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Abstract

Background: Identification of driver mutations among numerous genomic alternations remains a critical challenge
to the elucidation of the underlying mechanisms of cancer. Because driver mutations by definition are associated
with a greater number of cancer phenotypes compared to other mutations, we hypothesized that driver mutations
could more easily be identified once the genotype-phenotype correlations are detected across tumor samples.

Results: In this study, we describe a novel network analysis to identify the driver mutation through integrating
both cancer genomes and transcriptomes. Our method successfully identified a significant genotype-phenotype
change correlation in all six solid tumor types and revealed core modules that contain both significantly enriched
somatic mutations and aberrant expression changes specific to tumor development. Moreover, we found that the
majority of these core modules contained well known cancer driver mutations, and that their mutated genes
tended to occur at hub genes with central regulatory roles. In these mutated genes, the majority were cancer-type
specific and exhibited a closer relationship within the same cancer type rather than across cancer types. The
remaining mutated genes that exist in multiple cancer types led to two cancer type clusters, one cluster consisted
of three neural derived or related cancer types, and the other cluster consisted of two adenoma cancer types.

Conclusions: Our approach can successfully identify the candidate drivers from the core modules. Comprehensive
network analysis on the core modules potentially provides critical insights into convergent cancer development in
different organs.
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Background
Cancer occurs when cells grow out of control due to
genetic mutations [1]. It is not a single disease, but exhi-
bits a wide spectrum of phenotypic variations involving
numerous critical genes and pathways, e.g. TGF-β, NK-
κB, TNF-α that may play multiple and even opposite
roles [2,3]. Accordingly, a wide range of genetic muta-
tions is involved, and the same mutations may exhibit a
different impact. Further elucidation of the functional
link between the genetic mutations and phenotypic
changes in cancer development is of central importance,
but remains a challenge [4]. Moreover, these genetic
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mutations disrupt the DNA repair pathways, resulting in
many associated non-functional mutations [5].
Thus, this poses a big challenge to the central goal in

cancer research to identify functional and critical muta-
tions. Historically, identification has been approached
starting with frequent single genes to pathways, followed
by the identification of multiple gene modules. A previ-
ous study of 11 breast cancer samples and 11 colon can-
cer samples [6] focused on individual frequent mutated
genes, and identified 189 candidate cancer genes (CAN
genes), but failed to identify critical infrequent mutated
genes. Cancer heterogeneity or insufficient tumor sam-
ple size contributed to this and complicated the efforts
to distinguish the additional core mutations from the
most infrequent background mutations. At the same
time, both the functional “driver” mutations and the
associated “passenger” mutations occur rarely; therefore,
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it is nearly impossible to distinguish them solely based on
the frequency of individual genes [7,8]. Recent reports
have focused on mining the over-represented mutations
in co-expressed gene sets or modules [9]. In one recent re-
port, the authors hypothesized that mutations cause can-
cer by disrupting certain functional modules [10], i.e., sets
of genes involved in the same biological functions, via dif-
ferent combinations of infrequently mutated genes in the
same module, as functionally linked genes tend to share
similar mutational phenotypes [11-15].
In this study, our principle hypothesis is that cellular net-

works are comprised of many functionally related modules,
and that critical genomic alterations may not necessarily
change expression themselves, but may affect downstream
functional modules expression levels and perturb normal
functionality, leading to significant phenotypic changes.
Theoretically, from the network perspective, critical

cancer gene disruption will cause a significant change in
expression within its neighborhood and significant
phenotypic changes. Driver mutations are defined as
having been positively selected and contributing to can-
cer development; but conversely passenger mutations do
not confer cancer development advantage [7]. One cru-
cial form of phenotypic change during cancer develop-
ment that has been extensively studied is change in gene
expression [16]. And it has been demonstrated that the
pathways or modules enriched for CAN genes are ac-
companied by significant expression changes [17]. Fur-
thermore, some reports have identified candidate disease
genes by searching through the significantly disrupted
modules, which consist of their neighborhoods, using
only gene expression information [18,19]. As a result,
these top ranked significantly differentially expressed
genes or modules represent the cancer phenotype
changes, whereas upstream genomic alterations aid in
locating the changing source.
Thus, based on this hypothesis, in order to discover

the drivers we proposed a novel network-based approach
to identify the core modules exhibiting both mutation
enrichment and significant expression changes. The
feasibility of this hypothesis was further assessed and
genotype-phenotype correlations were detected at the
network modular level. We applied this approach on six
cancer types (ten datasets) to identify the core modules
and demonstrate the utility of the method to correctly
identify the known drivers. Furthermore, comprehensive
network analyses were performed to further mine the
identified driver network properties: mutations in the
core modules tended to mutate the hub genes that
exhibited central regulatory roles. Many of them were
cancer type specific and relatively functionally isolated
from those found in other cancer types. Only a few,
reflecting the phylogenies of the six cancer types, played
a general role in multiple cancer types.
Results
Identification of significant expression changed functional
modules
The identification of the significant expression changed
functional modules was conducted by integrating mRNA
expression, protein-protein interaction and Gene Ontol-
ogy (GO) function annotation (Figure 1). The identifica-
tion process is described briefly as follows. Further details
are provided in the Materials and Methods section.
Based on the GO annotation, the whole genes on the

