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Abstract

Background: Spirulina (Arthrospira) platensis is a well-known filamentous cyanobacterium used in the production of
many industrial products, including high value compounds, healthy food supplements, animal feeds,
pharmaceuticals and cosmetics, for example. It has been increasingly studied around the world for scientific
purposes, especially for its genome, biology, physiology, and also for the analysis of its small-scale metabolic
network. However, the overall description of the metabolic and biotechnological capabilities of S. platensis requires
the development of a whole cellular metabolism model. Recently, the S. platensis C1 (Arthrospira sp. PCC9438)
genome sequence has become available, allowing systems-level studies of this commercial cyanobacterium.

Results: In this work, we present the genome-scale metabolic network analysis of S. platensis C1, iAK692, its
topological properties, and its metabolic capabilities and functions. The network was reconstructed from the S.
platensis C1 annotated genomic sequence using Pathway Tools software to generate a preliminary network. Then,
manual curation was performed based on a collective knowledge base and a combination of genomic,
biochemical, and physiological information. The genome-scale metabolic model consists of 692 genes, 837
metabolites, and 875 reactions. We validated iAK692 by conducting fermentation experiments and simulating the
model under autotrophic, heterotrophic, and mixotrophic growth conditions using COBRA toolbox. The model
predictions under these growth conditions were consistent with the experimental results. The iAK692 model was
further used to predict the unique active reactions and essential genes for each growth condition. Additionally, the
metabolic states of iAK692 during autotrophic and mixotrophic growths were described by phenotypic phase plane
(PhPP) analysis.

Conclusions: This study proposes the first genome-scale model of S. platensis C1, iAK692, which is a predictive
metabolic platform for a global understanding of physiological behaviors and metabolic engineering. This platform
could accelerate the integrative analysis of various “-omics” data, leading to strain improvement towards a diverse
range of desired industrial products from Spirulina.
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Background
Spirulina (Arthrospira) platensis is a filamentous non-
N2-fixing cyanobacterium that has become important as
a source for commercially produced nutraceutical com-
pounds, as this cyanobacterium utilizes sunlight and
CO2 to produce chemical compounds that are essential
for life. Spirulina has been consumed as a protein source
for many years by North Africans and Mexicans [1]
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because it contains high amounts of healthy nutritional
molecules such as beta-carotene, phycocyanin, vitamins,
trace minerals, and polyunsaturated fatty acids [2]. Re-
cently this cyanobacterium has played an important role
in a wide range of applications in the nutraceutical in-
dustry, including human food supplements and animal
feed [3]. Moreover, many scientific articles have reported
the therapeutic benefits of this microorganism, such as
helping to prevent heart disease, cancer, and diabetes
[4]. Furthermore, S. platensis is potentially one of the
algae capable of producing bioenergy and renewable en-
ergy, which could help to decrease the effects of global-
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warming [5]. Among the diverse range of cyanobacterial
species, S. platensis is capable of growing in outdoor
environments at a high rate [6]. In terms of cellular cap-
acities, many of its bioactive compounds could be inex-
pensively produced by photosynthesis. These facts plus
its nutritional value make S. platensis an attractive
photobiological cell factory.
The growing availability of genomic sequences and

software technologies has made it possible to recon-
struct genome-scale metabolic networks of various
organisms. Genome-scale metabolic models come from
the systematic reconstruction of all cellular biochemical
reactions according to the genetic information of a given
organism [7]. A vast number of applications of a recon-
structed metabolic network have been reported and in-
clude such possibilities as genome annotation and
metabolic engineering [7]. Knowledge of the presence or
absence of specific pathways in a given organism can
help to improve the quality of genome annotation [8].
Furthermore, after the metabolic pathways are initiated,
this reconstructed metabolic network becomes a useful
tool for applications in the area of metabolic engineer-
ing, the general goal of which is to redistribute fluxes
within a metabolic network towards a desired goal [9].
Reconstruction of the metabolic network is also neces-
sary for in silico predictions of gene functions and the
metabolic capabilities of an organism [10]. By applying
flux balance analysis (FBA) technique [11,12], the meta-
bolic network may be converted to a genome-scale
model, allowing a qualitative assessment of the relation-
ship between genotypic and phenotypic behaviors, and a
global estimation of flux distributions within the metab-
olism of an organism, which cannot possibly be mea-
sured using a standard experimental design. Currently,
one popular tool for investigating complex stoichiomet-
ric metabolic models is the constraint-based reconstruc-
tion and analysis (COBRA) toolbox [13,14] with
MATLAB. This technique relies on linear programming
(LP) and a given set of various appropriate constraint
parameters known from experiments. Numerous suc-
cesses have been reported using these methods as the
tools to elucidate in silico models (virtual organisms)
[15–17].
Various genome-scale metabolic models of many

organisms are currently available [18]. However, of
cyanobacterium, only Synechocystis sp. PCC6803 has
been developed by independent research teams around
the world [19–21]. Each proposed model provides in-
formative knowledge on rational bioenergy production
by Synechocystis sp. PCC6803 as a photobiological cell
factory. With such an impressive advantage of S. platen-
sis, especially as a nutraceutical, as previously men-
tioned, S. platensis has become one of the preferred
choices for a sustainable photobiological cell factory.
Unfortunately, there have only been a limited number of
attempts to computationally analyze the metabolism of
Spirulina. A simple metabolic flux model of S. platensis
consisting of 22 reactions was proposed by Meechai et
al [22]. This model was used to predict rate limiting
enzymes for the production of gamma-linolenic acid. A
larger metabolic network of S. platensis comprising 121
reactions and 134 metabolites was formulated by Cogne
and his team [23]. This model accounted for central
metabolic pathways, anaplerotic reactions, energy me-
tabolism reactions, anabolic reactions, synthesis of
macromolecules, biomass and growth-associated exopo-
lysaccharides (EPS). However, these two models did not
provide the whole-cell characteristics and metabolic cap-
abilities of S. platensis. Recently, the genome sequence
of S. platensis C1 became available [24], together with
an increasing number of studies of its physiological and
molecular levels. These data have enabled a genome-
scale metabolic model reconstruction of S. platensis.
This paper presents the first genome-scale metabolic

