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Abstract

Background: 13C-Metabolic flux analysis (13C-MFA) is a standard technique to probe cellular metabolism and
elucidate in vivo metabolic fluxes. 13C-Tracer selection is an important step in conducting 13C-MFA, however, current
methods are restricted to trial-and-error approaches, which commonly focus on an arbitrary subset of the tracer
design space. To systematically probe the complete tracer design space, especially for complex systems such as
mammalian cells, there is a pressing need for new rational approaches to identify optimal tracers.

Results: Recently, we introduced a new framework for optimal 13C-tracer design based on elementary metabolite
units (EMU) decomposition, in which a measured metabolite is decomposed into a linear combination of so-called
EMU basis vectors. In this contribution, we applied the EMU method to a realistic network model of mammalian
metabolism with lactate as the measured metabolite. The method was used to select optimal tracers for two free
fluxes in the system, the oxidative pentose phosphate pathway (oxPPP) flux and anaplerosis by pyruvate carboxylase
(PC). Our approach was based on sensitivity analysis of EMU basis vector coefficients with respect to free fluxes.
Through efficient grouping of coefficient sensitivities, simple tracer selection rules were derived for high-resolution
quantification of the fluxes in the mammalian network model. The approach resulted in a significant reduction of
the number of possible tracers and the feasible tracers were evaluated using numerical simulations. Two optimal,
novel tracers were identified that have not been previously considered for 13C-MFA of mammalian cells, specifically
[2,3,4,5,6-13C]glucose for elucidating oxPPP flux and [3,4-13C]glucose for elucidating PC flux. We demonstrate that
13C-glutamine tracers perform poorly in this system in comparison to the optimal glucose tracers.

Conclusions: In this work, we have demonstrated that optimal tracer design does not need to be a pure
simulation-based trial-and-error process; rather, rational insights into tracer design can be gained through the
application of the EMU basis vector methodology. Using this approach, rational labeling rules can be established a
priori to guide the selection of optimal 13C-tracers for high-resolution flux elucidation in complex metabolic network
models.

Keywords: Metabolic flux analysis, Stable-isotope tracers, Experiment design, Pathway analysis, Statistical analysis,
Confidence intervals, Mammalian cells, Free fluxes, Mass spectrometry
Background
13C-Metabolic flux analysis (13C-MFA) has become a
standard tool to probe cellular metabolism and elucidate
in vivo metabolic fluxes [1-5]. The experimental portion of
13C-MFA relies on the introduction of an isotopic tracer
(e.g. 13C-glucose) to a cell culture, cellular turnover of 13C-
labeled metabolites through metabolic pathways, and
measurement of 13C-labeling patterns of metabolites by
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reproduction in any medium, provided the orig
NMR [6], mass spectrometry (MS) [7-9], or tandem MS
[10,11]. The computational portion of 13C-MFA relates
the measured 13C-labeling patterns to metabolic fluxes by
iterative least-squares regression. Inherent to successful
13C-MFA are high quality measurement data and efficient
computer algorithms for simulating isotopomers [12-14],
both of which have been investigated in detail. However,
an important aspect of 13C-MFA that is often overlooked
is the selection of appropriate 13C-tracers to study a given
biological system. 13C-Tracers are often selected by con-
vention, or using trial-and-error approaches. With the in-
creasing use of 13C-MFA in mammalian systems for
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therapeutic and industrial applications [15-20], it is sur-
prising to find that literature on the topic of rational tracer
selection for 13C-MFA is rather limited.

There are many possible choices for 13C-tracers in mam-
malian cultures. Mammalian cells are generally cultured in
complex media containing multiple substrates, including
glucose, glutamine (and other amino acids), fatty acids and
organic acids. Each of these substrates could potentially be
selected as the 13C-tracer. In the past, 13C-glucose, 13C-
glutamine [21,22], 13C-propionate [23,24], and 13C-glycerol
[25], among others [24-26], have been applied to investi-
gate fluxes in mammalian cells. Currently, the most popu-
lar choices are 13C-glucose and 13C-glutamine tracers, as
these compounds are readily metabolized by most mam-
malian cells. Previously, Metallo et al. [17] evaluated sev-
eral commercially available 13C-glucose and 13C-glutamine
tracers for studying mammalian metabolism. From a select
list of available isotopic tracers, Metallo identified optimal
tracers for specific metabolic pathways. Recently, Walther
et al. [27] developed a genetic algorithm to optimize mix-
tures of 13C-glucose and 13C-glutamine tracers for MFA in
mammalian cells. However, because both of these works
were based on simulations using a limited number of tra-
cers, they offered no true insights into rational criteria for
optimal tracer selection and potentially missed novel and
more informative tracers for determining fluxes in mam-
malian cells.
Central to the 13C-tracer experiment design problem

are two interconnected issues: 1) how should the optimal
tracer be determined; and 2) how should the isotopic ex-
periment be conducted. First, there are many possible
tracer substrates commercially available with various
13C-labeling patterns. In addition, the possibility to pur-
chase custom synthesized tracers has become a viable
option. Moreover, multiple 13C-tracers can be applied in
a single tracer experiment [28-30], or alternatively, mul-
tiple parallel labeling experiments can be performed
using a single or multiple 13C-tracers [22,31,32]. All of
these options increase the complexity of the tracer ex-
periment design space. The number of tracer options
quickly increases to a point where it is no longer feasible
to efficiently evaluate all possible tracer combinations
using simulations and trial-and-error approaches. There-
fore, there is a pressing need for new rational approaches
for designing tracer experiments to systematically iden-
tify optimal tracers, or at least reduce the search space to
a computationally more manageable level.
Recently, we introduced a new framework for optimal