expression profile were classified into several smaller
GO clusters, omitting the genes not present in GO. The
total number of GO clusters in each cancer type was
802 – 1004, involving 2644 – 4428 genes in total, with
an average size of 25 – 36 genes per cluster. For each
GO cluster, we built a GO network that consisted of
nodes representing the member genes, and the edges
representing the protein interactions between the corre-
sponding two linked genes and weighted with their co-
expressed level which measured by PCC. The below ana-
lysis on the network weighted by Spearman correlation
is also presented and similar results can be seen in the
supplementary files (Additional file 1: Table S1; Add-
itional file 2: Figure S2, S3).
For each GO network, the weighted Girvan and New-

man (GN) algorithm [20] was applied and partitioned it
into the discrete functional modules. There were totally
4177 – 6863 functional modules identified for all GO
networks for each individual dataset derived from a dif-
ferent cancer type, with an average size of 4.6 - 5.0 genes
per module, which represents approximately 12.8% -
18.6% of the GO clusters.
To search the modules that reflect an alteration be-

tween two different pathological conditions, we used the
modified p-SAGE algorithm [21] to evaluate the multi-
gene differential expression levels for all modules. The
modules were ranked in ascending order based on their
significant differential expression levels (P value); thus,
the top ranked modules (TRMs) exhibited greater ex-
pression differences compared to the rest of the mod-
ules. For all 10 datasets, the top 100 TRMs (TRMs_100)
were typical with the original p-SAGE P values< 0.0635,
and TRMs_1000 with P values< 0.090.

Reproducible specificity to cancer development of the
TRMs
The intra-dataset reproducibility of the resultant TRMs
was first tested using the Lin07 dataset of colon cancer
samples (dataset details in Table 1). We randomly split
the dataset into two halves, and estimated the robustness
as the average overlapping percentage of genes in the
TRMs (i.e. TRM genes) that identified from both halves
across 1000 random splits. As shown in Figure 2A, the
overlapping percentages for these TRMs_100-1000



Li et al. BMC Systems Biology 2012, 6:64 Page 3 of 14
http://www.biomedcentral.com/1752-0509/6/64
(16.9% - 51.8%) were approximately four times higher
than those for equal amount of individual genes that
identified using t-test (named TRGs_100-1000, 4.3% -
12.4%). On one hand, we found that significant overlaps
for 97.4% split tests of TRMs_100 and for 100% split
tests of TRMs_200 – 1000, whereas approximately 10–
30% split tests of TRGs_100-1000 did not exhibit a sig-
nificant overlap (significance was evaluated by the
Fisher’s exact test, P<=0.05). On the other hand, after
permutating the sample labels ten times, i.e., a total of
Figure 1 Scheme of TRMs and core modules identification. The first st
each GO gene set to build the GO network. Expression profiles are used to
for GO network. Once the co-expression GO network was built, we divided
algorithm and the whole modules by p-SAGE based on expression differen
MM (Fisher’s exact test, P≤ 0.05) and defined them as core modules.
10,000 split tests, we found that the overlapping
percentages of TRMs with permutation (named TRM_Ps;
6.8% - 34.6%) were significantly lower compared to TRMs
(Figure 2A; Wilcoxon test, P< 1E-5), and approximately
1.5-3 times higher compared to those of the TRGs
(4.3% - 12.4%). Both results confirmed that the identified
TRMs captured non-random changes that are specific to
cancer development and distinguishable from random-
ness. Similar results were found in another colon cancer
dataset (Barrier06) as well (Additional file 2: Figure S1).
ep is to construct the co-expression GO network. PPIs are assigned to
calculate the co-expression level for two genes as weight of the edge
the network into several functional modules by the weighted GN
tial level to obtain the TRMs. Next, we screened the TRM to search the



Table 1 The gene expression datasets used in this study

Name Cancer type #Gene Platform #Patients Pathological settings

Lin07 colorectal cancer 4428 Affymetrix Human Genome U133A Array 55 29 non-recurrence vs. 26 recurrence

Barrier06 colorectal cancer 4428 Affymetrix Human Genome U133A Array 50 25 non-recurrence vs. 25 recurrence

Wang05 breast cancer 4428 Affymetrix Human Genome U133A Array 286 180 non-metastasis vs. 106 metastasis

Van02 breast cancer 4203 Agilent oligonucleotide Hu25K microarray 295 217 non-metastasis vs. 78 metastasis

Jones05 clear-cell renal cell carcinoma 4428 Affymetrix Human Genome U133A Array 55 23 normal vs. 32 ccRCC

Wuttig09 clear-cell renal cell carcinoma 4428 Affymetrix Human Genome U133 Plus 2.0 Array 68 29 good prognosis vs. 39 poor prognosis

Sanchez10 non-small cell lung cancer 4428 Affymetrix Human Genome U133 Plus 2.0 Array 91 45 normal vs. 46 tumor

Beer02 non-small cell lung cancer 2644 Affymetrix Human Full Length HuGeneFL Array 86 24 dead vs. 62 alive

Riker08 melanoma 4428 Affymetrix Human Genome U133 Plus 2.0 Array 82 42 non-metastatic vs. 40 metastatic