model of S. platensis (i.e., iAK692), representing global
growth behaviors under three different growth condi-
tions: autotrophic, heterotrophic, and mixotrophic. The
metabolic network is based on the S. platensis C1 gen-
ome, a collective knowledge base, and extensive manual
curation. Computational simulation was performed
using COBRA toolbox [13,14]. The results from in silico
predictions were further validated with experimental evi-
dence. Various analyses of the iAK692 model were per-
formed to identify active reactions and essential genes
under each growth condition. Moreover, phenotypic
phase plane (PhPP) [25] analysis was carried out to pre-
dict the metabolic states of iAK692 during autotrophic
and mixotrophic growths. The iAK692 model not only
provides further physiological knowledge of the cellular
system, but is also a valuable platform for integrating
multilevel “-omics” data, which could provide further
insight towards increasing the number of desired indus-
trial bioproducts from Spirulina.

Results and discussion
Metabolic model reconstruction
Reconstruction of a draft model
In order to build a genome-scale metabolic model of S.
platensis C1, the genome-scale metabolic network was
reconstructed according to a series of extensive refine-
ments (Fig. 1 and see also Materials and Methods). The
genome of S. platensis C1 is deposited in the GenBank
Database (NCBI ID 67617) [24]. The estimated genome
size for the 63 DNA scaffolds is approximately 5.9 Mb.
A total of 6,176 open reading frames (ORFs) were pre-
dicted; 3,759 ORFs (61 %) were well annotated with gene
functions; and 2,372 ORFs (38 %) were identified as pu-
tative or hypothetical proteins (Table 1). Reconstruction



Figure 1 The iterative procedure used to reconstruct the genome-scale metabolic model of S. platensis C1. The draft of the metabolic
network was automatically established using Pathway Tools software. The manual curation was performed based on a combination of Spirulina-
related journal publications and biochemical books and databases. Missing reactions in the pathway were manually estimated and filled. Blast
program was used in order to find a potential corresponding gene. The accepted network was further studied via a structural analysis and
simulation based on the COBRA toolbox [13,14]
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of the model was initiated with automated construction
using Pathway Tools software [26,27]. Using this fully
computational procedure, a draft metabolic network,
called the “Draft model”, was generated based on the
annotated genome data. This automated process facili-
tates the top-down reconstruction approach, giving an
overview network and visualization; therefore, it pro-
vides the maximum possible number of pathways, each
of which has different numbers of reactions and genes.
The Pathway Tools software [26,27] predicts the meta-

bolic network for S. platensis C1 based on the gene
name or EC number matching method. This preliminary
model accounted for 102 pathway frames (including a
number of pathway variants), 557 genes corresponding
to 1,661 biochemical reactions, and 1,542 metabolites. A
summary of the draft model is shown in Table 1. The
pathways were also predicted and a large number of the
pathway reactions were obtained. We also found that
one gene could participate in more than one reaction of
different pathways. Thus, this process built 102 candi-
date pathways and 812 out of 1,661 reactions were pre-
sented and showed no gene association. However, the
quality of the predicted large-scale reconstructed net-
work depends on the quality of the initial annotated
data. Furthermore, the reconstructed network must ex-
press the biology and physiology of S. platensis C1; for
instance, whether or not the predicted pathways or reac-
tions present in S. platensis C1 and the numbers of in-
complete pathways (missing gene and reaction) indicate
a disconnection in the network. Hence, manual-
intensive curation was subsequently performed to in-
crease the accuracy of the draft auto-generated network.

Metabolic network refinement
Biochemical information about cyanobacteria was obtained
from the literature and biochemistry textbooks, and online



Table 2 iAK692 biomass composition equation

Component Molar
ratio

Component Molar
ratio

Carbohydrate
(16 %)*

0.1230

CMP-N-
acetylneuraminate

0.0220 Glycogen 0.0430

Cyclitol 0.0510 Peptidoglycan 0.0300

dTDP-rhamnose 0.7320 UDP-D-
glucose

0.1240

Protein
(68 %)*

0.8404

Alanine 0.1010 Lysine 0.0360

Arginine 0.0530 Methionine 0.0180

Aspartate 0.0980 Phenylalanine 0.0390

Cysteine 0.0070 Proline 0.0380

Glutamate 0.1320 Serine 0.0540
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biochemical databases were used to research several iterative
methods of reconstruction and were used to refine the draft
model; this is referred to as the “Refined model”. In more de-
tail, the predicted pathways/reactions that have not been
reported for Spirulina physiology, such as cholesterol biosyn-
thesis I, II, and III pathways, were eliminated from the net-
work. Pathway Tools mapped only one gene, crtB, encoding
phytoene synthase, onto two reactions out of twenty-two
reactions in these pathways for the draft model. However,
we found that the phytoene synthase enzyme was involved
in the presence of the carotenoid biosynthesis pathway. Since
carotenoid is an important molecule in photosynthesis, the
synthesis pathway of this compound was retained.
Then the Blast algorithm [28,29] and the tool for the pro-

tein domain prediction against pfam databases [30] were
used to determine the enzymatic gene functions needed to
complete the pathways where no gene could be found in the
automated metabolic reconstruction. A total of 135 genes
were annotated and added to the network. Missing reactions
(referred to as gaps) that resulted in dead-end metabolites
and prevented the computational simulation of cell growth
were identified and filled in. This procedure was continued
until all of the biomass components in Table 2 were
included. After manually updating the gap filling process, we
also attempted to search for the genes in the genome, which
can be associated with the added reactions. A total of 35
reactions from closely related organisms were added to
complete the connectivity of the network. The refined model
contains 692 metabolic genes, 658 metabolites, and 688
Table 1 Characteristics of model size after each
reconstruction step

