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Abstract

FitzZHugh-Nagumo model.

Background: Systems biology allows the analysis of biological systems behavior under different conditions through
in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of
perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize
the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design
problems can be mathematically formulated as dynamic optimization problems which are particularly challenging
when the system is described by partial differential equations.

This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological
systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and
the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of
suboptimal solutions, which call for robust and efficient numerical techniques.

Results: Here, the use of a control vector parameterization approach combined with efficient and robust hybrid
global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy
are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the

Conclusions: In the process of chemotaxis the objective was to efficiently compute the time-varying optimal
concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution
profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is
also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve
from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used
for the efficient dynamic optimization of generic distributed biological systems.

Keywords: Dynamic optimization, Distributed biological systems, Reduced order models, Global optimization
methods, Hybrid optimization methods, Pattern formation and control

Background

Living organisms can not be understood by analyzing
individual components but analyzing the interactions
among those components [1,2]. In this regard, many
efforts are being devoted to formulate mathematical mod-
els that enable the possibility of developing and testing
new hypotheses about biological systems.
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In recent years the use of optimization techniques
for the purpose of modeling has attracted substantial
attention. In particular, mathematical optimization is the
underlying hypothesis for model development in, for
example, flux balance analysis [3], or the activation of
metabolic pathways [4-6] and is at the core of model iden-
tification, including parameter estimation and optimal
experimental design [7].

Despite the success of modeling efforts in systems biol-
ogy, the truth is that only in few occasions those models
have been used to design or to optimize desired biological
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behaviors. This may be explained by the difficulty on
formulating and solving those problems but also in the
limited number of software tools that may be used for that
purpose [8]. In this regard, the recently developed tool-
box DOTcvpSB [9] can handle the dynamic optimization
of lumped systems (described in terms of ordinary dif-
ferential equations), such as those related to biochemical
processes (see the reviews by Banga et al. [7,8,10] and the
works cited therein), or to biomedical systems [11-16].

It should be noted, however, that many biological sys-
tems of interest are being modelled by sets of partial dif-
ferential equations (PDE). This is particularly the case of
reaction diffusion waves in biology (see the recent review
by [17]) or spatial organization in cell signaling [18]. The
scarce works related to the optimization of this type of
systems [19,20] reveal that the problem presents signifi-
cant computational and conceptual challenges due mainly
to the presence of suboptimal solutions and to the com-
putational cost associated to the simulation and, thus, the
optimization.

The use of global optimization techniques provides
guarantees, at least in a probabilistic sense, of arriving to
the global solution. Unfortunately the price to pay is the
number of cost function evaluations and the associated
computational cost, which increase exponentially with the
number of decision variables. This aspect is particularly
critical for PDE systems as they are usually solved with
spatial discretization techniques (e.g. finite element or the
finite differences methods) and the result is a large scale
dynamic system whose simulation may take from several
seconds to hours.

In this concern, the use of surrogate models has been
proposed as the alternative to reduce total computation
times. The most promising techniques based on kriging
or radial basis functions have been incorporated to global
optimization solvers [21-23]. However these methodolo-
gies do not integrate any knowledge about the system
being optimized, i.e. models are treated as blackboxes.
Alternatives for PDE systems rely on the application
of reduced order modeling techniques which take into
account the phenomena of interest. In particular the use
of the proper orthogonal decomposition (POD) approach
has demonstrated to be an excellent candidate for simula-
tion, optimization and control [24-26].

This work presents the application of hybrid optimiza-
tion techniques for the solution of complex dynamic
optimization problems related to biological applications.
Particular emphasis is paid to the efficiency and robust-
ness of the proposed methodologies. In this regard, the
use of a hybrid global-local methodology together with
a control refining technique is proposed. In addition, the
POD technique is used to reduce the dimensionality (and
thus the computational effort) of the original distributed
(full scale) models.
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To illustrate the usage and advantages of the pro-
posed techniques two challenging case studies will be
considered. The first is related to bacterial chemotaxis
and considers the achievement of two different objec-
tives as formulated in [19]. In addition, a second dynamic
optimization problem related to the FitzHugh-Nagumo
(FHN) model [27,28], which describes a number of impor-
tant physiological processes, such as the heart behavior, is
formulated and solved.