Freije04 gliomas 4428 Affymetrix Human Genome U133A Array 85 59 dead vs. 26 alive
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Next, we tested inter-dataset reproducibility using two
datasets of breast cancer samples with identical patho-
logical settings but different microarray platforms
(Wang05 and Van02). We found significant overlaps of
TRMs_100- 1000 from these two datasets (Fisher’s exact
test, P< 5.26E-61). As shown in Figure 2B, the overlap-
ping percentages (23.3 - 52.3%) of TRMs were signifi-
cantly higher compared to those for TRGs (2.4 - 7.6%)
and TRM_Ps (1.3 - 45.1%). Moreover, the overlapping
percentages of TRMs were approximately two times the
mean of overlapping percentages for TRM_Ps, and were
significantly higher than the extreme values from
the permutation tests (Figure 2B; Grubbs outlier test,
p-values< 0.05), but were not found using TRGs. These
results suggested a greater stability across datasets at
TRMs but not the single gene level and confirmed that
the TRMs were highly reproducible and specific to cancer
development across two independent datasets.
Lastly, we compared the inter-dataset reproducibility

with other methods. The calculations that we utilized for
whole overlapping percentages from different methods
were unified as the ratio between the intersection and
union of the genes in the modules. As seen in Figure 2C,
the overlapping percentage of TRMs (TRMs_100: 23.3%,
TRMs_200: 26.6%) was much higher compared to those
from other methods (Chuang07 [22]: 12.7%; Hwang08
[23]: 12.7%) with the exact same datasets and a similar
number of modules, and even higher than the method
(Dao11 [24]: 16.5%) for two splits of GSE20194 (more
details are provided in Additional file 1: Table S2).

Module-level enrichment of mutations in TRMs
In the following, we focused on the TRMs_100 and
investigated the potential link to mutations.
We first assessed if the TRMs_100 tended to contain a

greater number of mutated genes compared to lower-
ranked functional modules by calculating the ratio of
their percentages of mutated genes. For all ten datasets,
the ratios of TRMs_100 were slightly above one,
significantly higher compared to those of TRGs (paired
t-test; P = 1.3E-4), but not significantly different from
those of TRM_Ps (paired t-test; P = 0.46) (Figure 3). We
hypothesized that it was potentially caused by hub-genes
that were preferred targets of mutations [25] and
appeared more often in the identified modules; however,
they were not associated with cancer development.
Alternatively, we repeated the same analyses listed

above, but tested for the percentage of mutated modules
(MMs) rather than mutated genes in the TRMs_100.
Interestingly, we found that the mean ratio of the percent-
age of MMs in TRMs_100 vs. non-TRMs_100 (the ratios
are referred to as MM enrichment scores hereafter) was
2.71± 0.53 and was significantly greater than one (P values
< 7.3E-09). In contrast, the mean ratio for TRM_Ps was
over two times lower (Figure 3; Module_level_TRM_Ps)
and remained similar to those for mutated gene percen-
tages in non-permutated or permutated cases (Figure 3;
Gene_level_TRM and Gene_level_TRM_Ps). These find-
ings were consistent for all of the cancer types that we
examined in this study, suggesting that mutations were
non-randomly linked to cancer development via TRMs,
and were not necessarily dependent on the number of
genes mutated in each TRM.
We evaluated the sensitivity of MM enrichment score

to the changes of the pathological setting within the
same cancer type. We found the much smaller difference
of MM enrichment scores in colon cancer (0.34) and
breast cancer (0.46), both of which had same patho-
logical settings, although different microarray platform
were utilized in breast cancer. However, approximately
two fold greater differences were found in non-small cell
lung cancer (NSCLC) datasets (1.17) and clear-cell renal
cell carcinoma (ccRCC) datasets (1.21). In each of these
two cancer types, the datasets utilized different patho-
logical settings (details in Table 1) as well as different
microarray platforms. Taken together, these findings sug-
gested that the MM enrichment scores in TRMs_100
are reproducible and more sensitive to changes in the



Figure 2 TRM reproducibility of intra- and inter- datasets. The
percentage of overlapping genes is calculated as the ratio for the
number of intersection and union of the genes. We compared the
percentage of overlapping genes on TRM, TRG with the equal
number of genes in TRM, and their corresponding permutation test
controls (TRM_P and TRG_P). We performed the above comparison
on (A) two randomly split halves of Lin07, (B) two datasets for the
different microarray platform, van02 and wang05. We compared our
overlapping percentage of inter-datasets (orange) with others
methods (blue) (C).
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tumor developmental stages compared to microarray
profiling methods.
Informative marker of driver mutations: core modules
As we hypothesized, core modules, i.e. the modules with
significant genomic and transcriptomic changes, may be
more prone to containing driver mutations. To test this
idea, we first analyzed the percentage and distribution of
the known cancer drivers in these core modules. We
used three cohorts of CAN-genes identified using a
frequency-based approach and viewed as the most likely
candidate cancer drivers in colon cancer [26], breast
cancer [26], and gliomas [17]. We mapped these CAN-
genes onto these cores modules identified from five
datasets of these three types of cancers.
Overall, all of these three cancer types had over 50%