Features Number

Genome information

Genome size
(bp)

5,934,248

Open reading
frames
(ORFs)

6,176

Annotated genes 3,759

Reconstruction
metabolic model

Draft
model

Refined
model

Final
model

Genes

ORFs 575 692 692

% ORF of genome 9.3 11.2 11.2

Reactions 1,661 688 875

Internal enzymatic
reaction

1,661 688 699

Gene-associated 849 650 650
(93 %)

No gene association 812 38 49 (7 %)

Exchange reaction 0 0 176

Metabolites 1542 658 837
biochemical reactions (Table 1). The number of many-to-
many relationships between reactions and genes presented
in the network is 207 reactions.

Generation of the computational genome-scale model
(iAK692)
In order to make the computation-ready model, referred
to as the “Final model”, the balance between each elem-
ent, including metabolites and protons (H+), reaction
directionality, transport reaction, and the completely
Glycine 0.0860 Threonine 0.0540

Histidine 0.0140 Tryptophan 0.0090

Isoleucine 0.0580 Tyrosine 0.0330

Leucine 0.0940 Valine 0.0760

Lipid
(11 %)*

0.0182

DGDG 0.1310 SQDG 0.1470

MGDG 0.3200 Triglyceride 0.1860

Glycerol 0.2160

DNA
(0.88 %)*

0.0039

dATP 0.2790 dGTP 0.2220

dCTP 0.2220 dTTP 0.2790

RNA
(3.12 %)*

0.0130

ATP 0.2620 GTP 0.3220

CTP 0.2000 UTP 0.2160

Antenna chromophore
(1 %)*

0.0016

Cholorophyll a 0.0016

* % total dry weight of major cellular composition estimated from S. platensis
cell grown under autotrophy [23]. The stoichiometric coefficient of each
building block was retrieved and expressed on the basis of one mole of dry
cell. DGDG: digalactosyldiacylglycerol; MGDG: monogalactosyldiacylglycerol;
SQDG: sulfoquinovosyldiacylglycerol.
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characterized biomass equation were curated and added
to the refined model. We checked the balance of protons
in a reaction and also found that different databases con-
tain some contradictory information. In this reconstruc-
tion, we used Metacyc [31] as the key reference for H+

balancing. Additionally, the stoichiometry and reversibil-
ity of the reactions were manually verified and assisted
by biochemical reaction databases such as KEGG [32]
and Brenda [33]. We also considered the direction of the
reaction on the basis of thermodynamics. If the reaction
consumed high-energy compounds such as ATP, the re-
action was designated irreversible. Considering only the
internal reactions of the model, there are 558 irreversible
and 317 reversible reactions. The cofactors, i.e, NADPH,
and NADH involved in the reactions were manually
curated based on information from literature [7] and the
published genome-scale model of Synchocystis sp.
PCC6803 [19]. The system boundary was defined across
the cytoplasmic membrane and environment in terms of
transport reactions. Diffusion was assumed to be the
mechanism for transporting nutrients between cyto-
plasm and extracellular environment. Thus, transporter
genes were not assigned in this first large-scale model of
S. platensis. Instead, a total of 88 exchange reactions
were included in the model to ensure that organic nutri-
ent metabolites (i.e., amino acid and sugar), inorganic
nutrient metabolites (i.e., phosphate, sulfate, nitrate, and
potassium), gaseous metabolites (i.e. O2 and CO2),
photons, and water could enter and leave the system in
response to the physiological state. We are aware that
the transport mechanisms across the cell membrane
should be considered in this study because of their pos-
sible effect on the model. This is an issue that we will
address in a future study.
In order to determine the capability of a genome-scale

model, the most popularly used objective function in FBA
is normally the biomass objective function (BOF). A bio-
mass equation represents all necessary precursors that form
the cellular biomass. Thus, 14 reactions with no gene asso-
ciation were added for the synthesis of intermediate macro-
molecules, i.e. proteins, carbohydrates, lipids, RNA, DNA,
and chlorophyll, which are considered to form the major
composition of biomass. The biomass formation equations
were obtained based on data from different sources of ex-
perimental efforts for S. platensis under autotrophic condi-
tions [23] (Table 2). Moreover, the net reaction for all light-
dependent reactions was obtained from a previous report
[34]. All reactions in the reconstructed metabolic network
are listed and shown in Additional file 1: Table S1.
The different methods of reconstruction resulted in

the final model, iAK692, and account for 692 metabolic
genes, 837 metabolites, 176 exchange reactions, and 699
internal biochemical reactions, including 650 gene-
associated reactions and 49 with no gene association
(Table 1). A total of 875 reactions included in the model
were designated as belonging to the high level of metab-
olism (Fig. 2A). The functional classification of the ORFs
included in the reconstruction is summarized in
Figure 2B, based on the Enzyme Commission (EC) num-
ber [35]. The majority of ORFs are associated with the
transferase enzyme (EC 2).

