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Abstract

Background: Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical
reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such
a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model
was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus
Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based
reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of
reactions. It draws upon models published by a variety of independent research groups as well as information
obtained from biochemical databases and primary literature.

Results: Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in
sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between
reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also
improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of
epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite
naming, and computer-readable annotations available through a structured document format. Additionally, we
have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model
applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for
evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance
analysis, are included as Additional files 1, 2 and 3.

Conclusions: Yeast 5 expands and refines the computational reconstruction of yeast metabolism and improves the
predictive accuracy of a stoichiometrically constrained yeast metabolic model. It differs from previous
reconstructions and models by emphasizing the distinction between the yeast metabolic reconstruction and the
stoichiometrically constrained model, and makes both available as Additional file 4 and Additional file 5 and at
http://yeast.sf.net/ as separate systems biology markup language (SBML) files. Through this separation, we intend to
make the modeling process more accessible, explicit, transparent, and reproducible.
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Background
Efforts to improve the computational reconstruction of
the Saccharomyces cerevisiae biochemical reaction net-
work and to refine the metabolic models that can be
derived from such a reconstruction have continued since
the first yeast genome scale metabolic model was pub-
lished [1]. The distinction between reconstruction
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(termed GEnome scale Network REconstructions
(GENREs) [2]) and derived models (termed GEnome
scale Models (GEMs) [3]) remains important to differen-
tiate between the established biochemical knowledge
included in a GENRE and the modeling assumptions
required for analysis or simulation with a GEM. A
GENRE serves as a structured knowledge base of estab-
lished biochemical facts, while a GEM is a model which
supplements the established biochemical information
with additional (potentially hypothetical) information to
enable computational simulation and analysis. Examples
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of widely used yeast GENREs include the Kyoto Encylo-
pedia of Genes and Genomes, KEGG [4], and the Yeast
Biochemical Pathway Database, YeastCyc [5]. The his-
tory of yeast GEMs has recently been reviewed [6].
Though a GEM may be considered finished when it is

sufficient for a particular modeling application, the effort
to build a complete and accurate GENRE is ongoing as
biochemical research continues (even information that is
fundamental to the construction of a GENRE, such as
genome annotation, is considered to be a working hy-
pothesis and subject to ongoing revision [7]). Reflecting
the ongoing process of yeast GEM and GENRE improve-
ment [6], we have constructed an update to the Yeast
Consensus Reconstruction [8]. The Yeast Consensus Re-
construction is a product of efforts to forge a community-
based reconstruction emphasizing standards compliance
and biochemical accuracy via evidence-based selection of
reactions. It draws upon models published by a variety of
independent research groups [1,9-12], as well as informa-
tion obtained from biochemical databases and primary lit-
erature. Thus, the Yeast Consensus Reconstruction
serves as an example of the community-based approach
which has given rise to the concept of a “reconstruction
annotation jamboree” [13]. Though there remain many
challenging problems to implementing and maintaining
community-based science [14], the jamboree approach
to network reconstruction and model building has
also been successfully applied to build a consensus re-
construction and model of Salmonella Typhimurium
LT2 [15].
The Yeast Consensus Reconstruction has benefited

from the continued involvement of the broader research
community. Previous updates to the Yeast Consensus
Reconstruction [16] have focused on filling gaps in the
metabolic reconstruction to improve network connectiv-
ity in a graph-theoretical sense, expanding the recon-
struction of portions of metabolism that had not been
included in previous reconstructions, and enabling Flux
Balance Analysis (FBA) [17] by adding the necessary
(but hypothetical) transport reactions and sink reactions
(such as the biomass reaction). These low-confidence
reactions in the Yeast Consensus Reconstruction are
annotated with use of specialized Systems Biology
Ontology (SBO) terms [18], an approach designed to fa-
cilitate differentiation between the higher-confidence
reactions which form the Yeast GENRE and the lower
confidence reactions required to evaluate a GEM with
FBA. Enabling FBA of the consensus reconstruction has
resulted in increased interest in applying the model to
guide bioengineering efforts [19,20]. In turn, this
increased interest has stimulated community participa-
tion, which has highlighted opportunities for further im-
proving the Consensus Yeast Reconstruction GENRE
and the derived GEM.
Therefore, we decided to undertake an update to the
Yeast Consensus Reconstruction to refine the biochem-
ical reactions included in the GENRE, particularly reac-
tions involved in sphingolipid metabolism [20,21]; to
review gene-reaction annotation; to emphasize and clar-
ify the distinction between GENRE and GEM; to facili-
tate application of the GEM for bioengineering
applications; and to solicit and facilitate further collabor-
ation among researchers who wish to further improve
the yeast GENRE and GEM. Although it was not a pri-
mary goal, this update also improves the accuracy of
GEM phenotype predictions due to the incorporation of
reaction constraints from previous models and relevant
literature. We endeavored to conduct this update while
maintaining an emphasis on standards compliance, un-
ambiguous metabolite naming, and computer-readable
annotations available through a structured document
format. The metabolites included in Yeast 5 are unam-
biguously annotated with their identifiers in the Chem-
ical Entitites of Biological Interest (ChEBI) database [22],
and reactions are annotated with the PubMed ID of pri-
mary literature evidence justifying the reaction’s inclu-
sion in the reconstruction.
We have incorporated the results of these efforts to

the consensus reconstruction to produce Yeast 5. Yeast
5 expands and refines the yeast GENRE and improves
the predictive accuracy of the yeast GEM. Further, it dif-
fers from previous reconstructions and models by em-
phasizing the distinction between the yeast GENRE and
GEM, and makes both available as separate systems biol-
ogy markup language (SBML) files [23]. Through this
separation of GENRE and GEM, we intend to make the
modeling process more explicit, transparent, and repro-
ducible. Both files are available from YeastNet (http://
yeast.sf.net/). In addition to the GEM and GENRE SBML
files, we have developed MATLAB scripts to evaluate
the model’s predictive accuracy and to demonstrate basic
model applications, such as simulating aerobic and an-
aerobic metabolism with Yeast 5. These scripts, which
provide an independent tool for evaluating the perform-
ance of various yeast GEMs, are included as additional
files.