13C-tracer experiment design based on elementary metab-
olite units (EMU) decomposition, in which a measured
metabolite is decomposed into a linear combination of so-
called EMU basis vectors [33]. Our methodology decou-
ples isotopic labeling from flux dependencies in a network
model, thus allowing us to draw rational conclusions
regarding tracer feasibility, and as such reduce the number
of tracer candidates. In this work, we applied the EMU
method to a realistic network model of mammalian me-
tabolism, specifically, to the network model proposed by
Henry et al. [31] for HEK-293 cell lines with lactate as the
measured metabolite. This system is of general interest be-
cause it covers all major metabolic pathways of central car-
bon metabolism and uses an easily accessible extracellular
metabolite, i.e. lactate, that is produced by many mamma-
lian cells. The network model of Henry has two free fluxes
of interest that must be estimated from 13C-labeling data,
the oxidative pentose phosphate pathway (oxPPP) flux and
pyruvate carboxylase (PC) flux.
In this work, we used the EMU tracer experiment de-

sign approach to select optimal tracers in the described
system. Our approach is based on sensitivity analysis of
EMU basis vector coefficients with respect to free fluxes
in the model. Through efficient grouping of coefficient
sensitivities, simple tracer selection rules were derived
for high resolution of the fluxes in the model. The ap-
proach resulted in a significant reduction of the number
of possible tracers. The feasible tracers were evaluated
using numerical simulations to identify optimal tracers
for elucidation of both oxPPP and PC fluxes. The opti-
mal tracers that were identified in this work are novel
tracers that have not been previously considered for 13C-
MFA of mammalian cells; specifically, [2,3,4,5,6-13C]glu-
cose for elucidating oxPPP flux and [3,4-13C]glucose for
elucidating PC flux. We demonstrate that 13C-glutamine
tracers perform poorly in this system in comparison to
the optimal glucose tracers.

Results and discussion
Mammalian network model
The reaction network model of mammalian metabolism
was adapted from Henry et al. [31] and is depicted in
Figure 1 (see Additional file 1 for stoichiometry and
atom transitions). External fluxes fixed by measurements
are shown with dashed arrows. The model has two
degrees of freedom, the oxidative pentose phosphate flux
(oxPPP, G6P!R5P+CO2) and pyruvate carboxylase flux
(PC, Pyr +CO2!OAC). The lactate mass isotopomer
distribution (MID) provides the additional constraints
needed to determine the two free fluxes in the model.
The Henry network model contains several substrates,
including glucose and various amino acids. In this work,
glucose and glutamine were considered the main carbon
sources that could be 13C-labeled, while the remaining
amino acids were treated as unlabeled.

EMU basis vector decomposition of mammalian network
model
EMU decomposition of the mammalian network model
in Figure 1 with lactate as the measured metabolite
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Figure 1 Mammalian network model. Network model for HEK-293
cells adapted from Henry et al. (2011). Two free fluxes exist in the
model, the oxidative pentose phosphate pathway flux and pyruvate
carboxylase flux. Dashed lines indicate measured external rates.
Abbreviations: c = cytosol, ext = external.
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resulted in 156 EMU basis vectors (see Additional file 2).
In other words, the system contains 156 possible ways of
assembling the product lactate from the substrates. The
EMU basis vectors with the largest fractional contribu-
tions, i.e. largest coefficients, and largest sensitivities of
coefficients with respect to the two free fluxes in the
model (oxPPP and PC fluxes), are shown in Figure 2A.
For this system, the EMU basis vectors were mainly
associated with one of four pathways: 1) glycolysis, 2)
oxidative pentose phosphate pathway, 3) a pyruvate cycle
that included anaplerosis by PC and cataplerosis by malic
enzyme, and 4) a set of converging pathways that
included anaplerosis from amino acids, e.g. glutamine,
followed by cataplerosis by malic enzyme. The two char-
acteristic EMU basis vectors corresponding to the forma-
tion of lactate through glycolysis were Gluc123 and
Gluc456. Production of lactate through oxPPP also
yielded two characteristic EMU basis vectors, Gluc23 ×
Gluc2 and Gluc23 ×Gluc3; while synthesis of lactate via
glutaminolysis produced, among others, the characteris-
tic EMU basis vectors Gln234 and Gln345.
The EMU basis vector coefficients quantify the frac-

tional contribution of each EMU basis vector’s labeling
to the observed labeling of lactate (Figure 2B). By
definition, the coefficients must sum up to 100%. The
coefficients shown in Figure 2B were calculated for two
flux maps from the study by Henry et al. for two HEK-
293 clones, wild-type cells (WT) and PC-expressing cells
(PYC). The normalized flux values, relative to glucose
uptake rate, are given in Table 1. WT cells converted
most of glucose to lactate, at nearly half of the theoret-
ical yield, and demonstrated moderate oxidative pentose
phosphate flux (~30% of glucose influx), no PC activity,
and low ME activity. The PC-expressing cells differed
from WT cells by having lower lactate production, lower
flux through oxPPP, increased TCA cycle flux, and
increased anaplerosis and cataplerosis. For both HEK-
293 clones, the largest contributions to lactate were from
the EMU basis vectors Gluc456 and Gluc123, i.e. by gly-
colysis. In both cases, the contribution of Gluc456 was
greater than that of Gluc123. This was due to the loss of
C1 of glucose in oxPPP. The net lumped reaction of
oxPPP is: 3 Gluc123!Gluc23 ×Gluc2 +Gluc23 ×Gluc3 + 3
Gluc1 (CO2). Thus, an increase in oxPPP flux will in-
crease the contributions of Gluc23 ×Gluc2 and Gluc23 ×
Gluc3, slightly decrease Gluc123 (due to the loss of C1
carbons), and increase the contribution of Gluc456.
Glycolysis and oxPPP accounted for ~93% of EMU

basis vector contributions to lactate in WT cells. In con-
trast, due to a larger malic enzyme flux in PC-expressing
cells, glycolysis and oxPPP contributed only ~63% to lac-
tate in PYC cells. The remaining 37% of contributions
resulted from anaplerosis. The two main anaplerotic
reactions in this system were PC and glutaminolysis, and
the largest single fractional contribution to lactate was
from the EMU basic vector ‘uuu’ (u = unlabeled), that is,
from EMU basis vector comprised of “non-tracer” sub-
strates (~3.5%). The two dominant glutaminolysis contri-
butions, Gln234 and Gln345, accounted for ~3% of the
total contribution to lactate. The remaining contribu-
tions from glutamine EMUs were divided among
78 EMU basis vectors and contributed ~5% to lactate.
The remaining ~25% of contributions were distributed
among more than 40 EMU basis vectors, with no single
contribution larger than 1.3%.