Network topology of iAK692
The structural organization of iAK692 was characterized
by an analysis of metabolic connectivity via reactions
within the network. Most of the metabolites in the net-
work have few connections, whereas a few metabolites
participate in a large number of reactions. The top 10
most highly connected metabolites are ATP, ADP, phos-
phate, diphosphate, NADP, NADPH, CO2, NAD, NADH,
and O2. These frequently used metabolites were found
to be involved in energy metabolism, such as ATP and
ADP, and in redox metabolism, such as NADPH and
NADP (Table 3). These metabolic hubs serve as key
compounds related to the core metabolism of the organ-
ism in transferring specific biochemical groups such as
phosphate groups, redox equivalents, amino groups and
acetyl groups. In addition, connectivity was compared to
other genome-scale models, including Synechocystis sp.
PCC6803 (iSyn669) [20], Escherichia coli (iAF1260) [36],
and yeast (iFF708) [37]. It was found that iAK692 has a
similar network topology and metabolite hub to these
models (Table 3). It should also be noted that these
metabolites are involved in energy and redox metabol-
ism, representing the currency of biological life. The
topology also indicates that in the organization of the
network a few hubs dominate the overall connectivity of
the network and the network eventually disintegrates
into isolated clusters. These characters show to what de-
gree different components of the cellular metabolism are
interconnected. Perturbations in cellular behavior, such
as changing a few fluxes in metabolism, can affect the
entire metabolism. Hence, studying the structural
organization of the network provides hints for discover-
ing corresponding regulatory mechanisms of the cell.

Validation of iAK692
S. platensis C1 naturally grows under autotrophic condi-
tions using carbon dioxide as a carbon source and con-
verting light as cellular energy, like other cyanobacteria.
Several strains of these microalgae, including S. platen-
sis, were recently researched for their potential to grow
under heterotrophic and mixotrophic environments [38].
However, there have been no reports of either mode of
cultivation in the S. platensis strain C1. Thus, we investi-
gated the cellular properties of heterotrophic and mixo-
trophic growth in order to gain more basic physiological
knowledge of S. platensis C1. Subsequently, we validated



Figure 2 Classification of metabolic reactions in the S. platensis C1 model. (A) Distribution of each metabolic reaction; the table shows the
numbers for the total reaction. (B) Percentage of reactions and genes classified based on the EC number. EC 1: oxidoreductases; EC 2:
transferases; EC 3: hydrolases; EC 4: lyases; EC 5: isomerases; EC 6: ligases
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the reconstructed metabolic network by comparing the
predicted results from in silico simulations with the ex-
perimental results. The measured maximum specific
growth rates of S. platensis C1 under the three growth
conditions are summarized in Table 4. More details of
the results are shown in Additional file 2: Table S2.
Table 3 Numbers of metabolite connectivity of top 10
metabolites in the iAK692 metabolic network compared
to those in other published models

Metabolite Connectivity

iAK692 iSyn669 E.coli yeast

ATP 134 144 338 166

ADP 92 103 253 131

PI 92 108 81 113

PPI 84 97 28 -

NADP+ 84 64 39 61

NADPH 83 63 66 57

CO2 72 72 53 66

NAD+ 70 46 79 58

NADH 69 42 75 52

O2 57 36 40 31
The basic capabilities of iAK692 were evaluated based
on constraint-based modeling using the FBA technique
[11,12] to quantitatively predict growth under the three
metabolic modes. Assuming a steady state, FBA simu-
lates the mass balance of all metabolites derived from
the stoichiometric reactions together with constraints
and the objective function. In this study, we set the bio-
mass flux as the objective function.
For autotrophic growth, cells synthesize organic mole-

cules for biomass formation from inorganic compounds
and sunlight. The maximum specific growth rate of S.
platensis C1 was demonstrated in batch cultivation
(Table 4). The uptake rates of the main metabolites, bi-
carbonate and phosphate, were measured and used as
the constraints of the simulation. In order to assess the
predictive potential of the model, we simulated the in
silico model based on minimal media consumption, as
shown in Table 4. The constraints of certain metabolite
uptake rates were obtained from the literature [38,39].
The photon flux was set to be between zero and 100
μEinstein/m2/s with a fixed uptake rate of 0.20 mmol/
mmol dry cell/h of bicarbonate. The results show that
the maximum in silico-specific growth rate was similar
to the maximum specific growth rate measured from the



Table 4 Constraints for metabolite uptake rates used for model simulation, and the comparison of the predicted
growth rate by the in silico model and observed growth rate from the experiments in each growth condition

Growth
conditions

Constraints of consumed metabolites (mmol/mmol dry cell/h) Maximal specific growth rate (1/h)

Bicarbonate Phosphate Nitrate* Sulfate* Glucose** In silico In vivo

Autotrophic 0.20 0-0.0056 0-0.040 0-0.0014 0 0.0257 0.0255

Heterotrophic 0 0-0.0056 0-0.040 0-0.0014 0.017 0 0

Mixotrophic 0.20 0-0.0056 0-0.040 0-0.0014 0.017 0.0334 0.0262

* data from ref. 38.
** data from ref. 39.

Figure 3 Comparison of predicted active reactions under
different growth conditions. (A) autotrophy, (B) mixotrophy
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experiments. The experimentally determined value and
the computationally predicted value were 0.0255 and
0.0257 1/h, respectively. On the other hand, when the
photon flux was omitted (i.e., set to 0 μEinstein/m2/s),
the in silico cell could not grow (i.e., the maximum spe-
cific growth rate was 0 1/h. This simulation results show
a consistency with the control experiment, in which no
growth was found.
For the heterotrophic mode, S. platensis C1 was culti-

vated on glucose in the dark. The results show that the
cell failed to grow heterotrophically (Table 4). In the
simulation, we set the glucose uptake rate equal to
0.017 mmol/mmol dry cell/h with no light. The pre-
dicted value of growth was zero (Table 4), showing an
agreement between in vivo and in silico conditions. Con-
sidering the genomic data, S. platensis C1 has the hex
gene encoding the hexokinase enzyme, which converts
glucose molecules into glucose-6-phosphate. This is the
first important step in the glycolysis pathway, which
allows cells to metabolize glucose as a carbon source.
However, a lack of the ability to utilize sugar in the dark
was recently reported in some strains of Spirulina [40].
Therefore, this agreement in the results may stem from
no or a loss of function of the gene product when grow-
ing for a long period of time under autotrophic condi-
tions in the laboratory. Moreover, the glucose
concentration had no effect on the growth of S. platensis
under the heterotrophic conditions reported in a previ-
ous study [41].
In the mixotrophic mode with carbon dioxide and glucose