Results
Improvements to facilitate community use and
collaboration
As a consensus reconstruction and model, Yeast 5 will
depend upon community use and suggested modifica-
tions for future improvement. The Yeast 5 GENRE may
serve as a resource for construction of new models, of
both genome and smaller scale. Thus, in addition to the
emphasis on standards compliance, the Yeast 5 SBML
files include coding conventions to facilitate use by popu-
lar software. Recognizing that MATLAB is a commonly

http://yeast.sf.net/
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used platform for systems and computational biology
[24], we include scripts demonstrating use of both the
GENRE and GEM with the SBML Toolbox [25] and the
COBRA Toolbox [26]. These MATLAB scripts, tes-
tYeastModel.m, modelToReconstruction.m, and fluxDis-
tribution.m, are available as Additional files 1, 2 and 3.
Additionally, as discussed in Materials and Methods,
Yeast 5 includes conventions for exchange reactions and
boundary species which are used in the MATLAB-
compatible COBRA Toolbox, although such conventions
are not currently included in SBML specifications [23].

Yeast GENRE changes
The Yeast 5 GENRE is an evidence-driven biochemical
knowledge-base. It does not include the low-confidence
or hypothetical reactions and metabolites required to
conduct FBA, nor does it include constraints on reaction
reversibility which may be added in the course of
model-building. Since it does not include compounds
such as “biomass”, reactions such as “growth”, or hypo-
thetical intercompartmental transport reactions, the
Yeast 5 GENRE is more specific than Yeast 4, which did
not differentiate between GENRE and GEM. It contains
1418 metabolites which participate in 2110 reactions,
catalyzed by 918 verified Saccharomyces cerevisiae genes.
In comparison, Yeast 4 includes 1481 metabolites, 2030
reactions, and 924 genes. The Yeast 5 GENRE does not
include genes annotated in the Saccharomyces Genome
Database (SGD) as “dubious” or “uncharacterized”, while
Yeast 4 includes 4 such genes (YFR055W, YML082W,
YPL275W, and YPL276W). Yeast 4 included reactions
annotated with 29 open reading frames which are not
included in the Yeast 5 GENRE. However, the Yeast 5
GENRE includes 23 open reading frames which are not
included in Yeast 4. The 29 open reading frames which
are present in Yeast 4 but not Yeast 5 are: YAL014C,
YAL030W, YAR042W, YCR073W-A, YDL019C,
YDR313C, YDR331W, YDR468C, YEL011W, YEL013W,
YER093C, YFR055W, YGR199W, YHR005C, YHR073W,
YMR068W, YNL006W, YNR034W, YOL078W,
YPL145C, YPL275W, YPL276W, YOR237W, YIL105C,
YJL058C, YJR160C, YKL203C, YML082W, and
YNL047C. These open reading frames were removed
from reaction annotations because of inadequate litera-
ture evidence supporting the Yeast 4 annotation. The 23
open reading frames included in the Yeast 5 GENRE but
not in Yeast 4 are: YBR001C, YBR058C-A, YBR161W,
YBR199W, YDR196C, YDR367W, YGR138C, YGR277C,
YMR241W, YMR278W, YMR298W, YPL023C,
YPL053C, YPL189W, YPR156C, YOR175C, YGL084C,
YIL083C, YJL200C, YKL088W, YKL132C, YML056C,
and YNL029C. Additional annotation information about
these ORFs is provided in Additional file 6: Table S1
(ORFs present in Yeast 4 but not in Yeast 5) and
Additional file 7: Table S2 (ORFs present in Yeast 5 but
not in Yeast 4).
In addition to being more specific, the Yeast 5 GENRE

is also more complete than Yeast 4. Sphingolipid metab-
olism has been acknowledged to be a poorly recon-
structed portion of the yeast metabolic network since
the first yeast GEM, iFF708 [1]. Yeast 5 incorporates
suggested literature-referenced refinements to sphingo-
lipid metabolism [20,21]. Thus the Yeast 5 GENRE con-
tains the most complete reconstruction to date of the
broad suite of complex sphingolipids that has been
observed in yeast [27].
Yeast GEM changes
The Yeast 5 GEM includes biomass demand functions
and low-confidence reactions such as intercompart-
mental transport reactions which enhance network
connectivity and enable FBA. It also includes reaction
directionality constraints to improve the accuracy of
model phenotype predictions and exchange reactions
which allow model users to simulate a growth
medium. The Yeast 5 GEM includes more reactions
and metabolites than previously published yeast GEMs
(Table 1), though it includes 6 fewer genes than Yeast
4. The Yeast 5 GEM includes reactions annotated with
918 different open reading frames, accounting for
18.5% of the 4949 verified open reading frames
included in the Saccharomyces Genome Database [28]
as of October 12, 2011. The Yeast 5 GEM has 326
more directionally constrained reactions than Yeast 4
(69% of all reactions in the Yeast 5 GEM are con-
strained, compared to 55.6% in Yeast 4). The majority
of these new constraints are applied to reactions involved
in cofactor utilization or production, with a particular em-
phasis on reactions involving ATP/ADP. Reactions involv-
ing NAD(P)/H are constrained where literature evidence
supports irreversible reactions in vivo.
Since the Yeast GEM includes both general classes of

compounds (e.g.“fatty acid”) and specific members of
these classes (e.g. “octanoate”), we use non-reversible en-
capsulating reactions called “isa” reactions to provide
pathways from specific to generic compounds (e.g.,
octanoate “isa” fatty acid). The use of “isa” reactions is
discussed further in the Discussion section. To accom-
modate the more specific biochemistry included in the
Yeast 5 GENRE, the Yeast 5 GEM includes 261 “isa”
reactions, compared to 162 in Yeast 4. Additionally, the
Yeast 5 GEM includes 2 different lipid pseudoreactions,
which create the “lipid” portion of biomass (details of
the Yeast 5 GEM biomass definition are included as
Additional file 11: Table S6). As described in the “simu-
lating yeast growth” discussion, including two differing
biomass definitions enables simulation of anaerobic yeast