EMU coefficient sensitivities and tracer experiment design
strategy
The EMU basis vector coefficients provide valuable in-
formation regarding the dominant metabolic pathways in
the system for a given set of fluxes. However, to address
the tracer experiment design problem, i.e. how to select
optimal tracers to accurately estimate fluxes in the
model, additional information is needed. Specifically, the
sensitivities of coefficients with respect to the free fluxes
in the model provide useful additional data. Figure 2C
shows the sensitivities calculated for the PYC flux map.
The sensitivities quantify how the coefficients of EMU
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Figure 2 EMU basis vectors, coefficients, and sensitivities. Representative data for the EMU decomposition of the mammalian network model
for lactate measurement. (A) Major EMU basis vectors from each of four metabolic pathways. (B) Contribution coefficients corresponding to EMU
basis vectors for wild-type (WT) and PC-expressing (PYC) HEK-293 cells. (C) Sensitivities of coefficients to the free fluxes, oxPPP and PC (values
are × 102). Note: “u” refers to non-tracer (i.e. unlabeled) substrate atoms.

Table 1 Metabolic fluxes in the network model used for
data simulation

Flux Wild type (WT) PC cells (PYC)

Gluc.ext!G6P 1.00 1.00

G6P! R5P + CO2 0.29 0.08

GAP! Pyr 1.88 1.93

Pyr! Lac 0.95 0.30

OAC+AcCoA!AKG+CO2 0.89 1.88

Pyr + CO2!OAC 0.00 0.84

Mal!OAC 0.89 1.10

Mal! Pyr + CO2 0.15 1.11

Fluxes were taken from Henry et al. and were normalized to glucose uptake.
Fluxes are shown for wild-type HEK-293 cells (WT) and HEK-293 cells
expressing yeast pyruvate carboxylase (PYC).
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basis vectors are affected by changes in fluxes. A large
sensitivity (either positive or negative) indicates that an
EMU basis vector contribution changes significantly in
response to a small change in a flux, and therefore, may
be a good target for optimal tracer selection.
In this system, lactate mass isotopomers, i.e. M+ 0,

M+1, M+2, and M+3, must provide the constraints
needed to determine the two free fluxes in the model.
Without MS fragmentation of lactate, at most three in-
dependent mass isotopomers can be obtained, i.e. the
sum of lactate mass isotopomers must equal one. As pre-
viously demonstrated, the EMU basis vector formulation
decouples isotopic labeling (i.e. the EMU basis vectors)
from the free fluxes (i.e. the coefficients) in the system.
Using this formulation, lactate mass isotopomers and
sensitivities of lactate mass isotopomers with respect to
the free fluxes can be expressed in a decoupled manner:

Lact ¼ BV � c ð1Þ

d Lactð Þ=du ¼ BV � dc=du ð2Þ

In the above equations, the tracer labeling is confined
to the EMU basis vectors matrix (BV), and the flux
dependencies are given by the coefficient sensitivities
(dc/du). In previous work, we demonstrated that the
sum of sensitivities with respect to any flux in the system
must sum up to zero [33]. Therefore, for each flux in the
model there must be at least one positive sensitivity and
at least one negative sensitivity, i.e. assuming not all sen-
sitivities are zero. By selecting tracer substrates and sub-
strate labeling judiciously, we can control how the EMU
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basis vector sensitivities will map onto lactate mass iso-
topomer sensitivities. Our strategy for optimal tracer ex-
periment design is to choose the tracers such that the
sensitivities of lactate mass isotopomers are maximized,
and thus, we can obtain the best flux resolution. Our
procedure for optimal tracer selection is therefore as
follows:

1) Calculate EMU basis vector sensitivities for all free
fluxes in the model

2) Identify the largest magnitude coefficient sensitivities
for each free flux

3) Construct labeling rules to minimize the overlap of
opposite-signed sensitivities (i.e. to prevent canceling
out of sensitivities)

4) Construct labeling rules to maximize the overlap of
same-signed sensitivities (i.e. to maximize the
sensitivities of isotopomers)

5) List isotopic tracers that are consistent with the
labeling rules and evaluate them by numerical
simulations

In the next two sections we demonstrate how the
above procedure can provide labeling rules to help in the
selection of optimal tracer substrates and labeling pat-
terns for the mammalian network model. By systematic-
ally applying the labeling rules we can drastically reduce
the number of potential tracers to be evaluated by nu-
merical simulations. Here, we demonstrate the applica-
tion of this strategy to determine optimal tracers for
elucidating the oxPPP and PC fluxes in the mammalian
network model.

Rational selection of tracers for estimating oxidative
pentose phosphate pathway flux
The largest coefficient sensitivities for the oxPPP flux are
shown in Figure 3A (full list in Additional file 2). The
largest magnitude sensitivity was for the EMU basis vec-
tor Gluc123, which had a negative sensitivity value of
−16.9. The negative value indicates that the contribution
of Gluc123 sharply decreases for increasing oxPPP flux.
The second largest negative sensitivity was >10-fold
smaller in magnitude, Gluc12 ×Gluc1 (−1.2). The largest
positive sensitivities were for the EMU basis vectors
Gluc23 ×Gluc2 (+6.7), Gluc23 ×Gluc3 (+6.3), and Gluc456
(+2.0).
To minimize the overlap of opposite-signed sensitiv-