as carbon sources and light as the energy source, the mea-
sured growth rate under this condition was found to be
slightly higher than that of the autotrophic mode (Table 4).
The model simulation under mixotrophic conditions also
showed a higher growth rate (0.0334 1/h), although to a dif-
ferent extent. Interestingly, this growth rate corresponds to
that of an increase in biomass formation during the mixo-
trophic cultivation of another Spirulina strain by Lodi and
his team [39]. They suggested that the mixotrophic culture
had the highest growth rate because the heterotrophic and
autotrophic metabolism processes might be active in parallel.
However, the current experimental study for S. platensis C1
has showed that the mixotrophic growth rate (0.0262 1/h) is
only slightly higher than the autotrophic growth rate (0.0255
1/h) (Table 4). We also modeled the hex gene knockout that
results in zero flux of this reaction. The results show that the
growth rate decreased from 0.0334 1/h to 0.0257 1/h (data
not shown). Therefore, the different growth behaviors found
for the different physiological properties and in silico predic-
tions might require further experimental verification in order
to discover further explanations and make new discoveries.
All profiles of the flux distributions of the three growth con-
ditions are presented in Additional file 2: Table S2.
Reaction activity and flux variability analyses
The result validation demonstrates that the in vivo
growth rates of iAK692 are consistent with the experi-
mental growth rates found under the three different
modes. In order to investigate the flux distributions in
terms of active reactions, this model was only used for
the simulation of autotrophic and mixotrophic growths
because the cells failed to grow under heterotrophic
conditions. The flux results show that iAK692 had 322
(41 %) and 307 (39 %) active reactions under the auto-
trophic and mixotrophic conditions, respectively. These
two numbers of active reactions are close to those found
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in previous studies of other genome-scale models such
as those for Clostridium beijerinckii [42], E. coli,
Staphylococcus aureus, Helicobacter pylori and yeast
[43], which comprise around 300 active reactions. For a
more precise determination of active reactions in each
growth condition, we performed flux variability analysis
(FVA) [44] to determine possible ranges of fluxes of all
reactions that still satisfy the same optimal growth. Here,
we classify the reaction activity into 3 categories based
on the FVA results: (i) a reaction is considered “always
active” if min/max flux values are non-zero with the
same sign, (ii) a reaction is considered “sometimes ac-
tive” if the range of possible fluxes contains zeroes, and
(iii) a reaction is considered “never active” if min/max
flux values are equal to zero during optimal growth. To
satisfy the optimal autotrophic growth, we found that
315 (36 %) reactions are always active; 179 (20 %) reac-
tions are sometimes active, and 381 (44 %) reactions are
never active (Fig. 3). On the other hand, to achieve its
optimum growth in mixotrophic condition 314 (36 %)
reactions are always active; 186 (21 %) are sometimes ac-
tive, and 375 (43 %) are never active for the S. platensis
(Fig. 3). It is noted that there is a total of 494 and 500
“active reactions” (both sometimes and always active) for
autotrophic and mixotrophic conditions, respectively. It
was observed that all the 494 reactions found active
Table 5 List of reactions found active only in iAK692 grown u

Reaction ID Reaction name Reactiuon equation

SP0001 glucokinase
Alpha-D-glucose +ATP –>

glucose-6-phosphate + AD

SP0111 ornithine
acetyltransferase

L-glutamate + acetyl-CoA

L-glutamate + coenzyme-A

SP0267 glutamate-
cysteine ligase

L-cysteine + L-glutamate +

L-gamma-glutamylcystein

phosphate + ADP+H+

SP0268 glutathione synthetase
glycine + L-gamma-glutam

ATP –> reduced-glutathio

ADP+H+

LGLUCtex Glucose transport
alpha-D-glucose<−−> a

D-glucoseXT

LGLUCtexX Glucose transport
alpha-D-glucoseXT<−−>

D-glucoseXTX
under the autotrophic growth are also active under the
mixotrophic growth. The six remaining reactions that
are found active only under the mixotrophic growth are
shown in Table 5. These reactions belong to the path-
ways involving glucose exchange, glycolysis, arginine and
proline metabolism, and cofactor and prosthetic group
biosynthesis. We think that these pathways are necessary
for the conversion of external glucose to intermediates
in the synthesis of macromolecules needed for mixo-
trophic cell growth. All profiles of FVA of both growth
conditions are presented in Additional file 3: Table S3.

Metabolic gene essentiality analysis
The capacity of iAK692 for predicting the growth behav-
ior when it suffers gene deletion was evaluated. Like many
other constraint-based models [45], the iAK692 model
contains a list of gene-protein-reaction interactions indi-
cating which genes are connected with each reaction in
the metabolic network. The essentiality of each gene can
be determined by constraining its associated reaction not
to carry flux. Therefore, the network reaction(s) associated
with each gene was deleted, one by one, by setting both
the upper and lower bounds of a reaction to zero and op-
timizing for the biomass formation. In this study, the
iAK692 model accounting for 875 biochemical reactions
and 837 metabolites was employed to identify the essential
nder mixotrophic condition
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Figure 4 Comparison of essential genes under different growth conditions
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genes for survival under autotrophic and mixotrophic
growth conditions using the MOMA platform [46]. It was
found that 139 and 130 genes were essential for the
growth of iAK692 under autotrophic and mixotrophic
conditions, respectively (Fig. 4). A list of these essential
genes can be found in the Additional file 4: Table S4. The
total number of 130 essential genes for the mixotrophy
was about 19 % (130 of 692) of the total genes. This num-
ber is close to those found in other published models --
15 % (187 of 1,260 genes) in E. coli (iAF1260) [36], and
10 % (148 of 708 genes) in yeast (iFF708) [37]. It is noted
that there were 123 common essential genes between the
two growth conditions. These common genes can be con-
sidered core metabolic genes for the growth of iAK692.
Fig. 4 also shows a list of unique essential genes for each
growth condition. Not surprisingly, the unique essential
genes for autotrophy were the genes associated with the
Calvin cycle and gluconeogenesis pathways that are re-
sponsible for photosynthesis and glucose formation,
respectively.