Table 1 Comparison of yeast metabolic models

Yeast 5Yeast 4a iMM904bsb iND750c

Model description

Number of metabolites 1655 1481 1228 1061

Number of reactions 2110 2030 1575 1266

Number of genes 918 924 904 750

Number of dubious genesd 0 4 17 17

Blocked reactionse 38% 26% 31% 41%

Viability analysis

Sensitivityf 97% 95% 93% 96%

Specificityg 47% 44% 57% 43%

Positive predictive valueh 86% 85% 89% 87%

Negative predictive valuei 84% 73% 69% 77%

Geometric meanj 46% 42% 53% 41%

Auxotrophy analysis

Auxotroph-inducing genes
includedk

70 73 73 69

Correct auxotroph
predictions

73% 66% 69% 58%

Incorrectly predicted as
viable in minimal media

24% 30% 27% 39%

Incorrectly predicted as
inviable in supplemented media

3% 4% 4% 3%

Epistatic interaction analysisl

Epistatic interations (% of
pairwise genes)

16% - 15% 21%

Total number of epistatic
interactions

65,730 - 63,176 57,808

Average Additional
Interactions per additional genem

196.46 - 34.63 -

ayeast 4: [16].
biMM904bs: [29].
ciND750: [9].
ddubious genes are ORFs annotated as "dubious" (809 ORFs) or
"uncharacterized" (857 ORFs) in SGD.
eblocked reactions cannot carry flux.
fTrue positive/(true positive + false negative).
gTrue negative/(true negative + false positive).
hTrue positive/(true positive + false positive).
iTrue negative/(true negative + false negative).
jsee [10] for discussion of applying geometric mean
ksee Additional file 8: Table S3 and Additional file 9: Table S4 for list of
essential genes and auxotroph-inducing genes.
lAt 50%x50% flux reductions. See Additional file 10: Table S5 for other
restriction levels.
m number of interactions/number of genes, compared to iND750 as base case.
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metabolism despite the incomplete reconstruction of
yeast lipid biochemistry in the Yeast 5 GENRE.
Yeast GEM performance
Though improving gene essentiality predictions was not
a primary objective of updating Yeast 4, simulations
using Yeast 5 have increased agreement with a list of es-
sential genes and genes which cause auxotrophies; more
realistic prediction of internal fluxes; and increased
number of genetic interactions. Additionally, simulations
with the Yeast 5 GEM predict auxotrophies resulting
from gene deletions better than other recent yeast
GEMs, and predict gene essentiality with accuracy com-
parable to other recent yeast GEMs (Table 1).

Gene essentiality predictions
Since the phenotype resulting from a gene mutation is
dependent upon media and environmental conditions as
well as changes to the metabolic network, the use of
gene essentiality predictions as a metric for model evalu-
ation requires careful definition of both simulation
assumptions and of the data set used for comparison be-
tween simulation and observation. This is particularly
important if such a metric is to be used for comparison
of different GEMs. We document our approach to simu-
lating gene essentiality in Materials and Methods, and in
the testYeastmodel.m MATLAB script included as sup-
plemental material.
The Yeast 5 GEM includes reactions annotated with

918 genes. 144 of these genes are included in a list of es-
sential genes we compiled from the Saccharomyces Gen-
ome Deletion project [30] and annotation included in
Saccharomyces Genome Database [28] (Additional file 8:
Table S3). An additional 70 genes are included in a list
of genes causing auxotrophies when deleted (Additional
file 9: Table S4). (The construction of these gene lists is
described in Materials and Methods). The remaining
704 genes in the model are not on the compiled lists of
essential or auxotroph-inducing genes, and are therefore
considered inessential.
The results of single gene deletion simulations con-

ducted via FBA of the Yeast 5 GEM using a simulated
glucose-limited defined media are summarized in
Table 2. The model predicted that biomass could be pro-
duced in 684 of the 704 cases in which genes annotated
as inessential or non-auxotrophic were deleted (true
positive results) and that biomass could not be produced
in 20 cases where these inessential or non-auxotrophic
genes were deleted (false negative results). Thus, the
model has a 97.2% sensitivity for this list of essential
genes. If the model simulation predicted that biomass
could be produced following a gene deletion, the deleted
gene was not listed as essential or auxotroph-inducing in
86% of the cases (an 86% positive predictive value).
The model predicted that biomass could not be

produced following deletion of 101 of the of the 214
genes included on the essential or auxotrophy-
inducing gene lists (true negative results), but that
biomass could still be produced following deletion of
113 genes included on those lists (false positive
results). Thus, the model has a 47% specificity for
this list of essential genes. If the model simulation pre-
dicted that biomass could not be produced following a



Table 3 Yeast 5 and Yeast 4 simulated flux predictions

yeast 5 yeast 4

Sample FBA flux predictions

glucose-limited, aerobic growth rate 0.09 0.17

glucose-limited, anaerobic growth rate 0.02 0

aerobic flux through glycolysisa 1.33 0.89

anaerobic flux through glycolysis 1.85 -

aerobic flux through TCA cycleb 1.06 0.01

anaerobic flux through TCA cycle 0 -

aerobic ethanol production 0 0

anaerobic ethanol production 1.74 -

Fluxes are normalized to the glucose uptake flux, which is set to 1 mmol/g dry
weight/h.
aglycolysis flux measured through pyruvate kinase.
bTCA cycle flux measured through malate dehydrogenase.

Table 2 Single-gene Deletion Results (918 genes)

684 (75%) True Positives (model simulation predicts growth when
inessential genes are deleted)

20 (2%) False Negatives (model simulation predicts no growth when
inessential genes are deleted)

113 (12%) False Positives (model simulation predicts growth when
essential genes are deleted)

101 (11%) True Negatives (model simulation predicts no growth when
essential genes are deleted)
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gene deletion, the deleted gene was listed as essential or
auxotroph-inducing in 83.5% of the cases (an 83.5%
negative predictive value).
Comparing Yeast 5 GEM knockout simulations with

our list of essential and auxotroph-inducing genes
yields a geometric mean overall predictive accuracy
(as suggested by [10] of 45.88%, an improvement over
Yeast 4’s 41.61% geometric mean accuracy for this
gene list. These results, including comparison of the
simulations using other recently published GEMs and
the same essential and auxotroph-inducing gene lists,
are summarized in Table 1.