ities (i.e. to prevent canceling out of sensitivities for lac-
tate mass isotopomers), the EMU basis vectors with the
positive sensitivities must not produce the same mass
isotopomers as Gluc123. This criterion leads to a set of
simple labeling rules that are shown in Figure 3B and
depicted schematically in Figure 3C. First, Gluc23 ×Gluc2
should differ from Gluc123. This can be achieved only if
glucose carbons 1 and 2 are labeled differently. Similarly,
Gluc23 ×Gluc3 must be different from Gluc123, which
requires that carbons 1 and 3 of glucose are labeled dif-
ferently. For pure tracers, these two rules require that
glucose carbons 2 and 3 are labeled in the same way (i.e.
either both labeled or both unlabeled), hence combining
the same-signed sensitivities, Gluc23 ×Gluc2 and Gluc23 ×
Gluc3. Based on these two labeling rules it is clear that
the first three carbon atoms of glucose must take the
form of Gluc100xxx or Gluc011xxx (x = unspecified). The
positive sensitivity value for Gluc456 sets the final con-
straints on the labeling of glucose. First, Gluc456 should
differ from Gluc123; and second, Gluc456 should produce
the same mass isotopomer as Gluc23 ×Gluc2 and
Gluc23 ×Gluc3. With these rules, the list of 64 possible
glucose tracers is narrowed down to only two glucose
tracers, Gluc100000 (i.e. [1-13C]glucose) and Gluc011111
(i.e. [2,3,4,5,6-13C]glucose). The magnitude of the nega-
tive sensitivities for glucose tracers are shown in Add-
itional file 3, Figure 1A. The tracers with the largest
negative sensitivities all had the predicted labeling pat-
tern of Gluc100xxx or Gluc011xxx. The sensitivity analysis
also revealed that glutamine tracers need not be consid-
ered as potential candidates for estimating oxPPP flux,
since glutamine sensitivities were orders-of-magnitude
smaller than glucose sensitivities for the oxPPP flux.

Rational selection of tracers for estimating pyruvate
carboxylase flux
The largest coefficient sensitivities for the PC flux are
shown in Figure 4A (full list in Additional file 2). For the
PC flux, the two largest magnitude sensitivities were for
EMU basis vectors Gluc123 and Gluc456. Both sensitiv-
ities were negative (−6.0 and −5.7, respectively) and were
much larger in magnitude than other negative sensitiv-
ities. The largest positive sensitivity (+1.0) was for the
EMU basic vector ‘uuu’ (u = unlabeled), i.e. the EMU
basis vector comprised of “non-tracer” substrates.
To maximize the magnitude of the negative sensitivities,

Gluc123 and Gluc456 should produce the same mass isoto-
pomer (i.e. Gluc123 =Gluc456), which is the first labeling rule
for the PC flux shown in Figure 4B. The other rules are
based on preventing the positive sensitivities from canceling
out the two large negative sensitivities and efficiently group-
ing of the positive sensitivities. To prevent canceling out
sensitivities, the EMU basis vector ‘uuu’ should be different
from Gluc123 and Gluc456; in other words, at least one atom
in Gluc123 must be labeled and at least one atom in Gluc456
must be labeled. Next, Gluc5 ×uu and Gluc2×uu should be
different from Gluc123 and Gluc456, requiring that Gluc13 is
labeled, and Gluc46 is labeled. These first four rules create
constraints that all candidate tracers should obey.
Further investigation of the positive sensitivities high-

lights that several sensitivities can be grouped if Gluc2 =
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Gluc5 (e.g. Gluc5 ×uu=Gluc2 ×uu). The remaining rules,
6 – 9, in Figure 4B originate from preventing the overlap
of the negative sensitivities of Gluc123 and Gluc456 with the
remaining positive sensitivities (e.g. Gluc56×Gluc5 must
differ from Gluc456, which is only accomplished if Gluc4 is
not the same as Gluc5). The tracer selection process is
shown schematically in Figure 4C. With these rules, the
list of 64 possible glucose tracers narrows down to only
three potential glucose tracers, Gluc001100 (i.e. [3,4-

13C]glu-
cose), Gluc110011 (i.e. [1,2,5,6-13C]glucose), and Gluc101101
(i.e. [1,3,4,6-13C]glucose). The magnitude of the negative
sensitivities for glucose tracers are shown in Additional file
3, Figure 1B. This analysis also reveals that glutamine tra-
cers need not be considered as candidates for estimating
the PC flux, since glutamine sensitivities were significantly
smaller than glucose sensitivities. The two largest glutam-
ine sensitivities were for Gln234 (+0.5) and Gln345 (+0.5).

Comparison of tracers for mammalian network model
To demonstrate the effectiveness of our EMU method-
ology for tracer selection, we numerically simulated con-
fidence intervals for all pure tracers, i.e. 64 glucose and
32 glutamine tracers. For each tracer, the lactate MID
was calculated based on the PYC flux map, and then
13C-MFA was conducted to estimate fluxes and flux con-
fidence intervals. The simulation results determined that
the optimal tracer for the oxPPP flux was [2,3,4,5,6-13C]
glucose and for the PC flux was [3,4-13C]glucose. Both of
these tracers were predicted through the rational selec-
tion of tracers described in the two sections above. Con-
fidence intervals for the optimal and other representative
tracers are shown in Additional file 4. For the oxPPP
flux, several other tracers had confidence intervals that
approached but did not outperform [2,3,4,5,6-13C]glu-
cose. As predicted by our methodology these tracers all
corresponded to glucose labeling as Gluc100xxx or
Gluc011xxx. Unlike Gluc011111, these tracers violated rules
5 and 6 in Figure 3B, but their violation had minimal ef-
fect as the large negative sensitivity of Gluc123 was pre-
served. For the PC flux, [3,4-13C]glucose performed the
best, and the second optimal tracer, [1,2,5,6-13C]glucose,
was also predicted by our rational design criteria. These
results correspond well with the observation regarding
the positive sensitivities: there were >20 positive sensi-
tivities, ranging from (+0.3 to +1.0), however, none of
these sensitivities has Gluc3 or Gluc4 in the EMU basis
vectors. As a result, the choice of Gluc3 and Gluc4
affected only the EMU basis vectors Gluc123 and Gluc456.
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acceptable tracers that coincide with the rules in (B). [3,4-13C]glucose was determined as the optimal tracer for the PC flux.
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If Gluc3 =Gluc4, the negative sensitivities can easily be
segregated from the positive sensitivities. For example, if
Gluc3 and Gluc4 are labeled, choosing the other glucose
carbons to be unlabeled (Gluc001100) results in no overlap
between the positive sensitivities and Gluc123/Gluc456.
Also, if Gluc3 and Gluc4 are unlabeled, labeling the
remaining glucose carbons (Gluc110011) results in min-
imal cancelling of sensitivities. Thus, it is not surprising
that [3,4-13C]glucose and [1,2,5,6-13C]glucose were the
two best tracers for PC flux resolution.
To illustrate the improvement we obtained through ra-