Methods

Dynamic optimization problem formulation

Dynamic optimization, also called open loop optimal
control (OCP), considers the computation of a set of
time-dependent operating conditions (usually called con-
trols) which optimize a certain performance index of the
dynamic behavior of the biological system, subject to a set
of constraints. This problem can be mathematically for-
mulated as follows: find u(t) along t €[ to,t] to minimize
(or maximize) the performance index J:

i
L(x(&,0),y(t),u(®),&,t)dt

(1)

T = (& ), ¥(10), 1)+ /

to

where & are the spatial variables, ¢ the time and u(¢) =
[u1(D), ..., uc.(0)]T is the vector of control variables. ¢
(Mayer term) and L (Lagrangian term) are scalar func-
tions assumed to be continuously differentiable with
respect to all their arguments. The state variables are
split into two subsets: those distributed in space x(§,¢) =
[x1(£,0),...,%1(£,8)]T and those which depend only on
time y(t) =[y1(t),...,y2(0)]%.

A given number of constraints must be considered when
solving optimal control problem (1). These may be classi-
fied in three main groups:

e the system dynamics that, for the general case of
distributed process systems, can be represented as a
set of partial and ordinary differential equations
(PDEs) of the form:

% =V.(kVx) = V- (vx) +f(x,y) +u (2)
d
(TZ =gx,y,u) (3)

with V being the gradient operator and f(x,y, u) and
g(x,y,w) two given (possibly nonlinear) functions
which may represent for instance chemical reactions.
This system must be completed with appropriate
initial and boundary conditions which, for the general
case, read as follows:
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n-Vx(B,t) =p—gqx(B,t) (4)

where n is a unit vector pointing outwards the
boundary B while p and q are given (possibly
nonlinear) functions. Different types of boundary
conditions can be derived from equation (4). For
instance homogeneous Neumann conditions are
obtained by fixing p = g = 0. On the other hand,
setting p = hXo and g = h, with x, being the value
of the x in the surrounding media, Robin boundary
conditions are recovered.

e the bounds for the control variables:

uf <u@) <u¥ (5)

¢ and possibly other equality or inequality constraints,
which must be satisfied over the entire process time
(path constraints) or at specific times (point
constraints), being a particular case of the later the
final time constraints which must be satisfied at final
time. These constraints can be expressed as:

¢ (x(&,0),y(®),u(),t) <0 (6)

¢ (x(&, 1), y(tr), u(ti), tr) <0 (7)
where #; is a time point, being the final time #f, a
particular case.

Numerical methods

Numerical methods for the simulation

Many biological systems of interest exhibit a nonlinear
dynamic behavior which makes the analytical solution
of models representing such systems rather complicated,
if not impossible, for most of the realistic situations. In
addition to nonlinearity, these processes may present a
spatially distributed nature. As a consequence they must
be described using PDEs which, in turns, makes the
analytical approach even more difficult. Numerical tech-
niques must be, therefore, employed to solve the model
equations.

Most of numerical methods employed for solving PDEs,
in particular those employed in this work, belong to the
family of methods of weighted residuals in which the solu-
tion of the PDE system (2) is approximated by a truncated
Fourier series of the form? [29]:

N
2,0~ ) mi(6)i(§) 8)

i=1
Depending on the selection of the basis functions ¢;(§)
different methodologies arise. In this work, two groups
will be considered: those using locally defined basis func-
tions as it is the case in classical techniques like the finite
difference method or the finite element method and those

using globally defined basis functions.
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Methods using local basis functions The underlying
idea is to discretize the domain of interest into a (usu-
ally large) number N of smaller subdomains. In these
subdomains local basis functions, for instance low order
polynomials, are defined and the original PDE is approx-
imated by N ordinary differential equations (ODE). The
shape of the elements and the type of local functions allow
distinguishing among different alternatives.

Probably the most widely used approaches for this
transformation are the finite difference and the finite ele-
ment methods. The reader interested on an extensive
description of these techniques is referred to the litera-
ture [29-31]. Both of these methods have been successfully
applied in the context of dynamic optimization [19,32].

However it must be highlighted that in many biologi-
cal models, especially those in 2D and 3D, the number of
discretization points (N) to obtain a good solution might
be too large for their application in optimization. Meth-
ods using global basis functions, which will reduce the
computational effort, constitute an efficient alternative.