Auxotroph-inducing mutations
To extend our analysis of Yeast 5 GEM simulation
capabilities, we conducted additional FBA growth
simulation focusing on the 70 genes included in both
the Yeast 5 GEM and the list of genes whose muta-
tion or deletion causes auxotrophies. In 51 single-
gene deletion simulations, the model predicted that
biomass could not be produced in minimal media but
could be produced in a supplemented media, the
expected behavior for an auxotroph mutant (see
Materials and Methods for more information about
our approach to simulated media). In 17 cases, model
simulation predicted that biomass could be produced
in minimal media, and thus did not accurately predict
the auxotrophic phenotype. In 2 cases, model simula-
tion predicted that biomass could not be produced in
either minimal or maximal media, and so the model
incorrectly predicted that the gene deletion could not
be saved by media supplementation.
Auxotroph phenotypes have not previously been a

metric used to evaluate yeast GEMs. We found that
simulation with the Yeast 5 GEM had better agreement
with observed auxotrophic phenotypes than simulations
conducted with other previously published GEMs
(Table 1).

Flux predictions
Optimal solutions found when conducting FBA of the
Yeast 5 GEM to maximize biomass flux include fluxes
through key internal reactions, a flux distribution which
better matches fluxes observed in vivo [31] than solu-
tions found when applying FBA to Yeast 4 (Table 3).
Specifically, applying FBA to the Yeast 5 GEM in a simu-
lated glucose-limited aerobic environment predicts that
the reactions of glycolysis and the TCA cycle have fluxes,
and that ethanol is not produced. When the model con-
straints are adjusted to simulate an anaerobic environ-
ment, FBA predicts fluxes through the reactions of
glycolysis, but not the TCA cycle, and ethanol is pro-
duced. Thus, simulations with the Yeast 5 GEM reflect
the shift from respiratory to fermentative metabolism
which is observed in oxygen-limited yeast cultures. Simu-
lations using the Yeast 4 GEM do not reflect this same
behavior.

Increased number of genetic interactions
Recognizing recent efforts to investigate system-level
organization of cellular metabolism via the phenotypic
effects of multiple gene deletions using yeast GEMs [32-
36], we compared the number of epistatic interactions
predicted by growth simulations using the Yeast 5 GEM
with the number of interactions predicted by simulations
using the iMM904 [12] and iND750 [9] models (Table 1).
When reaction fluxes were restricted to 50% of wild-
type in a pairwise manner, we found that a lower per-
centage of genes included in the Yeast 5 and iMM904
GEMs were predicted to exhibit epistatic interactions in
FBA simulations, but the expanded size of these models
led to an increased number of total epistatic interactions
compared to the iND750 GEM. If the number of inter-
actions are averaged over the number of genes in each
model, the Yeast 5 GEM adds an average of 196.5 new
epistatic interactions per additional gene, and iMM904
adds an average of 34.6 new interactions per gene. The
number of interactions predicted using each of these
models using varying levels of flux restriction for each
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gene and reaction pair are provided as Additional file 9:
Table S4.

Limitations
Research to expand our understanding of yeast metabol-
ism and biochemistry is ongoing, and the process of in-
tegrating established biochemical knowledge into
computational reconstructions lags research advance-
ments. Thus, the Yeast 5 GENRE is not a complete re-
construction of the yeast biochemical network, and
though it offers improvements over earlier models,
simulations using the Yeast 5 GEM do not fully reflect
observed biological phenomena. GENRE and GEM lim-
itations suggest opportunities for future efforts to im-
prove computational reconstruction of established
biochemistry and can highlight portions of metabolism
that are ripe for further research [37].
A limitation of the Yeast 5 GENRE which suggests fu-

ture opportunities for improving the Yeast Reconstruc-
tion is that due to the lack of information about enzyme
specificity or the metabolic significance of variation
among similar chemical species, the Yeast 5 GENRE uses
general classes of chemical compounds rather than the
enumeration of many similar compounds. For example,
Yeast 5 generalizes the many possible triglyceride com-
pounds which may be synthesized from fatty acyl moi-
eties of varying length [27] into a single model species,
called “triglyceride”. Yeast 5 also includes similar gener-
alized species for other compounds, particularly those
involved in lipid and sterol metabolism. Though this ap-
proach is also followed by previous yeast GENREs and
other metabolic pathway tools, expansion of such gen-
eral species by differentiating among biochemically rele-
vant species has been shown to be a successful approach
to expanding computational reconstructions of meta-
bolic networks [20]. The appropriate level of detail or
generalization for metabolic (or biochemical) network
reconstruction depends upon the intended use of a
GEM, and would be expected to change in the future as
our knowledge of enzyme specificity and the metabolic
relevance of differences among similar chemical com-
pounds advances.
As with other reconstructed metabolic networks, the

continued existence of blocked pathways (Table 1) high-
lights that our knowledge of yeast metabolism is incom-
plete. Such blocked reactions are an important tool for
documenting portions of metabolism that would benefit
from further research [37]. The Yeast 5 GENRE remains
limited by knowledge gaps. Where our knowledge of
intercompartmental transport of metabolites is limited,
such gaps pose a particular challenge to FBA. Thus, the
Yeast 5 GEM includes hypothetical transport reactions
to better connect portions of the metabolic network that
are unconnected in a graph-theoretical sense. Such
hypothetical transport reactions are annotated with SBO
term [18] SBO:397 (“omitted process”).
Optimal solutions found when conducting FBA on the

