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Abstract

Background: High-throughput measurement technologies produce data sets that have the potential to elucidate
the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community
faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological
processes that have been perturbed at the mechanistic level. Here, a new approach is built on previous
methodologies in which high-throughput data was interpreted using prior biological knowledge of cause and
effect relationships. These relationships are structured into network models that describe specific biological
processes, such as inflammatory signaling or cell cycle progression. This enables quantitative assessment of network
perturbation in response to a given stimulus.

Results: Four complementary methods were devised to quantify treatment-induced activity changes in processes
described by network models. In addition, companion statistics were developed to qualify significance and
specificity of the results. This approach is called Network Perturbation Amplitude (NPA) scoring because the
amplitudes of treatment-induced perturbations are computed for biological network models. The NPA methods
were tested on two transcriptomic data sets: normal human bronchial epithelial (NHBE) cells treated with the
pro-inflammatory signaling mediator TNFa, and HCT116 colon cancer cells treated with the CDK cell cycle inhibitor
R547. Each data set was scored against network models representing different aspects of inflammatory signaling
and cell cycle progression, and these scores were compared with independent measures of pathway activity in
NHBE cells to verify the approach. The NPA scoring method successfully quantified the amplitude of TNFa-induced
perturbation for each network model when compared against NF-kB nuclear localization and cell number. In
addition, the degree and specificity to which CDK-inhibition affected cell cycle and inflammatory signaling were
meaningfully determined.

Conclusions: The NPA scoring method leverages high-throughput measurements and a priori literature-derived
knowledge in the form of network models to characterize the activity change for a broad collection of biological
processes at high-resolution. Applications of this framework include comparative assessment of the biological
impact caused by environmental factors, toxic substances, or drug treatments.
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Background

Acquisition of large-scale data sets representing a variety
of data modalities has become a crucial aspect of experi-
mental system characterization. This strategy enables the
broad capture of biological information in a short time
and with a relative small investment of effort, in the hope
that valuable biological insights might be gained. How-
ever, the amount of information collected can be over-
whelming, making interpretation of the data difficult and
subsequent detailed biological understanding elusive. Re-
ducing the complexity of such data by evaluating it in a
relevant biological context is required in order to gain
meaningful insight.

High-throughput measurements can be evaluated against
literature-curated “cause and effect” relationships extracted
from the Selventa Knowledgebase (see Methods). As illu-
strated in Figure la, a structure called a “HYP” (derived
from “hypothesis”) is used. A HYP is a specific type of
network model comprised of a set of causal relation-
ships connecting a particular biological activity (e.g.,
the increase in abundance or activation of a particular
kinase, or a more complex network model describing
a growth factor signaling pathway) to measurable
downstream entities (e.g., gene expression values) that it
positively or negatively regulates. Reverse-causal reasoning
(RCR) uses the measurable downstream entities of a HYP
to deduce information about the activity of the upstream
entity of the HYP, based on an appropriate set of mea-
surements (e.g., differential gene expression from a
treatment versus control experiment) [1]. Using mea-
sured downstream effects to deduce the activity of up-
stream entities is advantageous in that, for gene
expression data, it does not depend on the “forward” as-
sumption that mRNA expression changes are always dir-
ectly correlated with protein activity changes [2-4], an
assumption that does not take into account the effects of
translational or post-translational regulation on protein
activity.

The HYP can describe causal relationships between an
upstream biological activity and any type of high-
throughput data. However, the work described here fo-
cuses on the evaluation of whole-genome mRNA expres-
sion changes; thus, the HYP is the equivalent of a causal
“gene expression signature” for a given entity or process,
for example, the activity of a particular kinase. Previous
work has explored the importance of uncovering a char-
acteristic signature of gene expression changes that
results from one or more perturbations to a biological
process, and the subsequent scoring of that signature’s
presence in additional data sets as a measure of that pro-
cess’s specific activity amplitude. Most work in this field
has involved identifying and scoring signatures that are
correlated with a disease phenotype [5-8]. These pheno-
type-derived signatures provide significant classification
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power, but often lack a mechanistic or causal relationship
between a single specific perturbation and the signature.
Consequently, these signatures may represent multiple
distinct unknown perturbations that lead to, or result
from, the same disease phenotype.

Alternatively, a number of studies have focused on
measuring causal signatures based on very specific up-
stream perturbations, either performed directly in the
system of interest [9] or coming from closely-related
published data [10]. Based on the simple, yet powerful
premise that modulation of cellular pathways and the
components therein is associated with distinct signatures
in downstream measurable entities, causally-derived sig-
natures hypothesize that the “cause” of the signature can
be identified with high specificity from the measured “ef-
fect” [11]. These studies have demonstrated the great po-
tential of applying a causal-pathway activity scoring
strategy to clinical problems. For example, they have pro-
vided prognosis predictions in gastric cancer patients
and indications of specific drug efficacy [10].

As a consequence, coupling specific causal HYPs cap-
tured in the Selventa Knowledgebase with a measure of
perturbed activity would be a means to further realize
this clinical potential, as well as the potential to increase
basic biological understanding that is harbored within
high-throughput data. However, the HYP infrastructure
has been previously exclusively employed as an explora-
tory tool for identifying relevant perturbed biology by
drawing qualitative mechanistic inferences based on stat-
istical enrichments [12-14]. Therefore, new methods are
required to confer an explicit, more quantifiable estimate
of the degree of HYP activity for a more quantitative
comparative assessment infrastructure. Such methods
scoring network perturbation amplitudes (NPA) would
facilitate a high-resolution comparison of biological
states, both by virtue of a continuous scale of scores and
the breadth of HYPs that are immediately available for
scoring.

To assess HYP amplitude, four complementary scoring
algorithms were developed: Strength, Geometric Perturb-
ation Index (GPI), Measured Abundance Signal Score
(MASS), and Expected Perturbation Index (EPI). NPA
scoring was then applied to different inflammatory and
cell cycle-related HYPs using two transcriptomic data
sets: a TNFa dose and time series in normal human
bronchial epithelial (NHBE) cells and a CDK inhibitor
R547 dose and time series in HCT116 colon cancer cells
[15]. This study establishes the use of a broad, literature-
derived knowledgebase to score the amplitude of various
aspects of biology, which can be defined as very specific
mechanisms (such as an individual protein activity) that
are directly proximal to the data, or as a larger network
of interest that is composed of a collection of individual
mechanisms.
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Figure 1 Constructing and scoring causal network models. (a) The Selventa Knowledgebase is composed of individual causal relationships
that are curated from available sources (generally published scientific literature). For example, in the statement “A — exp(X)" entity A may
represent the activity of a particular kinase that has been shown to lead to increased expression of gene X. A HYP is a set of causal relationships
derived from the Selventa Knowledgebase that relate an upstream entity to the downstream measurable entities that it regulates. In the HYP
example entity A regulates the expressions of genes W, X, Y, and Z following the specific regulation signs “—" (positive regulation) and “~|"
(negative regulation). (b) An aggregated HYP can be generated from a causal network model, which is a collection of causally linked entities
derived from the Selventa Knowledgebase (grey edges). This causal network model can be augmented with the causal relationships to the
downstream measureable entities of its nodes (black edges), also derived from the Selventa Knowledgebase. As a consequence, a causal network
model can be equivalently viewed as a collection of causally linked HYPs. Next, all the downstream measurable entities of the network model
nodes are combined by adjusting their signs based on the causal relationships in the network. This essential step toward the construction of the
aggregated HYP is well-defined as long as the network model is causally consistent (see Methods). Because these nodes have a negative causal
relationship with the reference node (node A), the regulation signs “—" or “—|" of the downstream measureable entities from nodes C and D are
inverted (red edges) when constructing the aggregated HYP from the causal network model. (c) NPA scores are calculated from high-throughput
data, such as differential gene expression data obtained from treatment versus control comparisons, and applied to an NPA scoring algorithm in
the context of a specific causal network model represented by its aggregated HYP.
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Results

The HYP is the foundation for scoring network models
The HYP represents the relationships between a set of
measured data, here gene expression data, and a bio-
logical entity that is a known controller of those genes.
Additionally, these relationships include the sign (posi-
tive or negative) of influence between the upstream
entity and the differential expression of the downstream
genes. The downstream genes of a HYP are drawn from
a database of literature-curated causal biological know-
ledge (Figure 1a). The causal relationships of a HYP that
link the upstream entity to downstream genes are the
substrate for the calculation of process amplitude using
the NPA scoring algorithms (see below).

A more general causal network model can be con-
structed from a set of HYPs that are themselves causally
connected by literature-derived edges (see Methods).
Such a network model can be thought of as providing
higher-level connections between HYPs by linking the
upstream controllers of these HYPs, based on the path-
way’s graph structure. Complex biological processes such
as cell proliferation or cellular stress can be efficiently
described by causal network models [16,17].