Methods using global basis functions Different tech-
niques like the eigenfunctions obtained from the Lapla-
cian operator, Chevyshev or Legendre polynomials,
among others have been considered over the last decades
- see [33] and references therein for a detailed discussion
-. Probably the most efficient order reduction technique
is the proper orthogonal decomposition (POD) [34] and
because of this, it will be chosen in this work to obtain
the reduced order models. In this approach each element
@i(§) of the set of basis functions in (8) is computed oft-
line as the solution of the following integral eigenvalue
problem [34-36]:

A f REE)6i(E)dE = ¢4(2) ©)
A%

where A; corresponds with the eigenvalue associated
with each global eigenfunction ¢;. The kernel R(§,&’)
in equation (9) corresponds with the two point spatial
correlation function, defined as follows:

14

1
REEN =5 ) xE 1€ 5).

j=1

(10)

with x(&, ¢;) denoting the value of the field at each instant
t; and the summation extends over a sufficiently rich
collection of uncorrelated snapshots atj = 1,---,£ [34].
The basis functions obtained by means of the POD tech-
nique are also known as empirical basis functions or POD
basis.

The dissipative nature of this kind of systems makes that
the eigenvalues obtained from Eqn (9) can be ordered so
that A; < A; for i < j, furthermore A, — oo asn — oo.
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This property allows us to define a finite (usually low)
dimensional subset ¢4 =[¢1, @2, ..., dn] which captures
the relevant features of the system [35,37]. The number of
elements (N) in this subset is usually chosen using a crite-
ria based on the energy captured by the POD basis. Such
energy is connected to the eigenspectrum {)Li}le or, to be
more precise, to the inverse of the eigenvalues { Mi}le with

ni = Ai_l as follows:

Zi‘\il Hi
¢

E(%) = 100 x
Dot Mi

(11)

In order to compute the time dependent coefficients in
Eqn (8), the original PDE system (2) is projected onto
each element of the POD basis set. In this particular case,
such projection is carried out by multiplying the original
PDE by each ¢; and integrating the result over the spatial
domain, this is:

f s = f 61 (V - (kV) —
+—/1@uda
A%

Substituting the Fourier series approximation (8) into
Eqn (12) leads to:

V - v)xdé —|—/ oifd&
\%

i=1...,N (12)

d
/@Z@ g = Zm,/mv *kv)

+ Aj oifde + fV pruds

V -v) ¢jdé

(13)

The basis functions obtained from (9) are orthogonal
and can be normalized so that:

C[1ifi=j
A,¢i¢fd§_{01fi¢j

Therefore, Eqn (13) can be rewritten as:

dWl,‘ .

E:PimA'f‘Fi'f‘Ui for i=1,...,N (14)
where P; is a row vector of the form P; = fv o;
(V- (kV) =V -v)ppde with ¢a4  =[d1,¢2,...,¢n]7,

while F; = [, ¢ifdé, U; = [y, ¢piudé. ma corresponds with
the following column vector my =[my, my,- - ,mn] L.
Expression (14) can be rewritten in matrix form as follows:

dWlA

T = Pamp + Fp + Uy (15)
where P4y =[Pi;P;...;Pn), FEa =[F1, Fs,...,Fy]T and
Uy =[Uy,U,,...,Uyx]T. Initial conditions for solving
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Eq (15) are obtained by projecting the original ini-
tial conditions x(&,0) over the basis functions, this is
mpa(0) = fv ¢ix(€,0)dE. At this point the basis func-
tions ¢4 are known from Eq (9) while time dependent
coefficients are computed by solving Eq (15), therefore
the approximation of the original field x can be recov-
ered by applying Eqn (8), this is x ~ X = ¢ama. It
is important to highlight that the number of elements
N in the basis subset ¢ can be increased to approx-
imate the original state x with an arbitrary degree
of accuracy.

Dynamic optimization methods

There are several alternatives for the solution of dynamic
optimization problems from which the direct methods
are the most widely used. These methods transform the
original problem into a non-linear programming (NLP)
problem by means of complete parameterization [38],
multiple shooting [39] or control vector parameteriza-
tion [40] methods. Basically, all of them are based on the
use of some type of discretization and approximation of
either the control variables or both the control and state
variables. The three alternatives basically differ in: the
resulting number of decision variables, the presence or
absence of parameterization related constraints and the
necessity of using an initial value problem solver.