Yeast 5 GEM may include fluxes that differ from those
observed in yeast: we have found optimal solutions in
which mitochondrial coenzyme A is synthesized in situ
rather than transported from the cytoplasm, and model
growth simulations incorrectly predict that yeast is not a
pantothenate auxotroph or a nicotinic acid auxotroph in
anaerobic conditions. Additionally, although the model
predicts that biomass can only be produced anaerobic-
ally if the biomass definition is modified (see Materials
and Methods), the reason that simulated anaerobic bio-
mass production using an unmodified biomass definition
is blocked is not because of the biological requirement
of yeast fatty acid desaturate for oxygen. Instead, simu-
lated anaerobic biomass production is blocked due to
other, as yet unidentified limitations in the reconstruc-
tion of phospholipid and sterol biosynthesis. Refining
the solution space to more closely match observed bio-
logical phenomena through improved reconstruction or
expanded constraints remains an ongoing research effort
for reconstructed metabolic networks.
Due to varying interpretations of experimental evi-

dence, uncertainty of metabolic mechanism, and vary-
ing approaches taken as modelers work to reconstruct
different portions of metabolism, it is likely that the
Yeast 5 consensus reconstruction has additional lim-
itations which will be discovered as it is used. These
limitations provide opportunities for continued re-
search to improve the computational reconstruction
and simulation of the yeast biochemical network.
Thus, though Yeast 5 consists of a more complete re-
construction and more accurate model of yeast me-
tabolism than previous efforts, the goal of building a
complete and accurate computational reconstruction
of yeast metabolism must remain an ongoing commu-
nity effort.
Discussion
Yeast 5 is the most recent update to the consensus re-
construction of the yeast metabolic network. It consists
of a genome-scale reconstruction (GENRE), a genome
scale model (GEM), and MATLAB scripts designed to
facilitate evaluation of yeast GEMs and to demonstrate
simulation and analysis using the COBRA and SBML
toolboxes. This update improves the consensus recon-
struction’s coverage of established biochemical know-
ledge, and improves the predictive ability of simulations
using the yeast GEM. The included scripts lower the
barriers for the research community to use the model
and to contribute to the collaborative effort to improve
the computational reconstruction of yeast metabolism.
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Models and reconstructions
We emphasize the distinction between a reconstruction,
or GENRE, and a model, or GEM, to more clearly delin-
eate the established biochemical knowledge of a recon-
struction from the assumptions and hypotheses that are
required for modeling and simulation. This distinction
makes the modeling process more transparent and re-
producible, essential attributes for community-based sci-
entific efforts such as the consensus reconstruction of
yeast metabolism.

Evaluating yeast reconstructions and models
As evidence of improvements to the consensus yeast re-
construction, we have presented a comparison of viabil-
ity, auxotrophy predictions, and genetic interaction
effects, produced using FBA of the Yeast 5 GEM and
other metabolic models (Table 1). However, we
emphasize that such metrics of phenotype predictive
ability must be evaluated with great care. This need for
careful use of such metrics has been discussed previously
[38], but we have found that this point deserves add-
itional emphasis. Specifically, the two goals of expanding
the reconstruction of metabolic networks and improving
model predictions of mutant viability may be contradict-
ory in some situations. The Yeast 5 GEM sensitivity, spe-
cificity, positive predictive value, negative predictive
value, and geometric mean could all be improved by the
reduction of false positive predictions - simulations
which predict that biomass can be produced although
reactions annotated as being catalyzed by “essential
genes” have been blocked. The number of false positive
predictions could be reduced by expanding the biomass
function to require products of reactions annotated with
essential genes, by removing parallel pathways to force
fluxes through reactions annotated with essential genes,
or by removing metabolites and reactions which create
dead-end pathways which include reactions annotated
with essential genes (a method used to improve lethality
prediction metrics when the iLL672 model was derived
from iFF708 [10]). However, while such techniques im-
prove a model’s ability to predict single-gene mutant via-
bility, they also reduce the scope of a GENRE as a
structured knowledge base of established biochemical
facts.
Expanding the reconstruction of a metabolic network

would be expected to increase both dead-end pathways
and network redundancy. Dead ends would be intro-
duced through the inclusion of established knowledge
regarding pathways that are not fully elucidated. In such
pathways, the production of intermediates may be estab-
lished, but their fate is not yet known. In such cases,
expanding the reconstruction of established knowledge
would not be expected to improve a model’s ability to
predict single-gene mutant viability, and so such metrics
would not reflect the expanded scope of the reconstruc-
tion. Another example of network expansion which may
not be reflected in single-gene deletion metrics is
expanding the reconstruction’s coverage of isoenzymes.
Network redundancy increases through expanded inclu-
sion of isoenzymes, which introduce parallel metabolic
paths for the production of chemical intermediates or
products. In the absence of regulatory constraints (which
are beyond the scope of a metabolic reconstruction),
these parallel pathways would increase the rate of false
positive prediction since a metabolic pathway from sub-
strate to product would exist in the reconstruction, even
if a given isoenzyme were individually insufficient to
support growth in vivo. Thus, a metabolic model based
upon a reconstruction with improved coverage of estab-
lished biochemistry of isoenzymes would make less ac-
curate predictions of individual gene essentiality than a
model based upon a less complete reconstruction.
A second problem with metrics based upon lists of es-

sential genes is that gene essentiality is dependent upon
strain, media, and environmental conditions (for ex-
ample, [39] identify mutants which are inositol auxo-
trophs only at elevated temperatures). Though a general
definition of “essential” could imply “in complex media
at 30 °C”, the difficulties of computationally reconstruct-
ing complex media and the lack of integration of
temperature effects on metabolic networks means that
there remains an element of subjectivity in defining a list
of essential genes. Researchers have previously used dif-
ferent data sets to define gene essentiality for model ana-
lysis [9,12]. Thus, if model predictivity metrics are to be
used, care must be taken to ensure a common list of es-
sential genes when evaluating different models by such
metrics. Yeast 5 includes the MATLAB script testYeast-
Model.m to document the list of genes we considered
essential for our comparison of yeast GEMs.
That essentiality metrics must be used with care and