A complex causal network model of biological entities
can be transformed into a single HYP by collecting the
individual HYPs representing entities in the model and
regrouping the connections of all the downstream genes
to a single upstream process representing the whole
complex causal network model; this in essence is a flat-
tening of the underlying graph structure (Figure 1b). In
this fashion, the activity changes of the biological entities
described by the network model can be assessed via the
aggregation of its individual HYPs, such that the under-
lying gene expression measurements contribute to the
network as a whole (see Methods for a detailed descrip-
tion of how the resulting aggregated HYP is
constructed).

Scoring HYPs with four NPA methods

NPA scoring applies a defined algorithm to an experi-
mental data set consisting in a series of treatment versus
control comparisons, where the experimental data is
filtered down to a particular scope of biology (and thus a
particular set of gene expression relationships) by the
context of a defined biological network model
(Figure 1c). Specifically, a series of NPA metrics were
developed to evaluate the activity of the biological
entities represented by a HYP. The NPA metrics were
designed such that positive values mean increased activ-
ity of the biological entities represented by the HYP
(compared to control), and negative values mean
decreased activity (compared to control). Furthermore a
positive or negative relative difference between two NPA
scores denotes the same relative difference in the
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magnitude of the activity of the biological entities repre-
sented by the HYP.

In this study, gene expression data was used to demon-
strate the NPA approach using four different scoring
methods: Strength, GPI, MASS, and EPI (see Methods).
Briefly, Strength is the mean treatment-induced differen-
tial expressions of the HYP’s downstream genes, adjusted
for the sign of their causal connection to the upstream
entity of the HYP. GPI is similar to Strength, except that
the contribution of each gene is additionally weighted by
taking into account the statistical significance of its dif-
ferential expression. MASS is the change in absolute
downstream quantities in a direction supporting an in-
crease in the upstream entity (i.e., the sum of the mea-
surements corrected for their causal connection to the
upstream entity), divided by an average of a total abso-
lute quantity of the downstreams. Finally, EPI is a
“smoothed” version of GPI, obtained by averaging a
slightly modified form of GPI over all possible values of
a threshold for statistically significant differential gene
expressions. Each method has specific yet complemen-
tary advantages (Table 1), having been tailored for a par-
ticular measurement technology or having different
conceptual assumptions applied (see Methods). Further
complementary aspects of these methods will be dis-
cussed below (see Discussion).

Statistical annotation of NPA scores

Each NPA score, regardless of algorithm, represents an
abstracted view of a set of biological measurements in
the context of a particular HYP. As such, dozens, hun-
dreds, or even thousands of measurements may be
aggregated into a single score. In order to better
characterize an NPA score and derive value from its use,
additional statistics that qualify the score are required.
Two such statistics, Uncertainty and Specificity, were
developed. Uncertainty is a confidence interval for a par-
ticular NPA score, while Specificity tests whether an
NPA score is specific to the downstream genes repre-
sented by a particular HYP, and not due to a general
trend of the data (see Methods).

NPA scoring of an NF-kB HYP accurately assesses NF-kB
activity

In order to evaluate the NPA approach, an NF-kB HYP
was scored for a well-understood and controlled experi-
mental system — TNFa-treated NHBE cells. The NPA
results were then compared with an explicit measure of
the NF-kB complex activity provided by its nuclear
translocation.

Activation of the stress- and immune-response tran-
scription factor NF-kB (nuclear factor kappa-light-chain
enhancer of activated B cells) has been well-defined as a
major mediator of TNFa-induced signaling in a variety
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Table 1 NPA Method Characteristics
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Method Main features Assumptions Pros Cons

Linear, unbiased. The contributions from the noisy Intuitive. Noisy/biased signals can

Based on loa, differential downstream measurables sum artificially decrease/increase
Strength ased on 109, ditierentia up to zero. the results.

measurements (e.g., log, fold

changes of measurements).

Based on log, differential The noisy downstream measurables Intuitive. False non-discovery rate depends

measurements. have low false non-discovery rates on the number of experimental

) ) ) which can be used to minimize ) replicates.
GPI Down-weights weak differential . - More robust to noisy P
- their contributions. !

measurements using false signals than Strength.

non-discovery rates.

Linear and unbiased in absolute  Absolute changes in measurements Intuitive. Measurements must be directly

non-log, scale. are more important than relative comparable across all downstream
MASS changes. measurables.

Dependent on absolute

changes in measurements.

Based on log, differential The downstream measurables with More robust to noisy Less intuitive.

measurements. higher differential values should signals than Strength.
EPI have stronger contributions than

Up-weights strong differential

those with lower differential values.

Highest sensitivity to

Bootstrapping is needed for

measurements without using
false non-discovery rates.

strong differential
measurements.

calculating Uncertainty.

of systems [18,19]. NHBE cells were treated with four
different doses of TNFa (0.1, 1, 10 and 100 ng/mL) and
total RNA was collected for microarray measurement at
four different times after treatment (30 minutes, 2 hours,
4 hours and 24 hours) (see Methods). All treatments
were compared to time-matched mock-treated controls
to obtain 16 contrasts (4 doses x 4 time points).

Each amplitude scoring method was investigated using a
HYP created to be a specific measure of NF-«kB activation,
the NF-kB-direct HYP (Additional file 1). This HYP is
composed of 155 genes (curated from 247 distinct refer-
ences, some genes being supported by more than one refer-
ence) known to be directly regulated by NF-xB (genes
whose expression is controlled in an NF-kB-dependent
manner and whose promoter sequences are directly bound
by NF-kB). Each scoring method showed the same pattern
of response to TNFa, having demonstrated a dose-
dependent response at all times, and a time-dependent
response that generally saturated at later times (2 hours or
4 hours, depending on the scoring method; Figure 2a).
However, there were some differences between the score
patterns for each scoring method. The closely-related
Strength and GPI methods produced almost indistinguish-
able patterns of response, suggesting the contributions
from noise were balanced in this experiment (see Table 1).
The EPI method was qualitatively different from Strength
and GPI in that EPI scores continued to increase from 2
hours to 4 hours to 24 hours, while Strength and GPI
scores plateaued from 4 hours to 24 hours. Also, the EPI
method produced near-zero scores for 0.1 ng/mL TNFa. In
general, EPI scores for other HYPs and data sets also
appeared to reduce to O (or near to 0) scores that trended
relatively lower by other methods (Figures 2 and 3). The

MASS method qualitatively differed from Strength and
GPI primarily at the 4 and 24 hour time points, with
Strength and GPI scores increasing from 2 hours to 4
hours and plateauing from 4 hours to 24 hours, while
MASS scores plateaued from 2 hours to 4 hours and
increased from 4 hours to 24 hours. Strength and GPI
scores met the Specificity criterion (Specificity p-value <
0.05) for all conditions. The lowest dose and earliest time
point for MASS, and the lowest dose for all but the 2 hour
time point for the EPI method, were found to not be spe-
cific to the NF-«kB-direct HYP.

Next, NF-kB-direct HYP scores were compared to
NF-«kB nuclear translocation. Upon activation, NF-«B is
transported into the nucleus where it acts to regulate the
expression of many genes [18,19]. A series of feedback
loops then lead to the subsequent translocation of NF-
KB back to the cytoplasm, and this oscillatory cycle con-
tinues several times [19]. Because NF-kB oscillations
occur with slightly different periods in different cells in
the population, the first oscillation is the most reliable
population-measure of NF-kB activation. Although the
time of the first oscillation depends on dose, 30 minutes
after TNFa treatment is a realistic time to measure
NF-kB nuclear translocation for the doses used here
(Additional file 2) [19]. Each scoring method produced a
monotonic, and in some cases nearly linear, relationship
between score and nuclear translocation, with Pearson
correlation coefficients between 0.85 and 0.98 for the dif-
ferent scoring methods (Figure 4). Interestingly, this
dose-dependent relationship was preserved at different
times after TNFa treatment (Additional file 3). These
findings demonstrate that the HYP-based NPA scores
can quantify NF-«kB transcriptional activity.
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Figure 2 HYP scores for TNFa-treated NHBE cells. Transcriptomic data from TNFa-treated NHBE cells was scored using each scoring method
(Strength, GPI, EPI, and MASS) for (a) the NF-kB-direct HYP, (b) the IKK/NF-«kB signaling HYP, (c) the TNF HYP, and (d) the E2F1-direct HYP. Error
bars represent the 95 % confidence interval as determined by the Uncertainty statistic, and scores that failed the Specificity criterion (Specificity p-
value > 0.05; 1000 comparable HYPs) are shaded in gray.