Phenotypic phase plane analysis
Phenotypic phase plane (PhPP) analysis is a useful ap-
proach for examining the steady-state solution space when
two variables of interest are varied [25]. We employed
PhPP to demonstrate the effect of light and bicarbonate
ions on the growth of iAK692 under autotrophic condi-
tion. Within the metabolic network, inorganic carbon was
transported from the medium as bicarbonate ions into
cells. The intracellular bicarbonate was then dehydrated
via carbonic anhydrase enzyme to become CO2. The in-
tensity of light input was represented by absorbed photon
flux (APF). The surface of a three-dimensional PhPP cor-
responding to the predicted maximal growth rate as a
function of the photon flux (0 – 100 μEinstein/m2/s) and
the bicarbonate uptake rate (0–0.4 mmol/mmol dry cell/h)
was plotted (Fig. 5A). It was found that the cells exhibited
distinct phenotypes depending on the amounts of bicar-
bonate and light fluxes. It is apparent that the cell growth
rate is zero in Region I where the APF is below 40 μEin-
stein/m2/s. It is possible that there is not enough light in-
tensity to generate sufficient amount of ATP required for
cell growth in this region. At the APF between 40 and 45
μEinstein/m2/s (Region II), the maximal growth was found
to be linearly dependent on both the absorbed light and bi-
carbonate availability. At the APF above 45 μEinstein/m2/s
(Region III), the cell growth is limited by the bicarbonate
ion availability. It is noteworthy to mention that our model
fails to describe the photoinhibition at high APFs, although
it has been well documented that photoinhibition is
observed in autotrophic cultures of Spirulina. This is an-
other issue that we will address in a future study.
Furthermore, PhPP for the case of iAK692 grown

under varying bicarbonate and glucose uptake rates in
the presence of constant APF (46.7 μEinstein/m2/s) was
performed to investigate the relationship between



Figure 5 Phenotypic phase planes for autotrophic and mixotrophic growths of S. platensis C1 metabolic network. (A) autotrophy, the
estimated maximal biomass formation rate as a function of light and bicarbonate uptake. (B) mixotrophy, the estimated maximal biomass
formation rate as a function of bicarbonate and glucose uptake. HCO3: bicarbonate; GLC: glucose.
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photosynthesis and respiration growth of iAK692 during
mixotrophy. The PhPP plot shows three distinct regions
describing different growth phenotypes (Fig. 5B). In re-
gion I where the glucose uptake flux equals zero,
iAK692 is able to grow using bicarbonate ion as a sole
carbon source via photosynthetic pathways. This region
can be characterized as autotrophy. In region II, the op-
timal growth of iAK692 was linearly dependent on both
bicarbonate and glucose uptake fluxes. However, such
dependency does not exist at high uptake rates as the
carbon nutrients become saturated. Both photosynthetic
and respiratory pathways are active in this region. In re-
gion III, we observed that iAK692 fails to grow in the
absence of bicarbonate ion regardless of the amount of
glucose availability. This implies that the respiratory
pathways in the iAK692 strain could be triggered only if
the photosynthetic pathways are active during the mixo-
trophic growth.
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Conclusions
Herein, we reconstructed a genome-scale metabolic
network of the cyanobacterium S. platensis C1,
which is valuable both scientifically and economic-
ally. The network was constructed using i) automatic
reconstruction by Pathway Tools software [26,27];
and ii) iterative processes of extensive manual cur-
ation based on genomic and bibliome data (Fig. 1).
The curated network accounts for 771 metabolic
genes, 712 metabolites, and 868 reactions. More than
85 % of the total reactions were associated with
genes.
We used the COBRA toolbox [13,14] to investigate the

global metabolic capability of S. platensis C1. This approach
allowed an estimation of the flux distribution of the entire
metabolism. The simulated results were validated by ex-
perimental evidence and showed satisfactory agreement
under three different growth conditions; namely, auto-
trophic, heterotrophic, and mixotrophic. Analyses of the
iAK692 model enabled us to gain insights into the meta-
bolic phenotypes and essential genes of S. platensis C1
grown under these conditions. With a growing Spirulina
community, the proposed model would not only be useful
for studying cellular phenotypes but it could also serve as a
platform for “-omics” data integration in order to achieve
the beneficial stage of model-driven discovery in Spirulina
systems biology [8].

Methods
Culture conditions and sample analysis
S. platensis strain C1 was used in this study. Cells were
grown at 35 °C in 1,000 ml Erlenmeyer flasks with a culture
volume of 500 ml and continuous stirring. Autotrophic and
mixotrophic cultures were grown under fluorescent light at
100 μEinstein/m2/s. Zarrouk’s medium [47] was used for
autotrophic growth and Zarrouk’s medium with glucose at
a final concentration of 20 mM was used for the mixo-
trophic cultures. For the aerobic-dark cultures (hetero-
trophic), the flasks were wrapped with aluminum foil and
incubated in the dark and sodium bicarbonate in Zarrouk’s
medium was substituted by 20 mM of glucose. The control
culture was not provided with a carbon source. In this
heterotrophic cultivation using various organic or in-
organic compounds as a carbon source, the cultures
were cultivated in 250 ml flasks containing 100 ml of
each tested medium, with three replicates.
The maximum growth rates under autotrophic,

heterotrophic, and mixotrophic growth conditions
were measured by the optical density at 560 nm and
compared with the standard curve. The results from
these three conditions are shown in Table 4. For
autotrophic growth, the amount of bicarbonate was
determined by titration with 0.1 N H2SO4 [48].
The level of phosphate was measured as described
elsewhere [49]. The maximum uptake rates of both
substrates were calculated as 0.20 and 0.0056 mmol/
mmol dry cell/h, respectively, in the exponential
phase.

