 2 of Additional
file 8). Under this approach, each iteration produces a sub-
set of features out of the current feature set (see Line 5 in
Algorithm 2 of Additional file 8), then removes these fea-
tures from the set so that they can’t be selected again (see
Line 15 in Algorithm 2 of Additional file 8).
There are several different criteria that could be used

to decide when to stop the iterative process. Ideally, one
would observe a monotonically decreasing scoring value
with the number of iterations and will stop once the score
falls bellow a certain threshold. However, no theoretical
grounds could be provided for such a monotonic behav-
ior of the scoring function under the scenario of iterative
feature set knock-outs. In fact, we empirically observed
a fluctuating behavior of the scoring function with the
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number of iterations. Therefore, due to inherently high
dimensional data, we set the threshold on the maximum
number of iterations as our stopping criterion. Line 3–
17 in Algorithm 2 of Additional file 8 summarizes the
aforementioned iterative knock-out procedure.

Step 5: bringing component interplays altogether
While the enumerated set of putative system’s component
interplays is important in its own right (as illustrated in
Results and discussion section), here we combine them
altogether by building an ensemble of classifier models
from Step 3. Thus, unlike traditional classification meth-
ods that aim to find the single subset of features that
offer the most optimum classifier performance, our goal is
to enumerate suboptimal feature sets that could provide
insights on what factors and their inter-factor relation-
ships could determine the specificity of the system’s phe-
notype. We then combine these subsystems through the
framework of the ensemble methods in order to construct
a system-level predictor of system’s behavioral states.
In the last step (Step 5 in Figure 6), we need to combine

the predictions of all the classifiers that pass statistical
significance criterion (Step 3) to come up with the final
prediction value. In order for the ensemble to make a pre-
diction, each classifier is given a weighted vote, and the
class with the most votes is the prediction of the ensemble
(see Line 18 in Algorithm 2 of Additional file 8). We tested
three possible weighting schemes: a simple majority vot-
ing scheme, in which every classifier is given equal weight;
a training accuracy-based method, in which every clas-
sifier is weighted based on its training accuracy; and an
internal cross-validation-based voting, in which each clas-
sifier is weighted by that model’s cross-validation accuracy
on the original training data.
Two of the key characteristics for building a robust

classifier ensemble include (a) the diversity among the
classifier models in the ensemble [84] and (b) the rea-
sonably high accuracy of the individual members in the
ensemble. In our case, the former is ensured due to our
feature set knock-out strategy (Step 4) and the latter is
guaranteed by a combination of decision-tree based fea-
ture enumeration (Step 1), the scoring function (Step 2),
and the statistical significance assessment (Step 3) that,
in combination, also reduce possible redundancy among
the models and thus reduce the possible bias (e.g., due to
a significantly large portion of highly similar models). By
bringing the enumerated component interplays altogether
(Step 5) a good ensemble of classifiers can be achieved (as
illustrated in Results and discussion section).

Detecting biologically relevant component interplays
through biological networks
Thus far, we have presented how to detect component
interplays from an instance-based data. And it has been

shown that the system components enumerated by SPICE
often form functional modules or communities. However,
an additional step could be added between Step 4 and Step
5 to ensure that the identified systems components are
more strongly linked to the phenotype through biological
networks.
The gene functional association networks used in this

paper are obtained from the STRING database [89]. The
nodes in the networks are genes. And a pair of nodes
is connected with an edge if the corresponding genes
are considered to be functionally associated by some evi-
dence. The edge weights are assigned by the STRING
database based on the evidence that support the func-
tional association [89]. A threshold above 700 is consid-
ered as “high confidence” in the STRING database, so we
only keep the edges with weights above 700.
After the network construction, we employ our Dense