tional tracer design, we compared the confidence inter-
vals of our proposed tracers to those used in the study
by Henry et al. [31]. Henry et al. used three glucose tra-
cers and one glutamine tracer, [1-13C], [6-13C], and [U-
13C]glucose, and [U-13C]glutamine. The tracers utilized
by Henry et al., with the exception of [6-13C]glucose, are
widely used for 13C-MFA in mammalian cells and are a
good basis for comparison to our novel tracers. In this
work, we identified more optimal tracers, namely
[2,3,4,5,6-13C] for the oxPPP flux and [3,4-13C]glucose
for the PC flux. Figure 5A displays the confidence inter-
vals for the oxPPP flux for Henry’s tracers and our pro-
posed tracer. For the oxPPP flux, [1-13C]glucose
performed well, whereas both [6-13C] and [U-13C]glu-
cose produced large confidence intervals. [U-13C]glutam-
ine produced the largest confidence intervals, which is
expected as no 13C-labeling information is present in the
major EMU basis vectors. [2,3,4,5,6-13C]glucose pro-
duced the smallest confidence intervals of all the tracers,



A B 95% CI 
68% CI 
Best Fit 

Tracers from Henry et al. Optimized  Tracers from Henry et al. Optimized  

Figure 5 Confidence intervals of fluxes from 13C-MFA using simulated data. The tracers used by Henry et al. (2011) were [1-13C], [6-13C], [U-
13C]glucose, and [U-13C]glutamine. (A) Confidence intervals for the oxidative pentose phosphate flux (oxPPP). (B) Confidence intervals for the
pyruvate carboxylase flux (PC). The tracers identified with our rational design criteria, [2,3,4,5,6-13C] and [3,4-`13C]glucose, outperformed the tracers
selected by Henry et al.
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i.e. best flux resolution, displaying about 20-fold im-
provement of the confidence intervals over [6-13C]glu-
cose, [U-13C]glucose, and [U-13C]glutamine. [2,3,4,5,6-
13C]glucose also constituted a significant improvement
(~2.5-fold) over [1-13C]glucose. Figure 5B illustrates the
confidence intervals for the PC flux. [1-13C] and [6-13C]
glucose performed poorly, while [U-13C]glucose was sat-
isfactory. [U-13C]glutamine displayed intervals worse
than [U-13C]glucose but better than both [1-13C] and [6-
13C]glucose. [3,4-13C]glucose produced the smallest con-
fidence interval, displaying a 5-fold improvement com-
pared to [U-13C]glucose.
Finally, we evaluated the use of tracer mixtures. Mix-

tures of the optimal glucose tracers with unlabeled glu-
cose resulted in larger confidence intervals of fluxes (see
Additional file 5, Figure 3A & C). The optimal tracer,
[2,3,4,5,6-13C]glucose, performed better than mixtures of
[2,3-13C]glucose and [4,5,6-13C]glucose for oxPPP flux
resolution; similarly [3,4-13C]glucose resulted in better
PC confidence intervals than mixtures of [3-13C]glucose
and [4-13C]glucose (see Additional file 5, Figure 3B & D).
Overall, these results confirm that sensitivity-based cri-
teria provide a rational approach for determining an ap-
propriate design subspace for tracer selection that can
result in drastic improvements in flux resolution.
Conclusions
13C-Metabolic flux analysis has been increasingly used to
observe in vivo fluxes in mammalian systems [34]. How-
ever, despite recent advances in both the experimental
and computational aspects of 13C-MFA, little thought is
often given to which tracers should be selected for a
given network, and perhaps more importantly why these
tracers are optimal.
In this contribution, we provide a new perspective for

rational-based selection of 13C-tracers. Our methodology
is based on the previously described concept of EMU basis
vectors [33]. The EMU basis vector methodology is a very
attractive strategy for investigating tracer selection as the
tracer labeling is decoupled from the flux dependencies. In
contrast to simulation-based optimal design [17,30,35-38],
we focused on rational grouping of the flux-dependent co-
efficient sensitivities such that we could maximize the sen-
sitivity of a single isotopomer for each free flux. For each
free flux, we sorted the coefficient sensitivities by sign and
decreasing magnitude. We then identified the largest mag-
nitude(s) sensitivities. In the case of multiple moderate to
large sensitivities, we collapsed those of the same sign onto
a single isotopomer, while keeping those of the opposite
sign on different isotopomers. Subsequently, we attempted
to further group same-signed sensitivities, with emphasis
on maximizing the largest sensitivity. In this process, we
created labeling rules, which set constraints on the basis
vector matrix and hence the possible substrate labeling
schemes. Using this rationale, we obtained a significant re-
duction in the number of tracers, from 96 in total (64 glu-
cose and 32 glutamine) to a handful of possible candidates.
We predicted two novel optimal tracers, which were not
previously considered for mammalian systems. For the
oxPPP flux we determined that [2,3,4,5,6-13C]glucose
would be the best tracer and [3,4-13C]glucose would be
optimal for the PC flux. When we compared these a priori
selections to simulation experiments from Henry’s PYC
flux map, we observed drastic improvement in flux reso-
lution for both the oxPPP and PC fluxes.
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One practical insight this contribution provides is in
the identification of feasible substrates for 13C-tracers
through coefficient sensitivities. For a defined network, a
flux map, and a measurement set, the dc/du values are
fixed (see Eq. 2). Regardless of tracer choice and the re-
spective labeling pattern, the coefficient sensitivities will
not be affected. The method proposed in this work relies
on rational grouping of the coefficient sensitivities to
maximize the sensitivity of a single isotopomer for each
free flux. In order to do this, it is important to choose a
substrate that has large dc/du values corresponding with
its respective EMU basis vectors. In essence, the coeffi-
cient sensitivities can be viewed as the potential to
obtaining a large measurement sensitivity. Substrates
with a larger potential are inherently better suited as
tracer candidates for 13C-MFA.
To illustrate this concept, two possible substrates were