core modules that contained at least one CAN-gene
(Barrier06: 88.9%; Lin07: 50%; van02: 81.8%; and
Freije04:52.4%). In contrast, the percentages were signifi-
cantly lower for non-“core modules” in the TRMs_100
(Fisher’s exact test, P< 0.05): Barrier06:26%; Lin07:16%;
van02: 12%; and Frejie04: 9%. Moreover, due to few
number of significant mutation enrichment in the
TRM_Ps_100, there were even lower percentage of
core modules that contained at least one CAN-gene
in the permutation test (Wilcoxon test, p< 2.2e-16):
Barrier06:9.6%; Lin07:10.5%; van02:8.7%; Freije04:8.4%.
Most CAN-genes in core modules are well-known

cancer drivers (the complete CAN-genes list in core
modules is provided in Additional file 1: Table S4); for
example, APC, SMAD4 and TP53 for colorectal cancer
[27] and BRCA1 for breast cancer. Moreover, it is well
documented that almost all CAN-genes in core modules
from gliomas exhibit critical alterations in the three im-
portant pathway, TP53 pathway (TP53), RB1 pathway
(RB1 and CDKN2A), and PI3K/PTEN pathway (PIK3R1,
PTEN) [17]. These results suggest that these core mod-
ules are informative of the existence of cancer drivers.
Gene ontology analysis also indicates that many of these
core modules are associated with cell survival and prolif-
eration, cell cycle, metabolism, cell death or apoptosis,
or response to DNA damage (details provided in Add-
itional file 1: Table S5), events that are critically relevant
to the progression of cancer [28].

Mutated genes in core modules are hub-genes or
functionally similar
Given the above findings that the core modules were
non-randomly associated with tumor development at
both the expression and mutation levels, and were more
critical cancer drivers and biological processes, we per-
formed network analysis on the core modules to explore
the properties of their mutated genes across six different
cancer types.
There were a total of 236 mutated genes in the core

modules identified from all ten datasets. As somatic muta-
tions are not biased toward more genes in a TRM, one al-
ternative possibility is that they selectively alter certain
genes with pivotal roles to the module. To investigate this
further, we built a network of the mutated genes in core
modules with the known protein interactions (Figure 4A).



Figure 3 Mutation enriched in TRM at module level. The mutation enrichment level for TRM (Module_level_TRM) is calculated as the ratio of
the number of MM in TRMs_100 and remaining modules. As a control we also performed the same analysis on the mutated genes in TRMs_100
(Gene_level_TRM), top rank t-test genes with the same number of genes in TRMs_100 (Gene_level_TRG), and their respective permutation test
controls.
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We found that genes mutated for a greater number of
cancer types tended to reside in more central part of the
network, whereas those mutated for less cancer types were
often found in the peripheral regions. Alternatively, we
also found a positive linear correlation between the close-
ness score (definition are provided in the Materials and
Methods section) of a mutated gene and the number of
cancer types (Figure 4B; R2: 0.5979, P = 0.0145). This result
suggests that mutations tend to occur at hub genes with
central regulatory roles.
For each cancer type, we analyzed the smaller net-

works formed by the mutated genes in the core modules.
Interestingly, for all cancer types, the networks exhibited
comparable heterogeneity, clustering coefficients, and
connectivity to the original network, but approximately
2–7 times greater centralization and higher density
scores (Additional file 1: Table S6). These results indi-
cated a greater influence from the specific hub genes for
each cancer type. We listed the top hub genes mutated
for ccRCC, gliomas and colon cancer in Figure 4C-E, re-
spectively. Of ccRCC, one hub gene, MAPK8, serves as a
critical component of the JNK signaling pathway, which
is known to be important for ccRCC. One highly con-
served modulator of this pathway, SPOP, is highly
expressed in 99% of ccRCC samples [29]. No comparable
strong correlation was found for colon cancer or gli-
omas. In contrast, two hub genes of colon cancer,
SMAD2 and SMAD3, are from the TGFβ/SMAD signal-
ing pathway whose role is more established for the de-
velopment of colon cancer compared to the other two
cancer types. We suggested that these type-specific hub
genes may reveal the specific roles of their pathways for
each cancer type, as opposed to general roles in cancer
development.
On the other hand, the higher density of cancer type-
specific networks may imply a closer functional relation-
ship among mutated genes in core modules from the
same cancer type compared to those in different cancer
types. To test this hypothesis, we generated the networks
of mutated genes in core modules that identified from
each of the ten cancer datasets. As expected, we found
there were generally higher network relatedness scores
(R, definition are provided in the Materials and Methods
section) between the dataset networks from the same
cancer type compared to different cancer types. These
differences were significant for the shortest path cutoff =
0 (denoted as sp0 hereafter), i.e., no direct interactions,
compared to cutoff = 1 or 2, presumably due to the
known small world effect within biological networks.
These results demonstrate that networks from the same
cancer type would be functionally more closely related
compared to those from different cancer types.

Cancer type specific vs. general mutated genes in core
modules
Since different network properties were identified between
the mutations in core modules with higher and lower
number of cancer type (N), we classified these mutations
into two categories: mutated genes with N> 1 and
N<=1, and further investigated them separately. Note
that for cancer type with two different datasets, if a
mutated gene in core modules only belonged to one of
them, its number of cancer type N was defined as 1/2.
We initially investigated whether the relatedness scores

could be attributed to the mutated genes (with N<=1) in
core modules specific to a certain cancer type. After the
removal of genes with N> 1, the remaining networks of
melanoma or gliomas showed no relatedness to those of



Figure 4 (See legend on next page.)
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Figure 4 The network properties of mutated genes in core modules. (A) The network of the mutated genes in TRMs_100 is visualized using
Cytoscape. Pie charts of each node marked their corresponding different cancer types and the size indicated the number of cancer types. (B) The scatter
plot for the closeness vs. the number score of cancer type (diamond dot). The linear regression line was built using the medium of the closeness for each
number score (x dot). The top 30 hub genes of the network (A) was mapped on gliomas (C), ccRCC (D), and colon cancer (E), respectively.