and Enriched Subgraph Enumeration (DENSE) algorithm
[90] to enumerate “dense and enriched” subgraphs in each
network. Intuitively, DENSE works as follows, given an
organismal protein (gene) functional association network
and a set of proteins (genes) as the query, DENSE enu-
merates all the dense subgraphs that are enriched by the
query proteins. Every subgraph generated by DENSE con-
tains at least γ percentage of nodes that are from the query
protein set, and each node in the subgraph is adjacent to
at least μ percentage of the other nodes in the subgraph.
And in simple terms, the algorithm is able to extract the
proteins that are functionally associated with the query
proteins (i.e., form functional modules with them). In the
paper [90], a biologist’s knowledge priors have been incor-
porated into the query set. Here, we use the phenotype-
determining components generated by SPICE as the query
set for the DENSE algorithm. The default parameter val-
ues, μ = 75 and γ = 0.1, are used to find all highly
connected (but not fully connected) subgraphs that con-
tain at least one query node. [For more details on the
DENSE algorithm and the software, please, refer to paper
[90]].
The “dense enriched” subgraphs generated by DENSE

are assumed to be the functional modules, because we
start with the functional association network and impose
the μ parameter to generate the highly connected sub-
graphs. However, a further functional enrichment analysis
is performed on the discovered modules by using the
GO TERM FINDER tool [91]. And the result shows that
the discovered modules are indeed functionally coherent.
[Since our work does not focus on the functional enrich-
ment analysis, the experimental results are available upon
request].
While DENSE is an effective and efficient algorithm to

identify the functional modules in a biological network, it
can only be applied to a single network at a time. However,
we would like, using both phenotype-expressing and non-
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expressing organisms, to identify functional modules that
are more biased towards the target phenotype. Thus, in
this section, we propose an effective methodology to dis-
cover functional modules using DENSE but extending
the procedure to utilize both phenotype-expressing and
non-expressing organisms.

Definition 1 (β-Similar Dense Subgraphs). Given two
dense subgraphs generated from two different networks,
we call the two subgraphs β-similar dense subgraphs if
they share at least β percentage of nodes corresponding to
homologous genes.

For a set of networks corresponding to phenotype-
expressing organisms, we hypothesize that the conserved
β-similar dense subgraph (see Definition 1) across the
group of networks are the phenotype-associated func-
tional modules. After generating all “dense enriched” sub-
graphs from each biological network by DENSE, we first
detect the β-similar dense subgraphs across two networks
based on the Definition 1, and then check if the β-similar
dense subgraphs detected in the previous two networks
are conserved in the third network. This procedure is con-
tinued until all networks in the group are examined. Our
algorithm may miss some of the phenotype-related mod-
ules if the stringent value of β = 100 are used. Hence, we
chose a β value of 75 (midpoint of 50 and 100) to iden-
tify highly conserved (but not identical) subgraphs across
all networks as the most probable modules. Detection
of the conserved β-similar dense subgraphs in a group
of networks can also help us filter out some spurious
query nodes (see Cancer-related genes section), which are
generated by our Step 1-Step 4.
We can take it one step further and use a group of con-

trast biological networks (i.e., networks of organisms that
do not express the phenotype) to filter and obtain dense
subgraphs that are not only identified as conserved in the
previous step but are also “biased” towards the target phe-
notype. Here, by biased, we mean occurring in phenotype
expressing organisms but not occurring in the phenotype
non-expressing organisms. To achieve this goal, first, the
networks are partitioned into different groups according
to the phenotype(s), and then the β-similar dense sub-
graph detection algorithm is applied to each group of
networks. After getting all the conserved β-similar dense
subgraphs from all groups, we remove all the common
conserved β-similar dense subgraphs appearing in at least
two groups of networks.
As noted, three parameters, γ , μ and β , are used in

our algorithm. The thresholds of the parameters depend
on the application. But because the computational time
of DENSE algorithm is relatively small, users can try dif-
ferent thresholds and use their prior knowledge to design
the query sets (e.g., pathway-phenotype associations) to

validate the results. [The parameter sensitivity analysis
is available upon request]. And similar to other compar-
ative analysis methods, our results are sensitive to the
phylogenetic diversity of the organisms we chosen. A scor-
ing function based on the phylogenetic diversity could be
considered as an option to address this problem.
Our work is different to other network-based identifi-

cation methods in a number of ways: (1) we can discover
dense, possibly overlapping subgraphs of a single network
or groups of networks; and (2) we are able to identify
“fuzzy functional modules” that are enriched by some
target set of proteins (genes).
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