considered in this work, glucose and glutamine. Glucose
EMU basis vectors had large magnitude sensitivities for
both the oxPPP flux (Gluc123, -16.9) and the PC flux
(Gluc123, -5.7; Gluc456, -6.0); in contrast, the dominant
glutamine EMU basis vectors had small sensitivities for
the oxPPP flux (Gln234 =Gln345, +0.2) and the PC flux
(Gln234 =Gln345, +0.5). As glutamine sensitivities were an
order of magnitude smaller than glucose sensitivities,
glutamine was clearly not an optimal tracer for this net-
work with lactate as the measured metabolite. The simu-
lation results validated this assessment, as [U-13C]
glutamine was shown to be a poor tracer for elucidation
of both the oxPPP and PC fluxes.
Intrinsically, the poor resolution of the oxPPP flux,

when assessed with glutamine tracers, is reasonable as
no labeling from glutamine can enter into oxPPP. More
surprising is the poor resolution of the PC flux. One ex-
planation for the poor PC flux resolution is the distance of
the measurement, i.e. lactate, from glutamine and the result-
ing dilutions that occur at metabolites α-ketoglutarate and
pyruvate. To remedy this issue, a TCA cycle intermediate
(oxaloacetate or α-ketoglutarate) could be used as additional
measurement; however, even if a TCA cycle intermediate is
used, the measurement remains insensitive to the PC flux
for [U-13C]glutamine (results not shown). We have demon-
strated in this contribution that given a measurement, we
can determine logical tracers for elucidation of a flux of
interest; however, the converse, given a tracer, which mea-
surements should be chosen to determine the flux is not
trivial, or well understood. An understanding of both rela-
tionships will be crucial to designing optimal 13C-tracer
experiments.
This work also demonstrates why it is often difficult to

resolve all fluxes in a network with high confidence. In
this network model, 13C-labeling rules for resolving the
oxPPP flux were inherently contradicting the rules for
optimally resolving the PC flux. Thus, by trying to
resolve one flux better, the resolution of the other flux
worsened. For example, in this work, to resolve the
oxPPP flux it was desirable to have Gluc123 6¼Gluc456;
however for the PC flux, it was pressing to have
Gluc123 =Gluc456. Both of these rules cannot be satisfied
in a single tracer experiment. To select a single tracer to
resolve both fluxes, the coefficient sensitivities and their
magnitudes must be considered for both of the free
fluxes. The most important criterion for oxPPP was that
the strongly negative Gluc123 sensitivity collapsed on a
different isotopomer than Gluc23 ×Gluc2 and Gluc23 ×
Gluc3. Crucial for PC flux resolution was that Gluc123
and Gluc456 produced the same isotopomer. These two
constraints can be satisfied together, if the stipulation for
the oxPPP rule set is relaxed, such that Gluc456 can differ
from Gluc123. Since the Gluc456 sensitivity is only about
2% and Gluc123 is almost −17%, this is a reasonable com-
promise. With the adapted rules, the first three carbons
of glucose must be either [100] or [011] labeled, with the
last three carbons being M+1 or M+2 labeled, respect-
ively. Through careful selection of which tracer rules to
violate, ideally ones that have a lesser impact on the
maximum sensitivity for a given flux, a single tracer can
be chosen to resolve both free fluxes with precision that
approaches that of the optimal tracers we suggested (see
Additional file 6). Another important observation regard-
ing flux resolution corresponds to the range of the sensi-
tivity values. In the case of the oxPPP flux, there are
three dominant sensitivities (Gluc123, Gluc23 ×Gluc2, and
Gluc23 ×Gluc3). Violation of rules involving combina-
tions of these three sensitivities, has drastic effect on the
resulting confidence intervals. However, in the case
where many sensitivities are of similar magnitude (e.g.
the positive sensitivities for PC flux), violation of individ-
ual rules (5–9 in Figure 4) can have less severe conse-
quences. For example, [2,3,4,6-13C]glucose in Additional
file 6 violates rules 5, 7, and 9, but retains confidence
intervals about twice as large as those of [3,4-13C]
glucose.
In simple cases, such as this network, a single tracer and

a single measurement may be capable of resolving all free
fluxes with high fidelity; however, as the number of free
fluxes increases in a network, not all sensitivity rules for
each flux can be satisfied, resulting in smaller magnitudes
of isotopomer sensitivity and loss of confidence in the esti-
mated flux values. This raises an important question of
how to minimize the effects of conflicting sensitivity rules,
and hence improve confidence intervals. There are two
feasible approaches to address this issue. The first option
involves a single-tracer design with the addition of more
independent measurements. The additional isotopomers
may allow more flexibility when satisfying the sensitivity
criteria. One concern, however, is that contradictory rules
may still exist and result in poor flux resolution. In this
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case, additional measurements may have only marginal ef-
fect on flux resolution [35], thus requiring another ap-
proach to achieve better flux results. A second alternative
to improve flux resolution is to conduct parallel labeling
experiments, where specific tracers are designed to be op-
timal for specific fluxes in the model. By integrating label-
ing data from such parallel labeling experiments, fluxes
can be resolved at a high resolution that can never be
achieved using any single tracer experiment. The obvious
drawback to this method is tracer availability and cost, and
the requirement of good biological reproducibility. The
tracer selection methodology presented here gives clear
insight into why flux resolution is challenging and high-
lights the need for investigation of not just tracer and
measurement choice, but also the manner in which tracer
experiments are conducted.
This work also offers some experimental insights regard-

ing the usage of [1-13C]glucose for oxPPP resolution. The
results shown here demonstrate that [2,3,4,5,6-13C]glucose
is a more effective tracer. To further expand on this point,
we numerically simulated oxPPP confidence interval for
[1-13C]glucose and [2,3,4,5,6-13C]glucose. A grid search
for the two free fluxes (oxPPP and PC) was conducted to
evaluate the effect of the free fluxes on the resulting confi-
dence intervals. Overall, for this network with lactate as
the measurement, [2,3,4,5,6-13C]glucose performed as well
as, and in the majority of cases, better than [1-13C]glucose
across the entire flux space (see Additional file 7).
Another insight this work provides is into experiment

design with mixtures of 13C-tracers. Often times, espe-
cially in mammalian cell culture, there will be unlabeled
glucose and amino acids in the media. As shown in Add-
itional file 5, the addition of unlabeled glucose adversely
affects the flux confidence intervals for the optimal tra-
cers. This can be explained through the EMU basis vec-
tor sensitivities. For example, consider the sensitivity of
Gluc123 for the oxPPP flux. When pure [2,3,4,5,6-13C]
glucose is used, the full sensitivity of Gluc123 (−16.9)
contributes to the M+2 isotopomer; however for a 50/
50 mixture of [2,3,4,5,6-13C]glucose and unlabeled glu-
cose, only half of the Gluc123 sensitivity (−8.5) contri-
butes to M+2 and the other half contributes to M+0.
Unlabeled glucose in this example results in a decrease
in the maximum sensitivity obtainable. As a result, the
flux observability suffers. Similarly, with mixtures of [2,3-
13C]glucose and [4,5,6-13C]glucose, the maximum ob-
tainable sensitivity was decreased, also resulting in
poorer confidence intervals.
Lastly, it is important to discuss the limitations of the