NPA scoring of additional HYPs can quantitatively assess
response to TNFa

The effects of HYP size and composition were investigated.
First, the effect of hand-selecting a set of measurements
that are known to be modulated by NF-«B specifically in a
TNFa-dependent manner was assessed. A HYP was con-
structed from a set of 20 genes that were previously mea-
sured via RT-PCR to assess NF-kB activity in response to
TNFa treatment in 3T3 mouse fibroblast cells (omitting 2
genes that have no direct human ortholog) [19]. These
genes were measured as perturbed by TNFa in 3T3 cells
upon dosing with TNFa (10 different concentrations span-
ning 100 ng/mL to 0.005 ng/mL) over a 12 hour time
course. This HYP produced a very similar pattern of activa-
tion to the NF-kB-direct HYP (Additional file 4), suggesting
that inclusion of genes whose TNFa-dependent expression
has not been directly verified does not have a detrimental
effect on the quality of the HYP score.

Next, the effects of using HYPs derived from upstream
biological entities that are less proximal to the measurement
were investigated. To do so, two additional HYPs were con-
structed: the IKK/NF-kB signaling HYP (Additional file 5),
which is composed of 992 genes (curated from 414 different

references) that are known to be modulated by perturbation
of proteins in a causal network model of signaling from the
IkB kinase (IKK) proteins to NF-«B activation (Additional
file 6); and the TNF HYP (Additional file 7), which is com-
posed of 1741 genes (curated from 589 different references)
that are known to be modulated by treatment of cells with
TNFa. The IKK/NF-kB signaling HYP was generated by
first constructing a causal network model of IKK/NF-kB
signaling, and then transforming it into a single HYP by the
aggregation procedure illustrated in Figure 1b (see Meth-
ods). Whereas the NF-kB-direct HYP is composed entirely
of genes whose expressions were directly controlled by a
single transcription factor (NF-kB), each of these two HYPs
contains genes whose direct transcriptional controller is not
necessarily known. The expression of these genes may be
controlled by transcription factors not involved in con-
structing the HYP. For example, genes in the IKK/NF-kB
signaling HYP are known to be modulated by perturbation
of proteins in the IKK/NF-«B signaling causal network
model, but some of these genes could be regulated as sec-
ondary effects caused by altered expression of a smaller
subset of genes that are directly modulated by NF-kB. Also,
TNFa is a ligand and therefore does not directly mediate
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Figure 3 HYP scores for CDK inhibitor-treated HCT116 cells. Transcriptomic data from HCT116 colon cancer cells treated with the CDK
inhibitor R547 was scored using each scoring method (Strength, GPI, EPI, and MASS) for (a) the NF-kB-direct HYP, (b) the IKK/NF-kB signaling HYP,
(c) the TNF HYP, and (d) the E2F1-direct HYP. Error bars represent the 95 % confidence interval as determined by the Uncertainty statistic. Scores
that failed the Specificity criterion (Specificity p-value > 0.05; 1000 comparable HYPs) are shaded in gray.
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Figure 4 HYP scores versus NF-kB nuclear translocation. The NF-
kB-direct HYP scores at 30 minutes for each amplitude scoring
method (Strength, GPI, EPI and MASS) plotted against NF-kB nuclear
translocation at 30 minutes. Score error bars represent the 95 %
confidence interval as determined by the Uncertainty statistic. Error
bars in NF-kB nuclear translocation represent the standard deviation
of the mean nuclear translocation for three different fields of view of
the same population of cells. The Pearson correlation between
nuclear translocation and NPA score was 0.98 for Strength, 0.92 for
GPI, 0.85 for EPI, and 0.97 for MASS.

transcription of any genes. Treatment of cells with TNFa
results in activation of a myriad of transcription factors, any
of which may directly or indirectly (for example, through
autocrine signaling) alter the expression of each gene in the
TNF HYP.

The IKK/NF-xB signaling HYP and TNF HYP give
insight into the behaviors of HYPs at different levels of
proximity to the measurements. The IKK/NF-kB signaling
HYP is primarily composed of genes that are regulated
(either directly or indirectly) by NF-«kB (Additional file 6),
and it produced a pattern of response that is very similar
to the NF-kB-direct HYP (Figure 2b). This similar pattern
of response suggests that there is not a large difference
between the population-level behavior of genes that are
known to be directly regulated by a transcription factor
and the behavior of genes where knowledge of direct regu-
lation is unknown. The time- and dose-dependent
response that was seen for the NF-kB-direct HYP appears
somewhat less robust in the TNF HYP (Figure 2c¢), for ex-
ample at the 30 minute time point, but again the four
methods produced very similar responses. Thus, although
the general pattern of response was well-preserved among
the HYPs, minor but noticeable differences in response
can be observed in HYPs that are less proximal to the
measurements.
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NPA scoring detects limited cross-talk between NF-kB and
cell cycle signaling

To assess the ability of HYPs to respond specifically to rele-
vant TNFa signaling perturbations, a HYP was constructed
for a key cell-cycle component, the transcription factor
E2F1 (Additional file 8), with the assumption that E2F1 is a
less direct effector of TNFa signaling compared to NF-kB.
The E2F1-direct HYP is composed of 80 genes (curated
from 54 different references) known to be directly regulated
by E2F1 (expression controlled by E2F1 and promoter
sequence bound by E2F1). The E2F1-direct HYP showed a
dose-dependent decrease in score for MASS at the 2, 4, and
24 hour time points, and for Strength and GPI at the 24
hour time point (Figure 2d). Consistent with this predicted
decrease in cell cycle progression, CellTiter-Glo® measures
of cell number found no appreciable increase in cell number
after 24 hours of TNFa treatment (Additional file 9). Fur-
ther verification of these conclusions could be performed,
for example, by measuring the cell cycle progression of the
sample populations via flow cytometry.

In order to provide a comparison of NPA results for biol-
ogy not directly related to NF-«kB signaling, the NPA re-
sponse of the four HYPs introduced above (NF-kB-direct,
IKK/NEF-«B signaling, TNF, and E2F1-direct) were assessed
in response to inhibition of cell cycle progression via a CDK
inhibitor. Specifically, a publicly available microarray data
set was used for treatment of HCT116 colon cancer cells
with three different concentrations of the CDK inhibitor
R547 (GSE15395) [15] (Figure 3). All four NPA methods
demonstrated dose- and time-dependent decreases in the
E2F1-direct HYP score at the 4 hour, 6 hour, and 24 hour
time points. The TNF HYP showed a similar pattern of re-
sponse as the E2F1-direct HYP, however few of the scores
passed the Specificity criterion. This suggests that some of
the genes in this HYP are cell cycle regulated, but are not
sufficient in number to pass the Specificity criterion. In con-
trast, the NF-xkB-direct and IKK/NF-«kB signaling HYP
scores did not display this same dose- and time-dependent
pattern, indicating that these focused HYPs potentially con-
tain few cell cycle regulated genes. However, the scores for
the two NF-kB HYPs showed significant increases at the 6
hour time point (NF-«kB-direct HYP) and the 24 hour time
point (NF-kB-direct and IKK/NF-«B signaling HYPs), sug-
gesting that NF-kB may perhaps be activated by cell cycle
arrest (for example, [20]). Furthermore, the pattern of scores
for the NF-kB-direct and IKK/NF-«kB signaling HYPs were
significantly different for the CDK-inhibition data set, indi-
cating that these HYPs will not produce near-identical pat-
terns of scores under circumstances where NF-kB is not
activated or is perhaps regulated in a complex manner.

Discussion
Previous work has demonstrated the utility of exploring
the reverse causal interpretation of large scale data sets
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using HYPs as opposed to reasoning downstream from
the data [12-14]. The ability to deduce the degree of
activity for a broad spectrum of biological processes,
afforded by an extensive causal knowledgebase, would
provide enormous potential for facilitating biological
characterization and yield an even deeper mining of
information from large-scale data. This approach offers
the potential to quantify responses of biological systems
to anything from toxicity and disease processes to thera-
peutic benefit. This study successfully demonstrated the
use of the causal connections provided by an appropriate
knowledgebase as the basis for quantifying the activity
degree of specific biology from high-throughput data.
This quantitative application of HYPs, representing pos-
sibly complex network models, to experimental data
measuring treatment-induced perturbations is called
Network Perturbation Amplitude (NPA) scoring.