While the complete parameterization or the multiple
shooting approaches may become prohibitively expensive
in computational terms, the control vector parameteriza-
tion approach allows handling large-scale dynamic opti-
mization problems, such as those related to PDE systems,
without solving very large NLPs and without dealing with
extra junction constraints [32].

The control vector parameterization proceeds divid-
ing the process duration into a number of elements and
approximating the control functions typically using low
order polynomials. The polynomial coefficients become
the new decision variables and the solution of the result-
ing NLP problem (outer iteration) involves the system
dynamics simulation (inner iteration).

Nonlinear programming methods may be largely classi-
fied in two groups: local and global methods. Local meth-
ods are designed to generate a sequence of solutions, using
some type of pattern search or gradient and Hessian infor-
mation that will converge to a local optimum. However
the NLP arising from the application of the control vec-
tor parameterization method are frequently multimodal
(i.e. presenting multiple local optima), due to the highly
nonlinear nature of the dynamics [41]. In this scenario,
the initial guess may be located in the basin of attrac-
tion of a local minimum. This may be easily assessed by
solving the problem from different initial guesses (mul-
tistart). In fact, this may be regarded as the first global
optimization strategy. However experience demonstrates
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that there is no guarantee of arriving to the global solution,
even starting from a large number of different initial
guesses, and becomes computationally too expensive as
illustrated in the examples considered in [10,42] and later
in this work.

Over the last decade a number of researchers have pro-
posed different techniques for the solution of multimodal
optimization problems. Depending on how the search
is performed and which information they are exploiting
the alternatives may be classified in two major groups:
deterministic and stochastic.

Global deterministic methods [43] in general take
advantage of the problem’s structure and guarantee global
convergence for some particular problems that verify spe-
cific smoothness and differentiability conditions. A num-
ber of works have recently approached the solution of
dynamic optimization problems using convex relaxations
or branch-and-bound strategies [42,44,45]. Although very
promising, the necessary conditions for these methods to
be applicable may not be guaranteed for the cases of inter-
est and the computational cost may become prohibitive,
particularly as the number of decision variables and the
simulation cost increase.

The main drawbacks of global deterministic methods
have motivated the use of stochastic methods that do not
require any assumptions about the problem’s structure.
They make use of pseudo-random sequences to deter-
mine search directions toward the global optimum. This
leads to an increasing probability of finding the global
optimum during the run time of the algorithm, although
convergence may not be guaranteed. The main advantage
of these methods is that, in practice, they rapidly arrive to
the proximity of the solution.

The most successful approaches lie in one (or more) of
the following groups: pure random search and adaptive
sequential methods, clustering methods or metaheuris-
tics. Metaheuristics are a special class of stochastic meth-
ods which have proved to be very efficient in recent years.
They include both population (e.g., genetic algorithms)
or trajectory-based (e.g., simulated annealing) methods.
They can be defined as guided heuristics and many of
them try to imitate the behavior of natural or social pro-
cesses that seek for any kind of optimality [46]. Some
of these strategies have been successfully applied to the
dynamic optimization of bioprocesses [10].

Despite the fact that many stochastic methods can
locate the vicinity of global solutions very rapidly, the
computational cost associated to the refinement of the
solution is usually very large. In order to surmount this
difficulty, hybrid methods and metaheuristics that have
been recently developed which combine global stochastic
methods with local gradient based methods in two phases
[47] or in several phases as in the scatter search based
method eSS [23,48].
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Finally, knowing that global optimization methods
become prohibitively expensive with an increasing num-
ber of decision variables, a control refining technique
has been used so as to obtain smoother control pro-
files. This technique consists of performing successive re-
optimizations with increasing control discretization level.
A detailed description of the mesh refining approach used
is presented in [49]. The main steps are the following:

e Step 1: The problem is solved using a coarse control
discretization level (for example, 5 — 10) with the
hybrid optimization method.

e Step 2: The best solution found is transformed by
multiplying the discretization level by for example
2 — 4 and the result is employed as the starting point
for the local method.

e Step 3: Step 2 is repeated until the established
number of refinements has been achieved.

Results and Discussion

It is well known that spatio-temporal patterns appear in
biology from the molecular level to the supra-cellular
level[50]. Some examples include, traveling pulses of
action potentials in neural fibers [51], waves in cardiac
tissues in the heart [27,28], aggregation of multicellu-
lar organisms, animal aggregates, etc [19]. Experiments
show that simple chemical reactions and some elemen-
tary interactions can lead to the formation of complex
spatio-temporal patterns that are sensitive to changes in
the experimental conditions and may undergo complete
rearrangement in response to particular stimuli [52].