Henry model and how it pertains to the proposed method-
ology. The Henry model did not include commonly
accepted reaction reversibilities, such as transketolase (TK)
and transaldolase (TA) in the pentose phosphate pathway
as well as malate dehydrogenase (MDH). Reversibility of
TK and TA will allow back-mixing of labeling in the pen-
tose phosphate pathway and the reversibility of MDH will
result in additional pyruvate cycling via PC, MDH, and
malic enzyme acting in tandem (i.e. pyruvate! oxaloace-
tate!malate! pyruvate). In general, inclusion of revers-
ible reactions may or may not increase the number of EMU
basis vectors depending on whether the reversible reactions
create new, independent “EMU pathways”. The fractional
contributions will change, as the coefficients will be func-
tions of additional free fluxes. The most notable change will
be in the coefficient sensitivities. In addition to sensitivities
with respect to the oxPPP and PC flux, each coefficient will
have a sensitivity to each reversible flux. The tracer selec-
tion process based on our methodology remains the same;
however, it may not be feasible to resolve all fluxes with the
given measurement(s). For example, in the system described
here, lactate only has three independent mass isotopomers,
i.e. assuming the complete lactate molecule is measured
and no other MS fragments of lactate are available. With
the addition of TK, TA, and MDH reversibilities, there will
be six free fluxes, and thus it will not be possible to resolve
all these fluxes with lactate as the only measurement. To
demonstrate this, oxPPP and PC confidence intervals were
simulated for various glucose tracers, where the network
model included TK, TA, and MDH. The results are shown
in Additional file 8. The uncertainty due to the inability to
resolve all six free fluxes caused broadening of the confi-
dence intervals. The best-performing tracers for the oxPPP
and PC flux, however, remained the same.
In addition to reversible reactions, compartmentation

was also neglected in the Henry model, meaning that
parallel reactions in the cytosol and mitochondria were
not distinguished in this model. Experimentally, measur-
ing fluxes in separate compartments is difficult without
isolation of metabolites located in the different cellular
compartments [39]. As advances are made to overcome
this technical challenge, the methodology we have pre-
sented here will still be applicable, as the rational steps
proposed are independent of the model. Regardless of
the number of free fluxes, sensitivity criteria can be ap-
plied to evaluate principles for each free flux. As the
model complexity increases, however, more measure-
ments or parallel experiments may be necessary as dis-
cussed above.
In summary, the results in this paper demonstrate that

optimal tracer experiment design does not need to be a
pure simulation-based trial-and-error process. But rather,
rational insights into tracer design can be gained through
application of the EMU basis vector methodology.
Through careful analysis of sensitivities, with focus on
maximizing isotopomer sensitivity, labeling rules can be
constructed, which guide the selection of 13C-tracers for
a given network. Depending on the size and complexity
of the network, the proposed methodology may provide
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a single optimal tracer, as in [3,4-13C]glucose for the PC
flux; or perhaps more likely, the method will provide a
reduced list of feasible tracers. This reduction of plaus-
ible tracer schemes, whether complete or partial, can sig-
nificantly ease the computational burden for further
tracer experiment design optimization. Going forward,
further emphasis should be placed on understanding the
interdependencies between measurements in conjunc-
tion with a rational selection of tracers and the overarch-
ing philosophy of isotopic experiment design. One
important issue to address is whether a tracer experi-
ment should be completed in isolation, i.e. one tracer ex-
periment to elucidate all the fluxes, or whether parallel
experiments are better suited, i.e. several tracer experi-
ments with each resolving a different subset of the fluxes.
Ultimately, further investigation of the correlations be-
tween flux resolution, the measurement set, and the 13C-
tracer must be conducted. A deeper understanding of
these relationships will allow for more powerful isotopic
experiment design for 13C-MFA.

Methods
Nomenclature
The tracer experiment design framework presented here is
built using mass isotopomer distributions (MIDs) of
EMUs as state variables [13]. An EMU is defined as a spe-
cific subset of metabolite’s atoms. We use a subscript nota-
tion to denote atoms present in an EMU. For example,
A234 indicates that the EMU is comprised of atoms 2, 3,
and 4 of metabolite A. Furthermore, a subscript notation
(with ones and zeros) is used to denote the labeling pat-
terns of isotopomers. For example, A1100 indicates that
metabolite A has four atoms and that atoms 1 and 2 are
labeled and atoms 3 and 4 are unlabeled.
An MID is a vector that contains the fractional abun-

dances of each mass isotopomer of an EMU, i.e. [M+ 0,
M+1, . . ., M+ n] for an EMU of size n. A convolution
(or Cauchy product) describes the condensation of two
EMU’s and is denoted by “×.” For example, if C123 =
A12 × B1, then the MID of C123 will be expressed as:

C123;Mþ0 ¼ A12;Mþ0 B1;Mþ0 ð3aÞ

C123;Mþ1 ¼ A12;Mþ1 B1;Mþ0 þ A12;Mþ0 B1;Mþ1 ð3bÞ

C123;Mþ2 ¼ A12;Mþ2 B1;Mþ0 þ A12;Mþ1 B1;Mþ1 ð3cÞ

C123;Mþ3 ¼ A12;Mþ2 B1;Mþ1 ð3dÞ

In this study, we only consider pure tracers (i.e. not
mixtures of tracers), which means that the MID of an
EMU such as Gluc123 is equivalent to any convolution of
EMUs involving the same atoms, e.g. Gluc123 will pro-
duce same MID as Gluc12 ×Gluc3.
An EMU basis vector is a unique way for assembling

substrate EMUs to form the measured metabolite. The
MID of the measured metabolite is a linear combination
of EMU basis vector MIDs. The coefficients are solely a
function of free fluxes and quantify the “weights” of each
EMU basis vector to the measurement [33].