Causal directionality is key for the HYP framework

For all NPA metrics, the proper scoring of a HYP is
dependent upon the directionality (signs) of the causal
influences linking the upstream biological entity repre-
sented by the HYP to the downstream genes whose
expression it regulates. The knowledgebase harbors in-
formation about the specific signs (positive or negative)
of the regulation exerted by the entity represented by
the HYP on the expression of each of the downstream
genes. The logic for incorporating differential gene ex-
pression measurements into an NPA score based on a
knowledgebase-specified directional blueprint can be
made via arguments against two specific alternative
scoring schemes. The case of scoring an activity without
taking into account the sign of causal influence in the
HYP can make sense if the HYP represents a transcrip-
tion factor that always activates or represses genes.
However, if there are downstream genes in a HYP that
are controlled in an opposite manner to the others, the
error of an activity score based on an assumption of a
single sign becomes apparent: the score contribution of
genes that are known to be negatively regulated within a
HYP might cancel, instead of add to, the score contribu-
tion of genes that are known to be positively regulated
within a HYP. An alternative tactic would be to
incorporate the absolute values of the differential
expression for each gene. This has the problem of
always producing positive scores for a HYP as well as
artificially inflating scores: genes that change in a
manner opposite of how a HYP is known to control
a gene would add to a HYP activity score rather than
detract from it. Standard gene enrichment analyses
usually ignore regulation signs when scoring pathways
[21,22], but like some newer gene enrichment meth-
ods [23], NPA assessment methods integrate both types of
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causal signed relationships of the biology to the measure-
ments for their output.

HYPs can be rapidly constructed from an appropriate
knowledgebase

HYPs were constructed from the Selventa Knowledgebase,
a database of causal biological knowledge that allows rapid
creation of HYPs for any biological process, entity, or caus-
ally consistent network model that is adequately connected
to gene expression changes (see Methods). The TNF and
E2F1-direct HYPs were created from this knowledgebase
without any additional literature or experimental investiga-
tion. For the NF-kB-direct HYP, because the content of the
knowledgebase was biologically too limited in this context,
additional genes that are directly regulated by NF-xB were
mined from the literature and added to the knowledgebase
as causal relationships. The additional knowledge concern-
ing the direct effects of NF-kB was necessary to ensure a
broadest representation of NF-kB biology. To construct
the IKK/NF-kB signaling HYP, a network model was built
by assembling causal relationships between relevant en-
tities that were represented in the Selventa Knowledgebase.
Similarly, HYPs and network models can integrate infor-
mation from other sources besides the Selventa Knowl-
edgebase, including literature articles and curated
databases, as long as this information can be interpreted as
signed causal relationships. The boundaries of HYPs and
network models are defined during their construction (see
Methods). For this study the model boundaries were
chosen based on the biology known to be associated with
the TNFa treatment of NHBE cells. In a case where the
expected biology is unknown, a process of identifying biol-
ogy is required to determine the most appropriate network
models and HYPs to score. Such an exploratory perspec-
tive can be provided by evaluating the resulting HYPs
using the RCR approach [1], which provides a statistical as-
sessment of whether the activation of a biological entity is
consistent with measured data, as previously described
[12-14].

Building the IKK/NF-kB signaling network model
afforded the ability to aggregate the gene expression
measurements that underlie all the individual HYPS of a
specific NF-kB network and provide a single score for
that network. However, in condensing a complex model
into a single score, there are caveats to consider. Gene
expressions that have an ambiguous relationship to the
network (both causally positively and negatively regu-
lated) must effectively be removed for scoring purposes.
These ambiguities affect approximately 6 % of the down-
stream genes of the aggregated IKK/NF-kB signaling
HYP, which is similar to the case of single HYPs: the NF-
kB-direct and the TNF HYPs contains approximately 4 %
and 7 % ambiguous downstream genes, respectively.
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Their actual impact on the NPA results is expected to re-
main limited (see below).

Additionally, resolution with regard to which individual
entities of the network model are being perturbed is also
diluted in the overall network score. Thus, when generat-
ing an aggregated HYP for a network model, key informa-
tion about the network is not explicitly available, and it is
important to keep these features in mind when interpret-
ing NPA scores (see below for a further discussion of the
methodological perspectives). However, despite these
caveats, the IKI(/NF-kB signaling HYP produced a near-
identical pattern of response as the NF-kB-direct HYP, and
thus is also correlated with the measured physiological
endpoint, NF-kB activation.

This finding that similar NPA results were obtained
using HYPs featuring different characteristics highlights
an essential aspect of this work: using the same network
model for calculating the NPA scores of the various ex-
perimental conditions to be compared (e.g., for all TNFa
doses and post-treatment times) provides results that are
robust against having exhaustively captured the per-
turbed biology in the network model used for NPA scor-
ing. This aspect is fundamental, especially given the
practical impossibility of constructing networks models
capturing all of the biological processes potentially per-
turbed in a given experiment. It is also exploited when
constructing network models describing processes that
are sufficiently generic, e.g., cell proliferation or cellular
stress [16,17], so that they can be meaningfully applied
in a variety of experimental situations.

The robustness of the results also preserves the validity
of the NPA approach against the possibility of HYPs and
network models evolving slightly due to the constantly im-
proving understanding of the biological processes they de-
scribe. This property was concretely tested with a simple
step-back calculation consisting of randomly removing
edges to the HYPs and comparing the corresponding NPA
results to the original ones. The results demonstrated a
remarkable robustness: typically, after removal of 20 % of
their downstream genes, the four HYPs used in this work
returned GPI profiles that correlated extremely well with
their original values shown on Figure 2 (Spearman correla-
tions of 0.99 + 0.01 obtained on 1000 samples). Therefore
reasonable future additions to the Selventa Knowledgebase
are not expected to significantly impact the NPA results
presented in the work. As a corollary, these robustness
considerations also support the choice of discarding the
downstream genes expressions that have an ambiguous re-
lationship to the HYP upstream entity. Examination of
Additional file 1, Additional file 5, Additional file 7, Add-
itional file 8 showed that the fraction of ambiguous down-
stream genes never exceeds 10 %, which clearly indicates
that this effect does not affect the NPA results.
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NPA scoring methods accurately assess biological
activation

Four different algorithms were developed to quantify the
amplitude of perturbation of a HYP. Each method
employs a different approach to evaluate the degree of
perturbation between two experimental measures for a
given HYP (see Table 1 and Methods). Despite their
differences, the four methods generally produced similar
qualitative results, suggesting that each NPA scoring
method is able to effectively quantify the changes in
activity of the underlying biological processes. This claim
is supported by the fact that the NPA scores correlated
well with NF-kB nuclear translocation, a standard meas-
ure of NF-«kB activity (correlation coefficients between
0.85 and 0.98). This correlation further validates our
method of constructing HYPs from a database of prior
knowledge.

Future work will confirm the circumstances in which
each method is expected to be the most appropriate. For
example, the MASS algorithm was developed to use ab-
solute measurement technologies such as an absolute
transcript count offered by quantitative next generation
sequencing. Given more appropriate measurement tech-
nology, the MASS method may be more applicable in
circumstances where small differential expressions in a
set of highly expressed genes have a dominant effect over
large differential expressions in a set of weakly expressed
genes. On the other hand, the GPI algorithm, and to an
even larger extent the EPI algorithm, down-weight the
contributions from genes with poor statistical signifi-
cance, favoring small sets of strongly differentially
expressed genes rather than large sets of weakly differen-
tially expressed ones. From this point of view, the
Strength algorithm is unbiased since it contains no
weighting factors. However, because an NPA score repre-
sents a condensed view of the biology underlying a HYP,
the ability to assess the amplitude of its perturbation
with complementary NPA methods also highlights which
conclusions are robust versus which conclusions may be
specific to a particular NPA method. For example, the
four NPA methods supported the same time- and
dose- dependent NF-kB activation in response to
TNFa (Figure 2a), whereas only Strength and GPI
suggested NF-kB activation in response to CDK inhib-
ition (Figure 3a).

There are some important considerations when using
NPA scoring methods to evaluate HYPs. Scores are
meant to be directly compared between different treat-
ment versus control contrasts when using the identical
HYP. Scores cannot be quantitatively compared between
two different HYPs without first verifying that the rela-
tionship between a change in the activity of the HYP’s
upstream entity and the resulting change in the expres-
sion of downstream genes is conserved between the two
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HYPs. In general, this relationship is not expected to be
conserved due to differences in the dynamic range of
expression of individual genes that compose each HYP.
Additionally, a HYP with a higher number of down-
stream gene expressions may be expected to represent
broader biology than a smaller HYP, and thus in any
given experiment, a smaller fraction of genes in the lar-
ger HYP may be perturbed, resulting in a lower score
than a smaller HYP. However, additional statistical
power is gained in the Uncertainty and Specificity statis-
tics with increasing number of downstream gene expres-
sions in a HYP, such that the weaker scores of larger
HYPs can be just as significant and meaningful as higher
scores from smaller HYPs.

Although scores cannot be directly compared between
two different HYPs, the pattern of scores across a set of
contrasts can be qualitatively compared. Likewise, the
absolute magnitude of the NPA scores should not be
directly compared between two amplitude scoring meth-
ods, but the pattern of scores across NPA scoring meth-
ods can be qualitatively compared, keeping in mind that
the scoring methods may be assessing different aspects
of the contrasts.