Figure 5 The phylogenic relationship tree of the six cancer
types. Using the tree viewer software Dendroscope, we display the
three phylogeny trees: (A) totTree; (B) comTree; (C) rareTree.
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other cancer types. In contrast, lung cancer showed con-
siderable relatedness scores (0.02-0.073) to other cancer
types (except gliomas and melanoma) comparable to their
within-type relatedness (0.0508). The only other cross-
type non-zero relatedness was between one breast cancer
dataset and one colon cancer dataset (0.053). Interestingly,
the two datasets from breast cancer (0.087), colon cancer
(0.12), and ccRCC (0.14) exhibited relatively higher non-
zero within-type relatedness, respectively. These findings
indicated that type-specific mutated genes in core mod-
ules are less functionally linked to those of other cancer
types except for lung cancer.
We next performed a systematic evaluation of the roles

of the two kinds of mutated genes in core modules for dif-
ferent cancer types and the three Neighbor-Joining phylo-
genies of the six cancer types based on their network
relatedness scores were derived from (further details are
provided in the Materials and Methods section): the
mutated genes in core modules with N> 1 (comTree), the
mutated genes in core modules with N≤ 1 (rareTree), and
all 263 mutated genes in core modules (totTree) as control
(Figure 5A-C). Interestingly, we found that the totTree and
rareTree were almost identical to a star-like topology in
which each cancer type is about equally distant from one
another. In contrast, the comTree clearly showed two
more closely paired cancer types. One pair contained
breast cancer and colon cancer, which is consistent in that
both cancers are adenocarcinoma. The other pair con-
tained lung cancer and melanoma. Melanoma originates
from neural crest cells and 10%–30% of the NSCLC cells
express prominent neuroendocrine features [30]. There-
fore, the comTree may reveal the shared neural features
between the two cancer types. In support of this hypoth-
esis, we also found the nearest cancer type to be gliomas, a
cancer that develops in the nervous system. Taken to-
gether, these results suggest that most mutated genes in
the core modules specific for each cancer type are highly
functionally independent, whereas those present in mul-
tiple cancer types potentially reflect a relatedness of these
cancer types, e.g., similar cells of origin.
Lastly, to obtain the two stable sets of mutated genes,

type-specific and general mutated genes, we tested whether
the number of cancer types for each mutated gene in the
core modules was not random by permutated labels of
tumors 100 times. Note that in each of permutation tests,
once any of these mutated genes did fall into the core mod-
ules, its number of cancer types was defined as zero. The
results indicated that almost all (about 97.9%) mutated
genes in core modules passed the significance test except
for five genes (Wilcoxon test; p< 0.01). Of the genes that
passed the permutation test, we narrowed the genes down
to 11 outlier genes with N> 1, termed general mutated
genes, and 19 outlier genes with N≤1, termed type-specific
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mutated genes (one-tail p< 0.05 from Grubbs test)
(Table 2).
Of the 11 general mutated genes, there were six tumor

suppressor genes and four oncogenes, including the TP53
and CDKN2A found in core modules mutated in all cancer
types. Most of these genes are related to the well-known
pathways involved in cancer development. The exceptions
are three genes (NTRK2, EPHB3, and EPB41L2), which are
known to play a role in neural systems, and only appear in
some of the core modules from the two cancer types of
neural origin, gliomas and melanoma, and NSCLC that
expresses prominent features of neuroendocrine cells. This
finding again confirmed a closer relationship of these three
cancer types in the comTree phylogeny.
Of the 19 type-specific mutated genes, CDK8 has been

established as a colorectal cancer oncogene that regu-
lates beta-catenin activity [31] and CDK5RAP1 located
on the melanoma-susceptibility region [32]. The gliomas
and melanoma contained at least twice as many as the
other types. Particularly, the melanoma type specific
mutated gene KRT17 encodes the keratin 17 which
belongs to a group of fibrous proteins forming the struc-
tural framework of certain cells, particularly for the skin.
The gliomas type-specific mutated gene AR encodes the
androgen receptor, whose role in the development of
neural systems has been well established. We found that
genes in this category were studied relatively less for
their roles in cancer development; however, our findings
here indicate a potential functional role for them in
which additional studies are warranted.