The examples considered here are related to the com-
putation of such stimuli which will originate a given
desired pattern. The first example is related to the bacte-
rial chemotaxis process while the second, the FitzHugh-
Nagumo model, provides a qualitative description of some
physiological processes, such as the neuron firing in the
brain or the heart beat.

Case Study I: Bacterial chemotaxis
Some types of cells are highly motile, they are able to
sense the presence of chemical signals (chemoattractants)
and guide their movement in the direction of the con-
centration gradient of these signals [53]. This process,
called chemotaxis, has a role in diverse functions such as
the sourcing of nutrients by prokaryotes, the formation
of multicellular structures, tumor growth, etc. Therefore
being of the highest interest not only to elucidate the
mechanisms of the process to develop predictive models,
but to use those models to externally control the process
in a particular desired way.

The chemotaxis of the bacteria Escherichia coli is
one of the best understood chemotactic processes.
These bacteria, under given stress conditions, secrete
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chemoattractants. Other cells respond to these secreted
signaling molecules by moving up their local concentra-
tion gradients and forming different types of multicellular
structures [54].

The modeling of bacterial chemotaxis has received
major attention during last decades. In contrast, only
some works by Lebiedz and co-workers [19,20] consider
the external manipulation of the process. These authors
made use of a combination of the multiple shooting
approach with a local optimization method to solve the
problem reporting some difficulties due to the presence of
local optima and the large computational costs associated.
This work addresses the same problem, offering a detailed
analysis of the presence of local solutions and proposing
the use of global optimization methods to deal with its
multimodal nature.

Mathematical model

The model under consideration describes the bacterial
chemotaxis in a closed long thin tube containing a liquid
medium with a cell culture of E. coli and the chemoat-
tractant species which is produced by the cells themselves.
The two components (bacteria and chemoattractant) may
be described by a coupled reaction-diffusion system of
PDEs which, in its 1D version, reads as follows [20]:

0z 8%z ad z ac
Zopi ol (2= 16
ot~ oz Mo <(1+c)2 as) (16)
dc 0% N Z2 a”)
at 92 1+ 22

with boundary and initial conditions of the form:
a d ad
Zo2E X 2o (18)
€m0 Eler & [emo
a
Z=o (19)
08 |,
z(§,0) = 1; c§,00=0 (20)

where z(£,¢) and c(§,¢) represent the cell density and
the concentration of the chemoattractant, respectively. D
denotes the diffusion coefficient with a value of 0.33 while
the model parameter pu is set to 80 - parameter values
were taken from [20]-. The system is defined over the spa-
tial domain V = {0 < & < L}, with L = 1 being the tube
length. The coupling between the nonlinear and diffusion
terms in this process leads to different spatial patterns
(aggregation of cells at given spatial regions) as a response
to given perturbations (for instance changes in the ini-
tial or in boundary conditions) as shown in [20]. Some
examples of cell aggregation patterns in a real chemotatic
process can be found in [54].
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Formulation of the optimal control problem

The objective is to externally manipulate the system so
as to achieve a particular cell distribution. With this
aim, a non-zero chemoattractant flux is introduced in the
boundary & = L, resulting into:

ac(L, 1)
9§

Experimentally this can be achieved introducing in that
boundary a semi-permeable membrane (impermeable to
the cells but permeable to the chemoattractant). The
boundary chemoattractant flux is controlled by fixing the
concentration of this chemical species, u, in an external
reservoir. Equation (21) indicates that the chemotractant
flux entering/leaving the system is proportional to the dif-
ference between the concentrations at boundary L and
at the external reservoir. We assume in this work that
the control variables # may be modified instantaneously
between two values in the range u €[ 0, 1].