The NPA score represents an abstracted measure of
the data represented in the HYP. The score captures the
amplitude of the perturbation of a HYP, but does not
capture which genes in the HYP most strongly contrib-
ute to the score. For example, of the 20 genes that con-
tribute most to the IKK/NF-«kB signaling HYP score
upon TNFa treatment (100 ng/mL, 24 hour), only one is
in common with the 20 genes that contribute most to
the IKK/NEF-kB signaling HYP upon CDK inhibition (0.6
1M, 24 hour). Given that the NF-«xB-direct HYP consists
of only 155 genes, this suggests that there is a significant
difference in the biology represented by the NF-kB-
direct HYP scores in these two cases.

Uncertainty and specificity of NPA scores

Uncertainty estimates the confidence interval of each
NPA statistic, and therefore also tests the nullity of the
score accounting for the experimental error. The Specifi-
city statistic gives a measure of whether the score is
dependent on the expression of specific genes in the
HYP, or is instead dependent on a particular property
(the likelihood of modulation) of the ensemble of gene
expressions in the HYP. Although this definition of Spe-
cificity is useful, there are some important points to
ensure that Specificity is interpreted appropriately. First,
a weak Specificity does not mean that the score fails to
accurately characterize the amplitude of the process
described by the HYP. Rather, it means that many other
comparable HYPs would obtain a similar score. For
example, a very weak score (approximately zero) for a
transcriptomic HYP is likely to have a weak Specificity
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because the majority of the genes on a microarray are
unchanged under most conditions. Thus, any random as-
sortment of genes in a HYP might produce a similarly
low score. Weak Specificity for low scores could there-
fore be an indication that the genes in the HYP are not
sufficiently perturbed. Alternatively, a high score with a
weak Specificity does not indicate that the process mea-
sured by the HYP is not perturbed. Rather, it indicates
that comparable gene expressions are perturbed to a
similar extent, suggesting that other processes with com-
parable HYPs are likewise perturbed, and thus the score
cannot be attributed with high probability to the process
represented in the HYP. For example, the fact that the
pattern of Strength scores for the TNF HYP in the CDK
inhibitor experiment is similar to the pattern of Strength
scores for the E2F1-direct HYP suggests that the TNF
HYP may contain some genes that are cell cycle con-
trolled (Figure 3). However, this number of genes is not
sufficient to distinguish this score from the “background”
of scores for comparable HYPs, as only one of the fifteen
TNF HYP Strength scores met the Specificity criterion.
In fact, 32 genes are common to the TNF HYP and the
E2F1-direct HYP, which constitutes more than a third of
the E2F1-direct HYP, but only one fortieth of the TNF
HYP. Methods such as Network Component Analysis
[24,25] could possibly be adapted to resolve overlaps be-
tween HYPs by assigning shared gene expressions to the
most statistically likely HYP, potentially increasing the
precision of each HYP and modulating score Specificity
appropriately.

Together, the Uncertainty and Specificity statistics en-
able the identification of non-specific and non-significant
scores in HYPs when scored against unrelated perturba-
tions. These statistics demonstrate that TNFa treatment of
NHBE cells only has a significant effect on cell cycle pro-
gression when the dose is above 0.1 ng/mL, and that this
effect takes two-to-four hours to appear. Also, these statis-
tics support the conclusion that some NF-kB-  regulated
genes are upregulated at 6 and 24 hours after CDK-inhib-
ition in HCT116 cells, but likely not at 4 hours or earlier.

Potential applications beyond the comparative
assessment of biological impact

The NPA approach developed in this work aims at quan-
tifying the treatment-induced perturbations of the bio-
logical processes described by causal network models. It
enables the comparative assessment of the biological im-
pact from high-throughput data in response to given
stimuli. However the NPA approach could be also used
in more exploratory perspectives. For instance, by apply-
ing NPA scoring to each HYP in a causal network model,
rather than constructing and scoring a single aggregated
HYP for the model (Figure 1b), differences in activation
across a model could be investigated. Scoring individual
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HYPs within a model instead of the larger aggregated
model HYP presents a tradeoff of increased granularity
of information at the expense of statistical robustness,
due to the smaller sizes of the HYPs being scored. An-
other possibility would be to use the NPA scores and
their companion statistics to identify which processes are
potentially activated in response to a given perturbation,
and thus help guide the construction of a HYP or of a
causal network model that capture the relevant per-
turbed biology.

Finally, NPA scores could be used as a supplementary
source of information in studying different types of math-
ematical models of regulatory networks. The fact that NPA
scores provide quantitative measurements for the response
of entities that are not explicitly measured or measureable
can be exploited in the construction, calibration, or evalu-
ation phases of such models. For instance, in the case of
TNFa-treated NHBE cells considered in this study, the
NPA scores provide direct quantitative measurements of
the inflammatory response of the system, a quantity that
would be difficult to access in the absence of the NF-«kB
nuclear translocation measurements performed in this
work.

Conclusions

NPA is an integrated approach that combines high-
throughput experimental data and a knowledge-driven
HYP, which provides measurable quantities causally
affected by a targeted biological process, to quantify the
activity changes of that process relative to a control
(non-perturbed) state of the system. The utility of the
NPA method lies in the synergy of on-demand HYP gen-
eration from an extensive causal knowledgebase with a
continuous measure of its activity change. Four NPA
scoring methods with complementary strengths per-
formed similarly in this study, but individually have the
potential to wield distinct advantages for specific
circumstances. Additionally, qualifying NPA statistics
enabled effective use of these scoring metrics and can be
applied to similar methods developed elsewhere. When
applied to TNFa- and CDK inhibitor-treated cell micro-
array data, NPA scores for NF-«kB and cell cycle networks
correlated with expected dose response relationships and
specific measured pathway outputs. NPA scoring also sug-
gested possible cross-talk between NF-«B activation and
the cell cycle that could be investigated experimentally.
With a broad spectrum of biology available to score within
the Selventa Knowledgebase, NPA metrics and statistics
can be used to assess amplitude of perturbation on many
orders, from a single molecule to that of a complex,
higher-order causal network model representing complex
biological processes. This approach enables a quantitative,
systems-wide understanding of the biological mechanisms
leading to diseases. This is the first step towards the
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development of computational tools designed to compara-
tively measure any perturbation, including exposure to
toxic substances, the effects of drug treatment, or patient
stratification by individual biology.

Methods

Experimental procedure

Normal human bronchial epithelial cells (Lonza Walkers-
ville, Inc.) were cultured in standard growth medium (Clo-
netics medium, Lonza Walkersville, Inc.). Cells were either
treated with TNFa (Sigma) or a vehicle control (HBSS),
and then harvested after the desired treatment length
(30 minutes, 2 hours, 4 hours, or 24 hours). Cells were
immediately put on ice and split into three technical repli-
cates from which total RNA was extracted using RNeasy™
Microkit (Qiagen). The processed RNA samples are then
hybridized to Affymetrix U133 Plus 2.0 microarrays. Cell
viability and cell counts were controlled for all conditions
after 24 hours with CellTiter-Glo® assay (Promega). NF-kB
nuclear translocation was measured using Cellomics
NEF-kB Activation HCS Reagent Kit (Thermo Scientific).

Data processing and algorithm implementation

Data processing and NPA methods were implemented in
the R statistical environment [26]. Raw RNA expression
data was analyzed using the affy and limma packages of
the Bioconductor suite of microarray analysis tools avail-
able in the R statistical environment [27,28]. Robust
Microarray Analysis (RMA) background correction and
quantile normalization were used to generate probe set
expression values [29] ® An overall linear model was fit
to the data for all groups of replicates, and specific con-
trasts of interest (comparisons of “treated” and “control”
conditions) were evaluated to generate raw p-values for
each probe set on the expression array. Raw p-values
were subsequently corrected for multiple testing effects
using Benjamini-Hochberg false discovery rate (FDR), as
described hereinafter.