considered in context is not to say that such metrics are
without value, however. Model simulation results that
differ from in vivo experiments can guide efforts to im-
prove computational reconstruction or to highlight the
need for additional biochemical investigation of meta-
bolic dead ends. Simulations resulting in false negative
results, in which the model predicts that biomass cannot
be formed, but in vivo experiments have observed
growth, suggest that the reconstruction is incomplete or
the model has limitations such as incorrect biomass def-
inition or missing simulated media components. Indeed,
the use of gap filling algorithms to improve phenotype
predictive metrics for metabolic models by adding
hypothesized gene functions or reactions is considered
standard practice for GEM development [40].
Like auxotroph phenotype predictions, predicted epi-

static interactions have not previously been used as a
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metric for comparing yeast GEMs. And like other
metrics based upon phenotypic prediction, the use of
epistatic interactions must also be qualified. Specifically,
expansion in the number of reactions in the model is a
likely contributor to the amount of simulated epistasis.
The number of genetic interactions can also be
increased by pleiotropy, or the number of reactions asso-
ciated to a particular gene. Yeast 5 has an 8.43% increase
in the mean number of reactions per gene compared to
iMM904. The most prominent example is ISC1, a gene
important in sphingolipid metabolism. ISC1 is included
in annotation for 60 reactions in Yeast 5, but only 18 in
iMM904. ISC1 accounts for a 1% increase in pleiotropy
by itself. FOX2, a multi-function enzyme involved in
beta-oxidation, ranked highest for pleiotropy in iMM904
with 23 reactions. It is also associated with 23 reactions
in Yeast 5. Additional trends in positive or negative
epistasis across different types of mutations can also
be observed for these models (Additional file 10:
Table S5) [41].

Generic demand reactions in yeast 5 - towards a
functional biomass definition
The yeast consensus reconstruction draws upon data
sources with varying levels of compound specificity. For
example, the KEGG database includes a general repre-
sentation of yeast sphingolipid metabolism, while recent
suggestions for changes to Yeast 4 include more specific
chemical species [20]. Thus, some Yeast 5 reactions
which are derived from KEGG use generic species as
substrates or products, while reactions derived from
other sources use more specific species. To accommo-
date the formation of generic chemical species for reac-
tions which consume them while preserving biochemical
accuracy in reactions that have more specific biochemis-
try, the Yeast GEM includes “isa” reactions. Examples of
generic species produced by “isa” reactions include
“complex sphingolipid”, “fatty acid”, and “acyl-CoA”.
Where “isa” reactions are reversible, they can intro-

duce unrealistic interconversion of metabolites. For ex-
ample, since octanoate is a fatty acid and hexadecanoate
is a fatty acid, reversible “isa” reactions in a model would
create a nonrealistic pathway by which octanoate could
be converted to hexadecanoate via the “isa” reaction, in-
stead of through biochemical pathways which have been
documented in vivo. In order to prevent such non-
realistic interconversion fluxes, Yeast 5 “isa” reactions
are not reversible. Thus, more general compounds can
only serve as sinks of more specific compounds in the
Yeast 5 GEM, and not as sources.
An unanticipated result of this approach to varying

levels of biochemical specificity in the model is that “isa”
reactions effectively embed the logical OR into the
model. Thus, where the biomass definition includes
“lipid” as a required component, this objective function
can be satisfied by any of the compounds that can be
converted to “lipid” via an “isa” reaction (Figure 1).
Thus, although “biomass” must be defined if maximizing
biomass production is the objective function for FBA,
“biomass” does not need to be a specifically determined
compound with a fixed stoichiometry for FBA to be suc-
cessfully applied to stoichiometrically constrained meta-
bolic reconstructions.

Continuing efforts to reconstruct yeast metabolism - an
invitation for continued community involvement
Computational reconstruction and modeling of yeast
metabolism is an ongoing project. Suggestions for im-
proving the yeast consensus reconstruction or derived
models should be submitted to network.reconstruc-
tion@manchester.ac.uk. Metabolites and enzymes should
be unambiguously identified, using existing model or
database (ChEBI or UniProt) identifiers. New reactions
should be supplied with primary evidence for their
mechanism and catalysis, via PubMed identifiers. Reac-
tions without evidence should have clear reasons for
their proposed addition.
We also invite researchers to submit models derived

from the yeast consensus reconstruction for hosting at
http://yeast.sf.net/. Assumptions and constraints should
be documented, for example with code documenting
how to build the GEM from the Yeast GENRE. Such
models may be submitted for publication separately
from updates to the Yeast GENRE, and may follow the
iNNXXX naming convention which has been previously
used for identifying GEMs [42].

Conclusions
The Yeast 5 expansion of the Yeast Consensus Recon-
struction refines the computational reconstruction of
yeast metabolism and improves the predictive accuracy
of a stoichiometrically constrained yeast metabolic
model. It refines the biochemical reactions included in
the reconstruction, particularly reactions involved in
sphingolipid metabolism; updates gene-reaction annota-
tions; and emphasizes the distinction between recon-
struction (GENRE) and stoichiometrically constrained
model (GEM). This update also improves the accuracy of
model prediction of viability and auxotrophy phenotypes
and increases the number of epistatic interactions. Yeast
5 differs from previous reconstructions and models by
emphasizing the distinction between the yeast metabolic
reconstruction and the stoichiometrically constrained
model, and makes both available as Additional file 4 and
Additional file 5 and at http://yeast.sf.net/ as separate
systems biology markup language (SBML) files. Through
this separation, we intend to make the modeling process
more accessible, explicit, transparent, and reproducible.

http://yeast.sf.net/
http://yeast.sf.net/


0.000417 Complex Sphingolipid0.00288 Phosphatidylcholine …++ Lipid

Lipid … Biomass0.357 L - alanine ++
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Complex Sphingolipid