Discussion
In our study, we introduced a novel network-based ap-
proach to discover the driver mutations during cancer
development. Compared with current approaches, there
are some notable features to this approach. Firstly, it has
Table 2 General versus type-specific mutated genes

Mutation type Caner type

General Breast cancer

Colon cancer

ccRCC

NSCLC

melanoma

gliomas

Type specific Breast cancer

Colon cancer

ccRCC

NSCLC

melanoma

gliomas
successfully allowed for the detection of critical muta-
tions despite the frequency and for identification of the
responsive core modules from the perturbed pathways
or gene sets, which improves the efficiency and avoids
the use of irrelevant members. Secondly, this method is
based upon carefully constructed, high-quality molecular
networks derived from HPRD, literature curated, and
manually screened networks. In this novel network, false
positive interactions are theoretically further reduced by
cutting the inter-GO connections and weighting the
interactions using co-expression values, as opposed to
other networks which are inferred by using only the co-
expression levels [9] or solely literature curated networks
obtained from different contexts [10]. Additionally, our
approach is based on an explicit hypothesis that pheno-
typic changes represented by significant transcriptomic
changes respond to cancer driver mutations. Unlike
other methods that integrate gene expression informa-
tion only to infer the modular network structures [9], we
also used the differentially expressed levels of the mod-
ules as a tool to screen the modules most likely influ-
enced by drivers, to characterize those core modules,
and to identify mutations enriched in the modules.
Our findings demonstrated a correlation between gen-

etic mutations and phenotypic alterations at the module
level, not at the single gene level. These genotype-
phenotype correlations have been conceived for a long
time but were only partially probed previously in certain
genes, e.g., EGFR, TP53, BRCA1, BRCA2, K-ras, and
their pathways. This may indicate that while the
impaired DNA repair pathways seems to result in muta-
tions widely distributed over all genes, it also causes
more damage or the most responsiveness in the core
modules. The presence of core modules in all six cancer
types suggests the potential for a general mechanism,
which supports the hypothesis that cells are modularly
Gene lists

TP53 CDKN2A ATM RAD51L3

TP53 CDKN2A ATM RET STK11

TP53 CDKN2A ATM PTPRJ

TP53 CDKN2A ATM RAD51L3 NTRK2 PRKDC RET EPHB3

TP53 CDKN2A NTRK2 PRKDC STK11 EPB41L2 PTPRJ EPHB3

TP53 CDKN2A ATM RAD51L3 NTRK2 PRKDC RET EPB41L2

CDC27 CENPE DNAJA3

CDK8

HUS1 FANCC

HUS1 CDK8 CASK

IL4R PAK1 CDK5RAP1 PRC1 KIF5C KRT17

ID3 ARHGDIG GATA6 AR RALBP1 MTA1
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organized and module disruption potentially causes
cancer.
Furthermore, the robustness of these findings has also

been demonstrated. On one hand, we compared different
strategy’s impact on the results. In details, when weighting
GO network, we used two different co-expression level
definitions, PCC and SCC. We compared the results using
these two different strategy and found these two strategy’s
results are same or similar, including network/module
properties (Additional file 1: Table S1), module robustness
(PCC: Figure 2; SCC: Additional file 2: Figure S1), and
mutation enrichment level (PCC: Figure 3; SCC: Add-
itional file 2: Figure S3). All results together suggested the
findings are stable even though using different network
weight strategy. On the other hand, we also demonstrated
our findings robust by analysis ten different datasets from
six cancer types, which has shown consistence.
Regarding the reason behind our findings about

genotype-phenotype correlated changes, it may be attrib-
uted to co-evolution at network/module level. Proteins
perform its function by interacting with other partners
in the modular mode, where modularity is deemed to
affect the co-evolution on the proteins [33]. First, inter-
action proteins have been found to be co-evolved to
meet the structural constraints on the binding site [34].
Second, the member genes in the module would co-
evolve to be co-opted for a new common function [35].
Thus, protein-protein interaction information, especially
the modularity, contributes to build the relationship be-
tween genotype and phenotype.
Core modules provide biological insight into cancer

development. Firstly, core modules are useful to identify
the cancer drivers, which have been demonstrated in all
three cancer types in which driver mutation data are
available. Secondly, mutated genes in core modules tend
to be hub-genes and functionally similar. Closer links
among mutated genes were found in core modules from
the same cancer type. Also, higher network relatedness
was found between two different datasets from colon
cancer (0.242) and ccRCC (0.256) compared to breast
cancer (0.086) and NSCLC (0.096). This may imply a
more complex development of breast cancer and
NSCLC compared to colon cancer and ccRCC, or alter-
natively, it may be due to the heterogeneous histopatho-
logical features within their corresponding datasets. For
breast cancer, samples in wang05 [36] were lymph node-
negative whereas the combination of lymph node-
negative and positive were found in van02 [37]. For
NSCLC, Sanchez10 [38] contained primary adenocarcin-
omas and squamous-cell carcinomas whereas only pri-
mary adenocarcinomas were found in Beer02 [39].
Thirdly, for the mutated genes in the core modules from
multiple cancer types, some may play a central role in
cancer pathways such as TP53. Also, these genes’
network relativeness based cancer phylogenic relation-
ship reflects the similar cellular origins across the differ-
ent cancer types, which may be due to epigenetic
factors, e.g. (1) common mutational mechanism pre-
disposed at the early stage of differentiation for certain
cell types, or (2) similar challenges from tumor micro-
environment. This finding is also consistent with the
prior findings that tissue lineages can influence muta-
tional frequencies of certain oncogenes [40,41].
However, there is not sufficient evidence to make con-