Probe sets were matched to RNA Abundance nodes in
the Selventa Knowledgebase (see below) using the HG-
U133_Plus_2.na30 probe set mappings and the following
criteria. First, only “at” or “s_at” probe sets were consid-
ered. Second, probe sets that mapped to multiple genes
were discarded. Third, when multiple probe sets mapped
to the same gene, preference was given to “at” probe sets
over “s_at” probe sets. Finally, when there still remained
multiple probe sets mapped to the same gene, the probe
set with the lowest geometric mean FDR-corrected
p-value across all contrasts of interest was selected. A
linear model was then re-fit for all groups of replicates
to only those probe sets that mapped to RNA Abun-
dance nodes in the knowledgebase, and FDR-corrected
p-values were recomputed as described in this section.
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The Selventa Knowledgebase

The Selventa Knowledgebase is a comprehensive reposi-
tory containing over 1.5 million nodes (biological con-
cepts and entities) and over 7.5 million edges (assertions
about causal and non-causal relationships between
nodes). The assertions in the knowledgebase are derived
from peer-reviewed scientific literature as well as other
public and proprietary databases (Figure 1la). Specifically,
each assertion describes an individual experimental
observation from an experiment performed in a human,
mouse, and rat species context, either in vitro or in vivo.
Assertions also capture information about the referring
source (e.g. the PubMed ID (PMID) for journal articles
listed in MEDLINE), as well as key contextual informa-
tion including the species (human, mouse, or rat) and
the tissue or cell line from which the experimental
observation was derived. An example causal assertion is
the increased transcriptional activity of NF-xB (nuclear
factor kappa-light-chain-enhancer of activated B cells)
causes an increase in the mRNA expression of CXCL1
(Chemokine (C-X-C motif) ligand 1) [HeLa cell line;
Human; PMID 16414985]. The knowledgebase contains
causal relationships derived from healthy tissues and dis-
ease areas such as inflammation, metabolic diseases, car-
diovascular injury, liver injury, and cancer.

Constructing HYPs and causal networks models

In addition to edges that enable the construction of
HYPs (i.e., causal relationships between one upstream
entity and its downstream measurables; Figure 1a), the
Selventa Knowledgebase also contains literature-curated
relationships between the upstream entities of different
HYPs. These edges can be assembled to construct larger
causal network models describing more exhaustively the
biological processes under consideration (Figure 1b).

The principles guiding the construction of the HYPs
used in this work were pragmatic (e.g., the NF-kB-direct,
TNF, and E2F1-direct HYPs, see Results). The down-
stream measurable nodes derived from the Selventa
Knowledgebase in an automated manner are gene
expressions (“exp(...)” nodes on Figure la) that have
been shown to be causally linked to the HYP upstream
entity in a variety of experiments, cell types, and even
species. Ideally, this context information stored in the
knowledgebase could be leveraged to construct HYPs
using only knowledge derived from the cell type and per-
turbation under current study. However, despite the
large amount of information in the Selventa Knowledge-
base, there was generally insufficient material from simi-
lar contexts to enable automated construction of
context-specific HYPs. Therefore context-based HYP
filters were not used in this work. This choice is sup-
ported by the fact that HYPs with a larger number of
downstream genes increase the likelihood that a number
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of the downstream genes in the HYP will be relevant to
the system being investigated. Furthermore, the positive
and negative score contributions from irrelevant down-
stream genes are expected to balance each other and
produce a background noise averaging to zero and thus
not to affect the final NPA results. This assumption was
confirmed a posteriori by the comparisons of the
Strength and GPI NPA scores (see Results).

Causal network models (e.g. the IKK/NF-«B signaling
network model, see Results) are constructed by manually
assembling causal relationships connecting HYP up-
stream entities derived from the Selventa Knowledgebase
(Figure 1b). While context information is not taken into
account during the process of HYP construction, the
process of network model construction is guided by the
cell type and perturbation relevance of each causal con-
nection in order to get a high-quality outcome. In this
study the boundaries of the IKK/NF-«B signaling net-
work model were fixed so that signaling in NHBE cells
in response to TNFa treatment was accurately described.
A more detailed discussion on the construction of causal
network models is given under the construction process
of the “Literature Model” in two published studies
involving similar network types [16,17].

It is important to note the difference between the
knowledge-based causal network models used in this
work and the networks constructed from expression data
using network inference approaches [30]. Although both
are “causal’, their content is fundamentally different.
Knowledge-based network models are constituted of lit-
erature-curated causal relationships between biological
entities, for which the NPA approach enables “backward”
deduction of the activity changes (or perturbation) from
differential gene expression data. The expression data-
based inferred networks describe gene-gene interactions
that are “forward” deduced from the expression values of
the corresponding genes and measured over a large col-
lection of experimental conditions. Therefore, whereas
linked genes are interacting in the networks inferred
from expression data, gene expression nodes (i.e. “exp
(...)” nodes in Figure 1) that are connected via a HYP in
a knowledge-based network model are under the influ-
ence of a common upstream entity (e.g. the transcrip-
tional activity of NF-«B for the NF-kB-direct HYP).

Constructing a HYP from a causal network model

A causal network model is composed of multiple caus-
ally-linked nodes that are biologically related, including
HYPs [16,17]. In order to generate the corresponding
aggregated HYP, a reference node must first be selected
within the network model. The reference node can be
any entity in the network whose level or activity is posi-
tively related to the activity of the network as a whole (as
opposed to, for example, an inhibitor whose activity may

Page 13 of 18

be negatively related to the network activity). Next, the
causal relationship between each node in the model and
the reference node is determined. This can only be done
by first requiring that the model be “causally consistent”
(see below). The signs of regulation of downstream
measurable entities (here, gene expressions) for each
node in the model are adjusted based on the relationship
between that model node and the reference node. For
example, the signs of the downstream gene expressions
for a model node that has a positive causal relationship
with the reference node (i.e., that node is expected to be
positively regulated when the reference node increases)
are maintained. On the other hand, the signs of the
downstream gene expressions for a model node with a
negative causal relationship with the reference node (i.e.,
that node is expected to be negatively regulated when
the reference node increases) are inverted. All the down-
stream gene expressions and their signs are then
assembled into a single HYP (Figure 1b), and down-
stream gene expressions with contradictory signs (from
multiple model nodes) are omitted from the aggregated
HYPD.

For a network model to be causally consistent, for
an increase in any node in the model, it must be pos-
sible to unambiguously map a sign of “positive regula-
tion” or “negative regulation” on every other node in
the model by following the causal relationships that
connect the nodes. For example, any model with
negative feedback loops cannot be used to construct
an aggregated HYP. Biological interpretation can be
used to resolve ambiguities to construct causally con-
sistent models by considering what process is being
scored by the HYP, and in what sign each node is ef-
fectively related to the reference node. For example,
the node where a negative feedback connects back to
the model has a particular relationship with the
process being scored, and although the negative feed-
back may regulate this node, it should not change this
relationship. Thus, the connection between the nega-
tive feedback loop and this node can be removed
from the model to obtain causal consistency in a
manner that is congruent with our biological expecta-
tions. Such a biology-driven procedure to build caus-
ally consistent network models implies a careful
definition of the network model boundaries. Resolving
the potential sign ambiguities in its nodes involves
additional refinements in delimiting the biological
processes described by the model.

NPA scoring algorithms

Strength

The Strength NPA scoring method was developed as the
simplest measure of HYP amplitude — the weighted
mean of the measurement differences (here, gene log,
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differential expressions) where the weighting factors are
the signs of the measurable downstream entities in the
HYP:

1
Strength = ﬁZﬁlsi B

where f5; is the log, differential expression (i.e., the log, fold
change) of the i gene in the HYP, and s; is the sign (+1 for
positive regulation and —1 for negative regulation) of the i
gene in the HYDP, and N is the number of measurable down-
stream gene expressions in the HYP. This translates to the
sum of log, differential gene expressions with positive regu-
lation in the HYP minus the sum of the log, differential
gene expressions with negative regulation in the HYD,
divided by the total number of gene expressions in the
HYP. Thus, a positive Strength score indicates that the
HYP’s downstream gene expressions and their signs of
regulation are matched within the data, and the process
described by the HYP is upregulated in the treated condi-
tion compared to the control condition. A zero Strength
score indicates that the process is unchanged, and a
negative Strength score indicates that the process is
downregulated.

The Strength scoring method uses data for all mea-
sured downstream gene expressions in the HYP, regard-
less of data quality. However, the differential expression
values used by the Strength method may be dominated
by noise for low absolute measures of the control condi-
tion, and thus may provide unreliable data (which should
be evidenced by high uncertainty). The Strength method
assumes that this noise is evenly distributed and that
there are a sufficient number of measurable down-
streams in the HYP such that measurement noise is aver-
aged out across all downstreams.

Geometric perturbation index

A HYP can be seen as a unit sign vector § = (1,1,-1,1,...,-1)/
VN in the N-dimensional downstream measurable space
(where each dimension represents a downstream meas-
urable, here gene expression, of the HYP). The observed
effect of perturbation on the downstream gene expressions
is also a vector in this space. So geometrically, the ampli-
tude of the perturbation in the HYP can be quantified by
projecting the differential log, expression vector S onto
the hypothesis unit vector §. However, the downstream
measurements of a HYP come from a generic model.
To deal explicitly with the specificity of data supporting
an NPA score, each downstream is assigned a belief of
activation, which is set to be the local false non-discovery
rate (fudr; = 1-fdr;) [31]. The false discovery rates fdr; are
obtained from the raw p-values using the Benjamini-
Hochberg multiple testing corrections (see above). It is
equivalent to weight the dimensions of the downstream
gene expression space according to the belief of each
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differential expression and therefore consider a weighted
scalar product to define the geometry of the gene ex-
pression space: <§|/)’>fnd,=§T-diag(fhdr)~ﬁ. Hence, the
Geometric Perturbation Index (GPI) scoring method is
defined as:

GPI = —= YN |s;-fudr; p;

1
VN

Note that Strength and GPI are closely related — GPI
is normalized by VN rather than N. By weighting the dif-
ferential log, expression with false non-discovery rate,
individual differential expression values for which there
is little confidence are moved closer to zero (no change),
while values for which there is stronger confidence are
minimally decreased. A positive GPI score indicates an
upregulation of the process described by the HYD, a zero
GPI score indicates that the process is unchanged along
the direction s of the HYP, and a negative GPI score indi-
cates that the process is downregulated.