Metabolic network reconstruction
A metabolic network of S. platensis C1 was formulated
using a combination of two procedures: automatic and
manual reconstruction (see Fig. 1). In order to accelerate
the process of metabolic network reconstruction, the anno-
tated data of the draft genome sequence of S. platensis C1
(NCBI ID 67617) [24] were used as the input for the Path-
way Tools software version 13.0 [26,27], which can automat-
ically generate a preliminary gene-protein-reaction (GPR)
association in the network. The PathoLogic algorithm em-
bedded in the software performs the inference process from
the entire sequence and functional annotations of S. platen-
sis C1 by comparing the data to the MetaCyc database [31]
as a key reference. The initial metabolic network consists of
connections between the gene sequences, enzymes, metabo-
lites, reactions, and biochemical pathways. Then, the manual
reconstruction procedure was performed. Biochemical in-
formation related to Spirulina from the literature, books
and published databases, such as KEGG [32], Brenda [33],
CyanoBase [50] and updated Metacyc [31], were used as
manually curated data for each pathway, reaction and gene
product (enzyme): i) presence/absence pathway and reac-
tion, ii) metabolite and cofactor specificity, iii) directionality
of reactions, and iv) GPR association and location. The ex-
change reactions that allow specific molecules through the
system and environment were included in the model
according to TransportDB [51]. The Pathway Tools soft-
ware cannot automatically provide information about pro-
tein complexes or isoenzymes. Published information must
be used to determine the type of enzyme relationship, which
is assumed to be an AND or OR relationship, where the
AND relationship indicates cooperation between subunits
in protein complexes and the OR relationship indicates the
existence of isoenzymes. BLAST [28,29] was used for
assigning enzymatic functions of the missing genes by
searching nucleotide sequences against NCBI’s database
using the expectation value (E-value) of less than e-5 and
the similarity and identity score of 50 %. The top best hits
were taken to check for the protein domain against pfam
database [30] , if it contains the conserved domain, gene are
assumed to be functional orthologues. However, the no
gene-association reactions were presented in the refined net-
work, although we could not annotate the corresponding
gene sequence in the S. platensis C1 genome via the hom-
ology search because of its physiological evidence. During
the manual curation, iterative modeling was performed
using FBA for checking the completeness and consistency
of the model and experiment. Some reactions were added
to fulfill the system connection based on reactions present
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in closed organisms. The process of curation is iterative
until the gaps in a draft metabolic network are filled [52,53].
An accepted metabolic network of S. platensis C1 was fur-
ther used to predict growth behavior under autotrophic,
heterotrophic, and mixotrophic conditions. Since no bio-
mass composition data for S. platensis C1 are available, the
stoichiometry of the biomass formation reaction used in this
study was obtained from the work of Cogne et al [23].
Topology analysis
In order to analyze the metabolites connected within the
network, we formulated a stoichiometric matrix S, derived
from reaction lists of S. platensis C1. The column and row
represent a reaction and a metabolite, respectively; each
element is a stoichiometric coefficient. For each network,
metabolite connectivity is defined as the number of meta-
bolites that participate in any given reaction. The number
of occurrences of each metabolite was calculated to reveal
the highly connected metabolites of the reconstructed net-
work. We also compared the metabolite connectivity pat-
tern between the published genome-scale metabolic
networks of Synechocystis sp. PCC6803 (iSyn669) [20], E.
coli (iAF1260) [36], and yeast (iFF708) [37].
Flux balance analysis (FBA)
Flux balance analysis is a modeling technique that
requires a developed stoichiometric metabolic network
and a list of constraint parameters of biochemical reac-
tions [11,12]. A set of metabolic reactions are converted
into a mathematical stoichiometric format or an S (m×
n) matrix, where the rows indicate the metabolites, m,
and the columns represent the reactions, n. Based on a
pseudo-steady state assumption, the change in growth
rate is much smaller than the change in metabolite con-
centration and flux. Thus, the model could be written as
S x v = 0, where v corresponds to a vector of all reaction
fluxes in the network. Since the metabolic networks usu-
ally possess higher the number of independent reactions
than the number of metabolites, the rank of a developed
stoichiometric matrix is thus less than the number of
reactions fluxes, giving rise to an underdetermined sys-
tem. Using linear programming, the flux vector can be
found by specifying an objective function (z) that can be
minimized or maximized. In the case of minimization,
the linear equation can be written as min z= cTv , where
c is a row vector representing the influence of individual
fluxes on the objective function. The metabolic flux dis-
tributions of the network are estimated under given con-
ditions. In addition, the constraint parameters indicate
the allowable range of flux values and are needed for
convex solution space. The constraints for the upper
and lower boundaries of reversible and irreversible reac-
tions were defined as -∞≤ vi≤∞ and 0 ≤ vi≤∞,
respectively. More details on the FBA approach have
been described elsewhere [54,55].

Minimization of metabolic adjustment (MOMA)
The algorithm of minimization of metabolic adjustment
was introduced by Segre et al [46]. This approach uses
quadratic programming to search for a point in the feas-
ible solution space of the mutant, which is nearest to an
optimal point in the wild-type feasible solution space.
The minimal distance is evaluated from the closest point
and defined as the Euclidian distance. MOMA is also
based on the same stoichiometric constraints as FBA,
but it relaxes the assumption of optimal growth flux for
the mutants. This method displays a suboptimal flux dis-
tribution that is intermediate between wild-type
optimum and mutant optimum. In this study, we used
the MOMA algorithm available in the COBRA toolbox
[13,14] to carry out the gene essentiality analysis.