clusions regarding the causal relationship of mutations
and expression changes, and many mutated genes within
the core modules may only be associative. In addition,
due to the public data limitation, the tumor sample
sources exhibit differences between the expression pro-
file and genomic mutation data. Besides, the pathological
conditions are different between different datasets even
though the results have demonstrated that networks
from same cancer types, whether or not with same or
different pathological status, have higher network re-
latedness than those from different cancer types, sug-
gesting the differences from cancer types dominated the
comparison between different cancers. Along with the
rapidly increasing amount of data available, some
aspects of our approach can be augmented by incorpor-
ating data from other dimensions, e.g., copy number var-
iations or epigenetics, which could potentially help
reduce the false positive rate and identify more explicit
pathways. Meanwhile, more full datasets for each patient
under each pathological condition will become available
in the future. The core modules revealed in this study
are potentially valuable resources for the elucidation of
how mutations arise, with general or specific roles in dif-
ferent cancer types, and provide insight into convergent
cancer development in different organs, and may be in-
formative for clinical usage as well.
Conclusions
In summary, the correlations between genetic and
phenotypic changes were successfully detected on the
core modules for all ten datasets from six cancer types.
Meanwhile, an effective network-based approach was
proposed to identify driver mutations from core modules
with convergent genotype-phenotype changes, and its
utility was demonstrated. Furthermore, through compre-
hensive network analysis on the mutated genes in core
modules from these six cancer types, we found different
properties between cancer type specific and general
mutated genes: the majority were cancer type specific
and relatively functionally isolated from those found in
other cancer types; the rest were general mutated genes
and tended to be the hub genes, and can reflect the
phylogenetic relationship between the corresponding
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cancers, providing critical insights into convergent can-
cer development in different organs.

Methods
Data source
The protein-protein interaction network data were
obtained and combined from HPRD database release 8
[42] and BioGRID database [43]. All redundant edges
were collapsed into single edges. The final network cov-
ered 6511 nodes and 29684 interactions.
Gene expression datasets utilized were the public pre-

processed datasets that included six cancer types and 10
datasets in total: colorectal cancer (Lin07 [25], Barrier06
[44]), breast cancer (Wang05 [36], Van02 [28]), clear-cell
renal cell carcinoma (ccRCC, Jones05 [45], Wuttig09
[46]), non-small cell lung cancer(NSCLC, Sanchez10
[38], Beer02 [39]), melanoma (Riker08 [47]), gliomas
(Freije04 [48]) (details were provided in Table 1). Miss-
ing values for each probe were filled by applied R pack-
age ‘impute’ [49]. For genes with multiple probes, final
expression values were the mean of the expression levels
for multiple probes.
Gene annotations were obtained from C5 Gene Ontol-

ogy (GO) sets of the Molecular Signatures Database
(MSigDB) v2.5 [50]. The C5 GO gene sets are based on
GO terms but removed those with too large (e.g. biological
processes), too small (<10 genes), or redundant gene sets.
The mutated genes for each cancer type were down-

loaded from the COSMIC website (http://www.sanger.
ac.uk/cosmic/) [51]. This database stored cancer muta-
tion information which included manually curated data
from the published scientific literature, and the output
from the Cancer Genome Project (CGP) at the Sanger
Institute for in situ tumors or cultured cancer cell lines.
For more details, see Additional file 1: Table S3.

The procedures for identifying core modules
For each dataset, core modules were identified as follows
(Figure 2).

Step 1. Constructing the co-expression networks for
each GO cluster
We build the networks for each GO cluster. It has
been previously demonstrated that integrating the
prior functional information (e.g. GO) can
contribute to the identification of functional
modules [50,52-54]. In this way, the multi-functional
genes are not restricted as one functional module,
and can eliminate the inter-GO connections while
retaining interactions within GO. The retained
interactions are potentially functional in vivo and
reduce false positive interactions. To build the
network of GO clusters, we first created the non-
connected GO network with the nodes represented
by whole overlapped genes of GO sets and
expression profiles. Next, for each node in the
network, we retrieved the protein-protein
interaction network for all neighbors within the GO
cluster and placed the interactions into the GO
network.
Regarding the weight for each edge in the network,
co-expression level measured by the Pearson
Correlation Coefficient (PCC) was used to quantify
the similarity between the two corresponding linked
nodes and weight of each edge on the GO network,
since co-expression level allowed for approximations
reflective of the similarity and proximity between
the two linked genes [55]. Notably, the co-
expression level was specific to each individual
dataset. Besides Pearson Correlation Coefficient
(PCC),other metrics, such as mutual information
and Spearman correlation were utilized as
alternatives to calculate the gene co-expression
levels because it has been previously shown that
networks based on different co-expression level
metrics exhibit similar network properties [56].
Moreover, PCC indicates the collaborative degree of
two genes’ expression levels, rather than the
individual strength, and is an appropriate tool for
analysis of microarray data that usually contain
considerable noise [57]. Here, the co-expression
similarity Ssj is the absolute value of the PCC
between gene expression profiles × i, ×i

Sij ¼ cor xi; xj
� ��� �� ð1Þ

Step 2. Module discovery using the weighted GN
algorithm

We applied the widely used weighted Girvan and
Newman (GN) algorithm [20], a graph theory
method based on edge betweenness algorithm. The
weighted GN algorithm is an edge-oriented and
globally optimal-search method in large number of
identification methods [22,58-62]. The idea is that
the few edges lying between the modules pose ‘traffic
bottlenecks’ when travelling from one module to
another; thus, if these edges can be identified and
removed, the networks will be naturally separated
into isolated parts. In detail, the betweenness of all
edges in the weighted GO network is calculated
based on the sum of the all shortest paths through
them and divided by the their corresponding weights.
The edge with highest betweenness is removed. The
betweenness of all remaining edges was recalculated
and the edge with the highest betweenness was
removed repeatedly until no edges remained.

http://www.sanger.ac.uk/cosmic/
http://www.sanger.ac.uk/cosmic/
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Considering that the original GN algorithm cut point
with the highest Q value led to a huge disequilibrium
of module sizes and relatively lower biological
coherence in modules exhibiting a relatively larger
size [63], we performed a minor adjustment by
setting a size limit of less than 20 for each module
and by ignoring the modules with only one isolated
gene.