IPCMIPC M(IP)2C
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Figure 1 Using “isa” reactions. Yeast 5 uses “isa” reactions to encapsulate specific chemical species within more general classes. For example,
A) the specific species inositol-P-ceramide-A “isa” inositol phosphoceramide (IPC). In turn, IPC “isa” complex sphingolipid. B) Complex
sphingolipids participate in the stoichiometrically constrained reaction which produces the species “lipid”. C) The lipid species is a component of
biomass. This hierarchical model structure embeds logic in the biomass definition: biomass consists of L-alanine AND phosphatidylcholine AND
(inositol-P-ceramide-A OR Inositol-P-ceramide-B OR any of the 88 other complex sphingolipids included in the reconstruction). A model user is
free to constrain the fluxes which produce specific complex sphingolipids to model an observed lipid composition, or may leave the model
unconstrained if the more general biomass definition is sufficient for their needs.
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The Yeast Consensus Reconstruction remains a
community-based resource which emphases standards
compliance and biochemical accuracy via evidence-based
selection of reactions.
Though Yeast 5 consists of a more complete recon-

struction and more accurate model of yeast metabolism
than previous efforts, the goal of building a complete
and accurate computational reconstruction of yeast me-
tabolism must remain an ongoing community effort. As
Yeast 5 limitations are identified, they provide opportun-
ities for continued research to improve the computa-
tional reconstruction and simulation of the yeast
biochemical network.
Methods
Yeast 5 scope
The scope of Yeast Consensus Reconstruction was origin-
ally determined by the data sets used for its construction:
the iMM904 [12] and iLL672 [10] models, which included
information from the KEGG and SGD databases, along
with other sources. Subsequently, the Consensus Recon-
struction was expanded [16] to include information (par-
ticularly focusing on lipid metabolism) from the iIN800
model [11]. Yeast 5 further expands the scope of recon-
struction to refine details of sphingolipid metabolism
[20,21]. Though the stoichiometrically constrained ap-
proach can theoretically be expanded to include all
biochemical reactions in the organism being modeled
[43], the Yeast reconstruction is currently limited to the
yeast metabolic network. Although Yeast 5 is not strain-
specific, the auxotroph information we used for our ana-
lysis focused on auxotrophies documented in S. cerevisiae
reference strain SC288C. Since multiple yeast genome
sequences are now available, future updates to the Yeast
Consensus Reconstruction may become strain specific.
Deriving reconstruction (GENRE) from model (GEM)
We must maintain a distinction between the reconstruc-
tion of yeast metabolism, an evidence-driven biochemical
knowledge-base, and its correspondingmodel, which relies
on a number of assumptions to make quantitative flux
predictions [40]. We discriminate between the two
through the use of the Systems Biology Ontology (SBO)
[18]. Specifically, reactions marked up with specific SBO
terms may be automatically removed from a model to cre-
ate a reconstruction. Encapsulating “isa” reactions of the
form “A isa B” are annotated with SBO:395 (“encapsulat-
ing process”). Other reactions without literature evidence,
that are omitted in the reconstruction, such as biomass
production and most transport reactions without an asso-
ciated transporter are annotated with SBO:397 (“omitted
process”). Reaction constraints (lower and upper bounds)
are also removed in the reconstruction. The transform-
ation is performed using the SBMLToolbox [25].
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Yeast model conventions
The Yeast 5 GEM includes conventions to facilitate model
analysis using the COBRA Toolbox, such as standardized
representation of exchange reactions, though such conven-
tions are not required in the SBML specification. However,
we have chosen to rely upon the SBML standard for encod-
ing reaction and metabolite annotation, rather than the
nonstandard custom notes field currently used by the
COBRA toolbox. This information, which includes metab-
olite ChEBI identifiers and literature references supporting
reaction inclusion, is encoded in the model .sbml file and is
available to MATLAB users via the SBML toolbox. An add-
itional model convention is that the Yeast 5 GEM includes
biomass as a species in the model to help make our ap-
proach to simulating biomass production more explicit.
Exchange reactions in the Yeast 5 GEM follow a con-

vention of using compounds in the model as reactants,
leading to exchange reactions of the form “reactant ->”,
with an entry of +1 in the stoichiometric matrix. Thus,
positive flux values for exchange reactions represent com-
pounds produced in FBA simulation, and negative flux
values represent compounds consumed. Since reactions
must include both substrate and product in SBML, we
have followed the COBRA toolbox convention of denoting
exchange reaction species which lay outside the model
with the subscript “_b”. These species are not loaded into
the COBRA toolbox data structure, and serve only as pla-
ceholders for exchange reaction substrates.
We have chosen to include biomass as a species in the

Yeast 5 GEM. Thus, when conducting FBA on the Yeast 5
GEM, the biomass exchange reaction can be selected if
biomass optimization is the desired objective function. For
modeling purposes, the species “biomass” is produced in
the Yeast 5 GEM via a reaction which consumes 37 bio-
mass precursor compounds to produce biomass, ADP,
protons, and phosphate. The biomass precursors include
water, polysaccharides, nucleotides, amino acids, ribofla-
vin, sulfate, and the general species “lipid”. The “lipid” spe-
cies in the Yeast 5 GEM serves a function similar to
Zanghellini et al.’s “virtual membrane particle” [44] or
Nookaew et al.’s lipid species [11]. It is a lumped species
which incorporates many different specific lipid com-
pounds. We have used two different definitions of “lipid”
to enable simulation of aerobic and anaerobic biomass
production (see “Simulating yeast growth”). The aerobic
lipid pseudoreaction consumes 15 lipids and sterols, to pro-
duce the generic “lipid” species, while the anaerobic lipid
pseudoreaction omits the sterols 14-demethyllanosterol
and ergosta-5,7,22,24(28)-tetraen-3beta-ol. Thus, there are
two Yeast 5 GEM biomass definitions: an aerobic biomass
consisting of 52 compounds, and an anaerobic biomass def-
inition consisting of 50 compounds. The growth, biomass
pseudoreaction, and lipid pseudoreactions are detailed in
Additional file 11: Table S6.
Constraining reactions in the yeast 5 GEM
The Yeast 5 GEM has over 300 more directionally con-
strained reactions than Yeast 4. Such constraints incorp-
orate thermodynamic information into the GEM, and
often serve in part to limit Type III cycling, which arises
from the linear programing approach, but are thermo-
dynamically infeasible [45]. It is noted that such cycling
can also be eliminated by minimizing the total flux, or
by applying geometric FBA [46]. New constraints were
added by re-evaluating “isa” reactions and applying a
heuristic approach to reactions involving energy-
carrying cofactors (ATP and NAD(P)), supported by evi-
dence from other models, literature, and pathway data-
bases. As discussed in “Generic demand reactions in
Yeast 5 - towards a functional biomass definition”, direc-
tional constraints were added to “isa” reactions in the
Yeast 5 GEM to prevent unrealistic interconversion of
chemically distinct metabolites via fluxes through gen-
eral species. Additional constraints were added with a
heuristic approach similar to [47] which focuses on reac-
tions which may produce ATP and those that use NAD
or NADP as cofactors. We directionally constrained
such reactions only when such constraints were sup-
ported by constraints in the iND750 and iMM904
reconstructions and by the directionality specified in the
BioCyc database [5].