Network model
The reaction network model of mammalian metabolism
by Henry et al. [31] consists of central carbon metabolic
pathways, including glycolysis, pentose phosphate path-
way, tricarboxylic acid cycle, anaplerotic and cataplerotic
reactions, as well as metabolism of amino acids. Revers-
ible reactions and intracellular compartmentation were
not taken into account in this model; however, scram-
bling of 13C-labeling due to rotational symmetry of fu-
marate and succinate was considered. In total, the model
contains 29 reactions and 29 metabolites, with 15
balanced intracellular metabolites and 13 measured
extracellular metabolites (see Additional file 1). The thir-
teen fluxes fixed by the external measurements are
shown with dashed arrows in Figure 1. The model has
two degrees of freedom, the oxidative pentose phosphate
flux (oxPPP, G6P!R5P+CO2) and pyruvate carboxylase
flux (PC, Pyr +CO2!OAC). Lactate mass isotopomers
provide the additional constraints needed to determine
the two free fluxes in the model. The Henry network
model contains several substrates, including glucose and
various amino acids. In this work, glucose and glutamine
were considered the main carbon sources that could be
13C-labeled, while the remaining amino acids were trea-
ted as unlabeled. The identities of unlabeled amino acid
substrates were collectively referred to as “non-tracer”
substrates in the EMU decomposition. The two flux
maps estimated by Henry et al. for HEK-293 cells (WT)
and PC-expressing HEK-293 cells (PYC) were used as
reference in this study. The PYC flux map was used for
simulations and for optimal tracer experiment design.

EMU decomposition
EMU decomposition of the metabolic network model was
accomplished using Metran software [22]. The resulting
EMU networks were decoupled into separate and smaller
subnetworks using the technique described by Young et al.
[40], and simplified using the technique described by
Antoniewicz et al. [13]. The EMU basis vectors for extra-
cellular lactate were enumerated using the technique by
Crown and Antoniewicz [33]. In the context of this work,
an EMU basis vector refers to a unique way of assembling
substrate EMUs to form the secreted product lactate. The
MID of lactate can be interpreted as a linear combination
of EMU basis vector MIDs. The EMU basis vector
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coefficients quantify the fractional contribution of each
EMU basis vector to the observed labeling of lactate. Coef-
ficient sensitivities were calculated using finite differences
as before [33].
Metabolic flux analysis
13C-MFA was performed using Metran software, which
is built on the EMU framework. In short, fluxes were
estimated by minimizing the variance-weighted sum of
squared residuals between the simulated and model-pre-
dicted MIDs using least-squares regression [41]. In all
cases, flux estimation was repeated at least ten times
starting with random initial values for all fluxes to find a
global solution. At convergence, standard deviations, and
68% and 95% confidence intervals for all fluxes were cal-
culated using the parameter continuation technique [41].
The technique is based on evaluating the profile of SSR
as a function of one flux, while the values for the
remaining fluxes are optimized. The 68% and 95% confi-
dence intervals of an evaluated flux correspond to flux
values that increased SSR by less than 1.00 and 3.84, re-
spectively [41].
Additional files

Additional file 1: – Stoichiometry, carbon transitions, and assumed
fluxes for network model. Title: Stoichiometry, carbon transitions, and
assumed fluxes for network model. Description: Necessary information to
reproduce simulation results in this manuscript.

Additional file 2: – EMU basis vectors, coefficients, and sensitivities.
Title: EMU basis vectors, coefficients, and sensitivities. Description:
Exhaustive listing of EMU basis vectors, coefficients, and sensitivities.

Additional file 3: – Sensitivities of tracers to the oxPPP and PC
fluxes. Title: Sensitivities of tracers to the oxPPP and PC fluxes.
Description: Maximum sensitivity for glucose tracers with respect to (A)
oxPPP flux and (B) PC flux.

Additional file 4: – Confidence intervals of oxPPP and PC fluxes for
various glucose tracers. Title: Confidence intervals of oxPPP and PC
fluxes for various glucose tracers. Description: Representative confidence
intervals for glucose tracers for (A) oxPPP flux and (B) PC flux.

Additional file 5: – Effect of mixtures on oxPPP and PC confidence
intervals. Title: Effect of mixtures on oxPPP and PC confidence intervals.
Description: Mixture effects of unlabeled glucose tracer for optimal oxPPP
and PC tracers (A & C). Comparison of commercially available tracers
mixtures versus the custom synthesized counterparts for oxPPP and PC
fluxes (B & D).

Additional file 6: – Resolution of oxPPP and PC fluxes with a single
tracer. Title: Resolution of oxPPP and PC fluxes with a single tracer.
Description: Comparison of confidence intervals for (A) oxPPP flux and (B)
PC flux for optimal tracers ([1-13C]glucose, [2,3,4,5,6-13C]glucose, and [3,4-
13C]glucose), and others.

Additional file 7: – Comparison of [1-13C]glucose and [2,3,4,5,6-13C]
glucose for oxPPP resolution. Title: Comparison of [1-13C]glucose and
[2,3,4,5,6-13C]glucose for oxPPP resolution. Description: Range of
confidence intervals for [1-13C]glucose and [2,3,4,5,6-13C]glucose over
various combinations of oxPPP and PC flux values.

Additional file 8: – Comparison of reaction reversibilities on
confidence intervals for oxPPP and PC fluxes.
Title: Comparison of reaction reversibilities on confidence intervals for
oxPPP and PC fluxes. Description: Simulation of (A) oxPPP and (B) PC
confidence intervals for network model without reversible fluxes (blue
bars) and with reversible reactions included (red bars). For simulations
including reversible reactions, the assumed exchange fluxes and
normalized flux values were: transketolase (0.08), transaldolase (0.08), and
malate dehydrogenase (1.1).
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