Measured abundance signal score

Both Strength and GPI quantify log, differential values
(i.e., log, fold changes) of measurements in the HYP.
However, there may be cases where an absolute change
in mRNA, protein, or some other measurable physical
quantity is a better measure of the biological effect on
the process represented by a HYP. For example, an in-
crease from 1 to 10 copies of an mRNA transcript (an
absolute increase of 9 transcripts) may be less significant
than an increase from 10 to 100 copies of the same tran-
script (an absolute increase of 90 transcripts). An NPA
scoring method was devised to quantify absolute changes
in entities that represent physical quantities, Measured
Abundance Signal Score (MASS):

YN si-(treated;—control;)
YN, (treated; + control;) /2

MASS =

where treated; is the measurement (not in log, scale) for
the i™ downstream measurable (here, gene expression)
in the treated sample, and control; is the measurement
(not in log, scale) for the i™ downstream gene expres-
sion in the control sample. The numerator of MASS
represents the change in the absolute downstream gene
expression quantities in a direction supporting an
increase in the process described by the HYP. The
denominator of MASS represents the average of the total
absolute quantity of the downstream gene expressions.
Thus, MASS can be thought of as quantifying the abso-
lute change in the downstream gene expressions (cor-
rected for the predicted sign s; of each downstream in
the HYP) compared to the total quantity of the down-
streams. Rather than use the total quantity of the down-
streams in either the treated or control condition alone,



Martin et al. BMC Systems Biology 2012, 6:54
http://www.biomedcentral.com/1752-0509/6/54

the average of the treated and control conditions was
used to ensure that the MASS scoring method is sym-
metric about the experimental contrast (i.e., MASS(treated
versus control) = ~-MASS(control versus treated)).

The MASS method is applicable to any measurement
technique that quantifies physical measurables in a man-
ner such that measurements are proportional to absolute
quantities across all measurable entities (i.e., the mea-
surements for different entities can be compared dir-
ectly). It should be noted that for microarrays, this
implementation is a proof of concept as there is only a
loose correlation between the signal for different probe
sets and the absolute amount of the transcripts [29,32].

Expected perturbation index

The Expected Perturbation Index (EPI) can be thought
of as a smoothed version of the GPI. The rationale is to
consider a HYP as a random variable over a compact
interval [-M,M] containing all possible differential ex-
pression values (in log, scale, typically M =15 as gene
expression signal saturates at 15). The downstream en-
tities (here, gene expressions) of the HYP are used as evi-
dence to construct the distribution pjyyp of the HYP: for
any ¢ in [-M,M], the density of the HYP at ¢ is propor-
tional to the total evidence of “correct predictions” s;3;
above ¢. More precisely:

1 Bil .
ﬁzi such that s;8,>¢ |]VZI‘ lfq) >¢€
«
pryp(9) ) B
ﬁzi such that s;-8,<¢ M lf([) < —-¢

The normalization of the measure pyyp(¢)-d¢ is done
through continuous interpolation of pyyp between [-¢.e],
for ¢ sufficiently small (typically on the order of machine
precision). The Expected Perturbation Index is then
defined as being the expectation of the HYP with respect
to the distribution pyyp defined above:

Epr = " d
= oM & prve(9)-do

The EPI expresses the fact that high correctly predicted
differential expressions s;3; provide stronger evidence for
the HYP than low ones and will therefore receive higher
weights. The implementation is done by using the method
of rectangle on the differential expression values, leading
to the following formula to compute the EPI:

EPI = z:i such that (sﬁ),>0(5/)))i‘ <ﬁ 27;1 (S/)))1> : ((Sﬁ)z _(S/)))ifl)
+Zi such that (s8),<0(8B);* (ﬁ 2;141(_5/3))/> ‘((_Sﬁ)i _(_sﬁ)i-l)

where (sp); is s;f3;, n, and n_ are the number of differential
log, expressions positively and negatively predicted by the
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HYP, respectively, subscripts i refers to the ascendant
ordering of the |s;5;], and 3 = 0.

Note that the EPI is, in absolute value, bounded by A,
and that the false non-discovery rates are not used. Indeed,
high differential expression value are taken into account
more often than lower ones, and this additional weighting
to high differential expression enables a more specific meas-
ure of activity.

NPA scoring statistics

Uncertainty

Each NPA score is a random variable. As such, the statis-
tical significance of the NPA scores can be assessed by esti-
mating confidence intervals around the score, or
equivalently, by evaluating the null hypothesis of the score
equaling zero at a given type-I error risk a (often, and
herein, a = 0.05). In the case of Strength and GPI, this task
can be completed analytically, while in the case of MASS
and EPI, a bootstrapping approach is necessary.

The theoretical distribution of the differential log, expres-
sion is deduced from the estimation and test procedure
used. In the case of t-statistics or moderated t-statistics
(e.g., produced from a linear model by the limma R pack-
age), the (theoretical) distribution of the ;s is assumed to
be normal with variance sd; (having df; degrees of freedom).

In this context, Strength becomes a random variable
consisting of a weighted sum of independent (approxi-
mately) normal distributions. As a consequence, the distri-
bution of the Strength statistic is (approximately) a normal
distribution itself, with variance Sdgt,ength =(I/N?) - ¥ sd?.
Hence, a t-statistic ¢ = Strength/Sds;yengn can be derived,
whose degrees of freedom Df are estimated with the
Welch—Satterthwaite equation [33,34]. Therefore a  (1-
a)-confidence interval (e.g., 95 % confidence interval) for
the Strength is given by:

Strength + tg]/cz -Sd strength

In the case of the GPI, the situation is almost identical
to the Strength, except for the additional dependence on
the weighting factors fudr;. In turn, fudr; depends on the
non-adjusted p-value, and therefore on the original t-sta-
tistics for the f5; t;=pfi/sd;. The key step toward a test
statistic for the GPI is the estimation of the variance of
GPI. To this end, the variance is estimated through a
first-order Taylor expansion to obtain:

1 ofndr > 1
SdéPIEﬁZ{il (fndr, —I—/)’l fahﬁr> Sd12 = NZ{\LIY? Sdlz
where:
o fan ] B
Y,_ﬁ’ld}", +2- i : sd; Laf, sd;
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Using the central limit theorem, an approximate t-statistic
is derived as t = GPI/Sdgp, whose degrees of freedom Df
are again estimated by the Welch-Satterthwaite equation.

In the partial derivatives of the GPI with respect to f3;,
the derivative of fudr;=1- fdr; involves two terms: one
involving the derivative of the Benjamini-Hochberg ad-
justment factor (fdr/p;), multiplied by p; (the p-value for
the differential expression of the /™ gene), and the other
one involving the derivative of p;. The former is assumed
to be zero, because the adjustment factor (fdr,/p;) is im-
portant only when the p-values p; are small. The latter is
computed analytically. Hence the (1-a)-confidence inter-
val for GPI is given by:

GPI + t}) Sdap,

In the case of MASS and EPI, a parametric bootstrap-
ping of the distributions of 8; was used, taking advantage
of the normality of the estimators f5; deduced from the
statistical approach used to compute the differential gene
expressions (see above). As the assumption for the applica-
tion of percentile bootstrapping seems to be violated for
MASS and EPI, the confidence interval was estimated
using the bias-corrected percentile method [35,36].

Specificity

It is important to consider whether the computed NPA
score is specific to the HYP of interest, or is a general prop-
erty of the entire data set. For example, a score that indi-
cated a two-fold increase in a given process holds less
meaning if all measurements in the entire data set also
increased two-fold. Thus, the Specificity statistic is com-
puted as a means to identify scores that can be attributed
with high probability to the specific biological entity or
process represented by the HYP. Specificity is computed by
assessing the likelihood of the following null hypothesis:
“The amplitude score is not representative of the specific
HYP, but instead is representative of a general trend in the
data set that can be measured by any HYP that is compar-
able to the HYP of interest.” The first step to computing
Specificity is to construct a set of comparable HYPs (see
below). Next, an amplitude score is computed for each of
these HYPs using the same data set. Finally, Specificity is
computed as a two-tailed p-value by placing the amplitude
score for the HYP of interest on the distribution of scores
for the comparable HYPs (Additional file 10). Scores that
have Specificity p-values less than 0.05 are considered to be
scores that can be attributed with high confidence to the
HYP of interest.