Step 3. Ranking the modules based on their differential
expressions

We computed the differential expression levels of the
identified multi-gene modules in the two pathological
conditions of the dataset using the P-SAGE
algorithm [21], which we previously developed. The
p-SAGE method used the quadratic sum of the t
score to evaluate the differentially expressed levels
and obtain the significance level (P value) for each
gene set, because the quadratic sum SDS follows the
chi square distribution (~χ2 nð Þ, where n is the size of
the module) [21]. In contrast, most methods
currently used [22,50,59,64] focus on averaging the
expression levels or differential statistics according to
the size of the module, which simply expands the
statistical test of a single gene to multiple genes.
In p-SAGE, for module S with total n genes, its SDS
was defined by:

SDS sð Þ ¼
Xn
i¼1

Ti
2 ð2Þ

where Ti is the t score for ith gene in the module S.
The significance levels (P values) of differentially
expressed levels for module S were calculated using
the chi-square test. Modules were then ranked based
on the resultant P value in ascending order.

Step 4. Overlapping the MMs with the TRMs to obtain
the “core modules”

For each module, we counted the number of
mutated genes and determined whether there were
significantly more mutations in the module using
the Fisher’s exact test (P<=0.05). Modules
exhibiting a significantly greater number of
mutations were defined as mutated modules (MM).
We defined the overlapped MMs with TRMs_100 as
the core modules for further exploration.
Network topological features
The mutated network analysis was performed using Net-
workAnalyzer [65] and CentiScape [66], the plugins of
the software Cytoscape [67].
Clustering coefficient is defined as

Cn ¼ 2en
kn kn � 1ð Þ ð3Þ

where kn is the number of neighbors or degree of the
node n, en is the number of connections among all
neighbors of the node n. The value listed in Additional
file 1: Table S6 is the average of the clustering coefficient
of all nodes.
Density is the normalized average number of neigh-

bors, which indicates how dense the network is. The
network with no edge has the density of 0 and the fully
connected network has the density of 1.

Density ¼
P

i

P
j aij

N N � 1ð Þ ¼
mean kð Þ
N � 1

ð4Þ

Network centralization is the index of the connectivity
distribution, defined as

Centralization ¼ N
N � 2

max kð Þ
N � 1

� Density

� �
ð5Þ

For example, the star network has a centralization of
1, whereas a more decentralized network has a
centralization closer to 0.
Network heterogeneity is a measure of the variance of

the connectivity distribution.

Heterogeneity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
variance kð Þp
mean kð Þ ð6Þ

Closeness, a parameter utilized in Figure 4B, is defined
as

Closeness vð Þ ¼ 1P
w2Vdist v;wð Þ ð7Þ

in which the denominator is the sum of the shortest path
between the node v and all other nodes in the graph. A
node with high closeness is usually central to the network.
From a biological perspective, the closeness can be inter-
preted as the functional relevance of one gene upon
others, and genes with higher closeness scores are more
central to the regulation of other proteins.

Cancer phylogeny tree
The distance matrix (D) for two cancer types was con-
verted from a similarity matrix that is the network re-
latedness matrix (R). The value Rij in the network
relatedness matrix is calculated as follows:

Rij ¼ N0ij

N1ij
ð8Þ

Where N0ij is the count of the shortest path whose
length was not beyond a cutoff (0, 1, or 2) between
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nodes from ith and jth dataset networks, and N1ij is this
count in their combined network.
The value Dij in the distance matrix D is calculated as

follows:

Dij ¼ 1� Rij ð9Þ

The distance matrix was used to build the phylogeny
tress for different cancer types using the PHYLIP 3.67,
which is an implementation of the neighbor-joining
method.

Additional files

Additional file 1: Table S1. Lists summary of the modules identified
from the network weighted by the Pearson vs Spearman correlation,
respectively. Table S2. Lists the inter-datasets reproducibility results
(overlapping percentage) from different methods.Table S3. Lists the
detailed options about the mutation data from the COSMIC. Table S4.
lists the CAN-genes in core modules. Table S5. lists the GO summary of
the core modules in all cancer types. Table S6. lists the network features
of the mutated genes in the core modules.

Additional file 2: Figure S1. Shows the intra-dataset reproducibility
results of TRMs identified from the Barrier datasets. Figure S2. Shows
inter-dataset reproducibility results of TRMs identified from two breast
cancer datasets (edge weighted by the spearman correlation). Figure S3.
Shows the TRMs’ mutation enrichment at module level (edge weighted
by the spearman correlation).
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