Model simulation
In this work, we used the COBRA toolbox [13,14] with
the Systems Biology Markup Language (SBML) Toolbox
v2 [56] on MATLAB to automatically construct the stoi-
chiometric matrix of the reconstructed metabolic net-
work. This tool uses FBA, which uses glpk (http://www.
gnu.org/software/glpk/) as the linear programming solver
to estimate the optimal flux distributions under the maxi-
mized biomass objective. Simulations of three different
growth conditions: heterotrophic (with glucose, aerobic-
ally in the dark), autotrophic (without glucose in the light)
and mixotrophic (with glucose in the light) were per-
formed according to the minimal growth-dependent
medium. The uptake rates of carbon, nitrogen, phosphate,
and sulfate sources were set and varied under each condi-
tion as shown in Table 4. The minimal medium of hetero-
trophic and mixotrophic growth was supplemented with
glucose as the other carbon source. The light reaction was
lumped and the photon flux was constrained between zero
and 100 μEinstein/m2/s for autotrophic and mixotrophic
conditions, while it was set to zero for heterotrophic cell
growth. The other external metabolites involved in trans-
port reactions such as H2O, Na+, Mg2+, H+, Zn2+, and Fe2
+ (see Addition file 1), except for the substrates, were
allowed to freely enter or leave the system. The uptake
rates of all metabolites absent in the medium were set to
zero. The flux values were expressed in mmol/mmol dry
cell/h. All the three models in SBML format are provided
in Additional files 5-7.

Active reaction determination
In order to investigate the system-level change in response
to the growth conditions we identified modes of metabolic
operation under autotrophy and mixotrophy in terms of
active reaction presented the non-zero flux value of the

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
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simulations. The different in silico constraints of the simu-
lation were set according to the carbon source utilized, as
described above.

Flux variability analysis (FVA)
Flux variability analysis is used to examine the full range
of numerical values for each reaction flux in the metabolic
system while still satisfying the given constraints set and
optimizing for a particular objective [44]. Determining the
range of flux values (v) through each reaction, maximum
value of the biomass objective function (z) is first com-
puted and is used as s further constraint with multiple
optimizations to minimize and maximize flux values of
every reaction through FBA. The mathematical equation
can be written as max(zTv). The difference between the
calculated minimum and maximum values for each flux
defines the flux variability of that reaction. In this study,
we used the COBRA toolbox [13,14] to perform FVA.

Gene essentiality analysis
The effect of genetic changes such as gene deletion can be
simulated by constraining reactions associated to gene of
interest to be zero [45]. To determine the effect of genetic
perturbation, all reactions associated with each gene in
the iAK692 model were individually removed while still
optimizing the growth rate. This in silico analysis was per-
formed using the MOMA algorithm running through the
COBRA toolbox [13,14] under autotrophic and mixo-
trophic conditions. An essential gene (lethal gene) was
defined if no positive flux value for biomass formation
could be obtained for a given mutant.

Phenotypic phase plane (PhPP)
A robustness analysis was performed to determine the
sensitivity of the predicted growth in changing the fluxes
through a pre-defined range. Phenotypic phase plane is
the method which has been used to obtain the sensitivity
analysis as a function of dual variables [25]. PhPP analysis
was done by varying two particular reactions of interest
and iteratively calculating the objective function. The
shadow prices of the dual fluxes were evaluated for each
solution. In metabolic network, a shadow prices is the rate
at which the objective function (z) changes in response to
an increase availability of each metabolite. Mathematically
equation used to calculate the shadow price can be written
as: γi = dz/dbi where γi is the ith shadow price and bi is the
ith metabolite of the metabolic network. In this study, we
performed PhPP using the COBRA toolbox [13,14]. The
simulation was carried out with autotrophy by setting the
boundaries of the absorbed photon fluxes between zero to
100 μEinstein/m2/s; and of the bicarbonate uptake rates
between zero to 0.4 mmol/mmol dry cell/h. For mixotro-
phy, PhPP analysis was performed by varying the
boundaries of the glucose uptake rates between zero to
0.034 mmol/mmol dry cell/h and the bicarbonate uptake
rates between zero to 0.4 mmol/ mmol dry cell/h.

Additional files

Additional file 1: The iAK692 model. Excel file containing a list of the
biochemical reactions in the final version of the metabolic network
reconstruction, iAK692.

Additional file 2: Fluxome distribution under three different growth
simulations. This Excel file contains a list of all flux distribution (in mmol/
mmol dry cell/h) profiles under the autotrophic, heterotrophic, and
mixotrophic culture conditions.

Additional file 3: Flux variability analysis. Excel file contains flux
variability of the entire metabolic network for autotrophic and
mixotrophic growths.

Additional file 4: Gene deletion analysis using MOMA approach in S.
platensis C1 metabolic model. Excel file contains the grRatio, grRateKO
and grRateWT values for S. platensis C1 single gene deletion during
autotrophic and mixotrophic growths.

Additional file 5: SBML Model for the autotrophic simulation. This
file contains the stoichiometric iAK692 model in the SBML format with all
of the constraints needed for simulation using the COBRA toolbox.

Additional file 6: SBML Model for the heterotrophic simulation. This
file contains the stoichiometric iAK692 model in the SBML format with all
of the constraints needed for simulation using the COBRA toolbox.

Additional file 7: SBML Model for the mixotrophic simulation. This
file contains the stoichiometric iAK692 model in the SBML format with all
of the constraints needed for simulation using the COBRA toolbox.
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