The key to computing the Specificity statistic is con-
structing relevant comparable HYPs. A simple comparable
HYP could be composed of downstream measurable
entities selected at random from the set of all measurable
entities to produce a HYP of the same size as the HYP of
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interest. However, for some data sets including gene ex-
pression microarrays, many of the measurable entities are
highly unlikely to change under any given circumstance
(for example, genes whose expression are measured with
ineffective probe sets). The HYP of interest will likely con-
tain fewer of these entities than any “comparable” HYP be-
cause these entities are less likely to be affected by the
process of interest, and are thus unlikely to be included in
the HYP of interest. Therefore, a comparable HYP con-
structed by random sampling from all measurable entities
will be biased towards showing a weaker (or no) change.
This makes the amplitude score for the HYP of interest
appear more unlikely to have occurred by chance given
the null hypothesis — and thus be more specific — than
might have otherwise been expected (Additional file 10).

The large body of causal knowledge available was used
to construct more relevant comparable HYPs for tran-
scriptomic data by first identifying the number of up-
stream controllers (distinct entities upstream of a gene in
causal statements in the knowledgebase) for each gene in
the entire data set, including the genes in the HYP. The
number of upstream controllers reflects the number of dif-
ferent experiments or perturbations that caused the gene
to be modulated, and acts as a naive estimate for the likeli-
hood of each gene being modulated in the current experi-
ment. For example, a gene that is only regulated under
very specific circumstances is unlikely to be modulated in
many data sets that are curated in the knowledgebase.
Thus, only a few entities that causally regulate the gene
will exist in the knowledgebase. In contrast, a gene whose
expression is modulated by a large number of experimen-
tal perturbations is likely to be modulated in many data
sets that are represented in the knowledgebase, and thus
the knowledgebase will likely contain knowledge of many
entities that causally regulate the gene. Therefore, a com-
parable HYP is constructed by replacing each gene in the
original HYP with another measured gene with a similar
number of upstream controllers.

In order to accomplish this, all measured genes were
ranked based on their number of upstream controllers in
the knowledgebase, and divided into cadres of a fixed
number of measurables. To avoid having a cadre con-
taining only a few measurables (for example, when the
number of measurables is not divisible by the desired
cadre size), the cadre that contained measurables with
the fewest number of upstream controllers was allowed
to have more measurables than the other cadres. For ex-
ample, a cadre size of 100 measurables was used, so the
cadre that contained measurables with the fewest num-
ber of upstream controllers had between 100 and 199
members. Comparable HYPs were constructed by swap-
ping each measurable in the original HYP for another
measurable from within the same cadre. In this manner,
the comparable HYPs were the same size as the original
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HYP and contained the same distribution of frequently
and infrequently modulated measurables. This process
enabled the construction of alternative HYPs that were
as comparable as possible to the HYP of interest, given
the knowledge available in the knowledgebase.

NPA scores were computed for each comparable HYP,
and these scores were sorted into ascending order. The
fraction of scores that were greater than and less than
the score for the original HYP were counted, and the
lesser of these two values was doubled to arrive at a two-
tailed p-value. This p-value is called the Specificity.

Comparable HYPs constructed in this manner provide
a more stringent test to assess the Specificity of ampli-
tude scores. Given the benefits offered by this method of
computing Specificity, it was carried forward for this
study.

Endnotes

* The gene expression data used in this publication have
been deposited in ArrayExpress and are accessible
through accession number E-MTAB-1027 [37].

Additional files

Additional file 1: The NF-kB-direct HYP. Each row of the table
contains a causal statement describing the connection between NF-kB
and one of its direct target genes.

Additional file 2: TNFa dose-dependent induction of NF-kB nuclear
translocation. (a) Non-treated NHBE cells show a diffuse cytoplasmic
staining of NF-kB (left) while after adding TNFa to the culture medium
(right), the nucleus of stimulated cells is strongly labeled (magnification
10X/0.3); (b) NF-kB nuclear fluorescence intensity (FI) per dose of TNFa.
For each group, the nuclear fluorescence intensity was measured in 500
cells per well of three replicates. Across-group comparisons by one-way
ANOVA test were all p < 0.001.

Additional file 3: HYP scores versus NF-kB nuclear translocation.
The NF-kB-direct HYP scores for each amplitude scoring method
(Strength, GPI, EPI and MASS) and each time point (30 minutes, 2 hours, 4
hours, 24 hours) plotted against NF-kB nuclear translocation at 30
minutes. Score error bars represent the 95 % confidence interval as
determined by the Uncertainty statistic. Error bars in NF-kB nuclear
translocation represent the standard deviation of the mean nuclear
translocation for three different fields of view of the same population of
cells.

Additional file 4: Comparison of NF-kB-direct HYP scores with 20-
gene NF-kB HYP scores. Transcriptomic data from TNFa-treated NHBE
cells was scored using each scoring method (Strength, GPI, EPI and
MASS) for (a) the NF-kB-direct HYP, (b) a HYP composed of 20 NF-kB-
regulated genes reported to be TNFa-responsive in mouse 3 T3 fibroblast
cells (NFKBIA, CASP4, CCL5, TNFAIP3, CCL2, ZFP36, RIPK2, TNFSF10, NFKBIE,
IL6, CCL20, ICAM1, TNFRSF1A, TNFRSF1B, SQSTM1, NRGT1, SODT, ILTRL1,
HIF1A, ERBB2) [19]. Error bars represent the 95 % confidence interval as
determined by the Uncertainty statistic. Scores that failed the Specificity
criterion (Specificity p-value > 0.05; 1000 comparable HYPs) are shaded in
gray.

Additional file 5: The aggregated IKK/NF-kB signaling HYP. Each
row of the table contains a causal statement extracted from the Selventa
Knowledgebase and obtained from the aggregation of the individual
HYPs of the IKK/NF-kB signaling causal network model (Additional file 6).

Additional file 6: The IKK/NF-kB signaling causal network model.
The full causal model is given (top), along with a schematic of the basic

J
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model architecture (middle). CHUK, IKBKB, and IKBKG act as inhibitors of
NFKBIA, NFKBIB, and NFKBIE, which are in turn inhibitors of NFKB1, NFKB2,
and RELA. The nodes used in the model are listed under each section.
The nodes in bold represent nodes that have downstream gene
expression measurables in the knowledgebase, and the number of
measurables is given in the square brackets (because the same
downstream may be found under multiple nodes, these 1227
downstream measurables correspond to 992 unique measurables). The
notations used in the knowledgebase are as follows: “CHUK P@S"
represents CHUK phosphorylated at serine (where the residue is given if
known), "“CHUK P@ST" represents CHUK phosphorylated at serine or
threonine (the exact residue is unknown), “kaof(CHUK)" represents the
kinase activity of CHUK, "“CHUKIKBKB" represents the complex of CHUK
and IKBKB proteins, “lkappaB kinase complex Hs” represents an aggregate
of the various IkB kinases (CHUK, IKBKB, and IKBKG) in Homo sapiens (Hs),
“"degradationof(NFKBIA)" represents the process of NFKBIA degradation,
and "taof(NFKB1)" represents the transcriptional activity of NFKB1.

Additional file 7: The TNF HYP. Each row of the table contains a causal
statement extracted from the Selventa Knowledgebase and describes a
gene known to be modulated by the TNFa treatment of cells.

Additional file 8: The E2F1-direct HYP. Each row of the table contains
a causal statement extracted from the Selventa Knowledgebase and
describes the connection between E2F1 and one of its direct target
genes.

Additional file 9: CellTiter-Glo® measurements of cell numbers.
CellTiter-Glo® fluorescence measurements of cell number after 24 hours
of NHBE cell treatment with various doses of TNFa. Fluorescence intensity
is reported as a percentage of the mock-treated sample, and error bars
represent the standard deviation of the fluorescence intensity for three
different fields of view of the same population of cells.

Additional file 10: Computing Specificity statistics. The histogram of
MASS scores for HYPs comparable to the NF-kB-direct HYP (1 ng/mL
TNFa treatment of NHBE cells for 0.5 hour). The top histogram resulted
from selecting measurables at random from all measurables (Specificity p-
value of 0), and the bottom histogram resulted from selecting
measurables with comparable likelihood of modulation (Specificity
p-value of 0.072). The solid line indicates the NF-kB-direct HYP MASS
score. The Specificity p-value was computed by doubling the total
fraction of counts that were greater than this score (the fraction of counts
in the red boxes).
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