Simulating yeast growth
The Yeast 5 GEM includes 170 exchange reactions, each
of which defines a compound that can be included as a
medium component for simulation purposes. As distrib-
uted, the simulated media is a glucose-limited minimal
aerobic medium with constrained limited uptake of glu-
cose, and unconstrained exchange of oxygen, ammo-
nium, protons, iron(2+), phosphate, potassium, sodium,
sulfate and water. To simulate anaerobic growth, the
oxygen exchange reaction may be constrained to dis-
allow oxygen uptake. Simulating anaerobic growth also
requires that the simulated media be supplemented by
allowing exchange of ergosterol, lanosterol, zymosterol
and phosphatidate, and the biomass definition be
changed by removing 14-demethyllanosterol and
ergosta-5,7,22,24(28)-tetraen-3beta-ol from the “lipid”
definition. These requirements reflect the observation
that yeasts require sterols [48,49] and fatty acids [50]
when cultured under rigidly anaerobic conditions.
However, from a modeling perspective, these require-
ments arise from the biomass definition, for which the
biochemistry is not firmly established, and from the re-
construction of sterol metabolism, which is incomplete
in the Yeast 5 GEM.
Growth simulations were performed using the COBRA

toolbox [26]. We have included MATLAB scripts which
demonstrate simulation of aerobic and anaerobic growth,
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investigation of internal fluxes, and gene essentiality tests
as supplemental material.
Gene deletion simulation
Gene deletion simulations were performed using the
COBRA toolbox [26]. To compare model gene essentiality
predictions with observed phenotypes, gene lists were
compiled for genes considered essential, and those which
have been observed to cause auxotrophies when deleted.
The essential gene list was compiled beginning with 1191
unique open reading frames reported to cause inviable
mutants upon deletion in the Saccharomyces Genome De-
letion Project [30] and the YKOv2 supplemental data set
available from http://www-sequence.stanford.edu/group/
yeast_deletion_project/data_sets.html. Since this data set
screened in complex media (which is only incompletely
accounted for with FBA simulation due to the limited
number of exchange reactions), we refined the list of “es-
sential” genes first by removing any ORFs which have not
been reported as verified in the SGD database [28], and
then by supplementing it with a list of gene mutations
which have been reported to cause auxotroph phenotypes.
The auxotroph-inducing gene list was generated by by
searching the SGD database for “inviable” and “auxotro-
phy” phenotypes. Since the biochemistry of temperature
signaling is beyond the scope of the Yeast 5 GEM, we
removed temperature-dependent inositol auxotroph
mutants [39] from this list. The lists of genes we used for
evaluating model essentiality predictions, as well as a
MATLAB script which can be used to evaluate other yeast
GEMs essentiality predictions, are included as supplemen-
tal material.
Simulation of genetic interactions
Genetic interactions were quantified with the nonscaled
multiplicative definition of epistasis, E=Wxy-WxWy [35]. In
this definition, Wx and Wy are fitness scores for organisms
with a mutation in genes x and y, respectively, and Wxy is
the fitness of the organism with both mutations present.
Any E 6¼ 0 indicates a genetic interaction under the assump-
tion that both of the genes independently and multiplica-
tively contribute to fitness. Following the example of [32],
we quantified fitness as maximum biomass production rate
(as determined by FBA) relative to the rate of biomass pro-
duction in simulations conducted with the wild-type model.
As suggested by [35], we simulated genetic perturbation by
limiting flux through all reactions associated to a specific
enzyme by a fixed amount of the wild-type geometric FBA
flux (0%, 10%, 90%). Constraining the flux to fractions of
wild-type flux allows investigation of essential reactions, as
well as inessential reactions. The number of epistatic inter-
actions for each level of flux restriction is included in Add-
itional file 10: Table S5.
MATLAB Scripts
modelToReconstruction.m: A script which can be used
to generate the Yeast GENRE from the Yeast GEM;
testYeastModel.m.m.; A script which can be used to com-
pare various yeast GEMs (tested with iND750, iMM904,
Yeast 4, and Yeast 5); fluxDistribution.m: A script demon-
strating aerobic and anaerobic growth simulations, and
comparing the fluxes through glycolysis, the TCA cycle,
and the pentose phosphate pathway.

SBML network files
yeast_5.01_model.xml: The Yeast GEM; yeast_5.01_re-
con.xml: The Yeast GENRE.

Additional files

Additional file 1: Function testYeastModel.m.m.

Additional file 2 Function modelToReconstruction.m.

Additional file 3: Function fluxDistribution.m.

Additional file 4: Yeast metabolic network reconstruction.

Additional file 5: Yeast metabolic network model.

Additional file 6: Table S1. ORFs in Yeast 4 not in Yeast 5.

Additional file 7: Table S2. ORFs in Yeast 5 not in Yeast 4.

Additional file 8: Table S3. Genes considered essential.

Additional file 9: Table S4. Auxotroph-inducing genes.

Additional file 10: Table S5. Gene interaction analysis.

Additional file 11: Table S6. Biomass Definition.
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