As in [19] we will consider, in this work, two
desired cell distributions: a Gaussian profile zr1(§) =
2.2 (exp (—25(5 — 0.5)2) + 0.1) and a constant profile
zr2(§) = 1. The optimal control problem may be then
formulated as follows: Find u(t) within the interval t €
[0,1] so as to minimize the deviation of the cell density
as compared to the desired spatial distribution. This is
mathematically formulated as to find:

=u(t) —c(L,t) (21)

L
min = 5 [ et6 ) — 2rat) de 22)
where k = 1,2 represents the desired Gaussian and
constant profiles, respectively. In order to numerically
compute the integral term in (22), the spatial domain is
discretized into n¢ equidistant points so that instead of
(22) the following expression will be employed:

3

L
min/ii= 53 (&) —zri)”

j=1

(23)

Note that the summation extends over all the discretized
points. The optimal control problem (23) is subject to:

e The system dynamics described by Equations
(16)-(18), (20) and (21).
® Bounds on the control variable 0 < u(¢) < 1.

The sub-cases will be referred to as OCP1 (for the Gaus-
sian distribution) and OCP2 (for the constant profile).

Results

Simulation The finite difference method is employed in
this case study to numerically compute the solution of
system (16)-(21). Usually, in highly nonlinear systems as
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the one considered here, the spatial discretization level
as well as the order of the finite difference formula play
a central role in the computation of an accurate numer-
ical solution. In order to avoid numerical solutions with
no physical meaning (spurious solutions), a comparison
among different schemes was performed.

Figure 1(a) presents the final time cell density distribu-
tion for a given control profile using different number of
discretization points nz. From the figure, it is clear that
using a low number of discretization points may result
into large simulation errors thus leading to wrong conclu-
sions about optimality. Note also that the solution seems
to converge for n; > 101. On the other hand, one may
also consider increasing the order of the finite differences
formula and check whether it has a direct impact on the
number of discretization points required to accurately
represent the system dynamics. Figure 1(b) shows the
comparison between using a second order formula with
ng = 121 and fourth order formula with n; = 41. Since
the results are almost indistinguishable, fourth order for-
mula with ng = 41 is selected for optimization purposes
as it provides the best compromise between accuracy and
efficiency.

Solution with a multistart approach A multistart strat-
egy of a sequential quadratic programming method
(FSQP, [55]) is used to simultaneously analyze the prob-
lem multimodal properties (for the selected control vector
parameterization conditions) and the type of interpola-
tion that seems to be more adequate for each case.

As explained in the “Numerical methods” section, in the
control vector parameterization method the process dura-
tion is divided into a number of elements (discretization
level). As a first approximation we selected a discretization
level p = 7 and piecewise constant (PC), i.e. zero order
polynomials, and piecewise linear (PL), i.e. first order
approximations for the control variable. Both cases were
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solved using, as initial guesses, 300 randomly generated
initial control profiles. To do so matrices of dimension
300 x p, were generated within the lower and upper
bounds using the Matlab® function rand. The FSQP
method was launched from each of the initial guesses until
convergence tolerance 10~ is achieved.

The corresponding histograms of solutions are pre-
sented in Figure 2(a) for OCP1 and 2(b) for OCP2.
The computational costs vary from one multistart to
the other in a range of a few seconds to 6 min (in an
Intel® Xeon® 2.50 GHz workstation using Matlab R2009b
under Linux 32-bit). The total time employed in the 300
optimizations was around 250 min.

Let us analyze the results. First depending on the ini-
tial guess for the control, different solutions, with different
objective function values, are obtained. Therefore the
problem is multimodal and several orders of magnitude
in J separate the best and the worst solutions. The use of
PL polynomials for the control led to an order of mag-
nitude improvement in OCP1 in comparison to the use
of PC polynomials. The improvement in OCP2 is even
larger. Therefore, in the following, the focus will be on PL
polynomials. In addition note that most of the times the
local solver converged to solutions with / values which are
orders of magnitude larger than the best solution found.
In both OCP1 and OCP2 cases the best solution was
obtained only once in the 300 runs. From this analysis we
can conclude that local solvers are not suitable for this
problem and global methods must be employed.

Solution with a hybrid technique To avoid getting
trapped in suboptimal solutions, the use of global opti-
mization methods is suggested. As mentioned previously
the NLP solver eSS has proved to efficiently deal with
a wide range of optimization problems. Therefore it has
been chosen as the global NLP solver for this problem.
As in the multistart approach, a discretization level
p = 7 with piecewise linear controls was employed.

order of finite differences formula.

Figure 1 Analysis of simulation results, in terms of final time cell distribution as a function of (a) the spatial discretization level and (b) the
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Figure 2 Histograms of solutions for the multistart of FSQP for the chemotaxis related examples. Results obtained from 300 runs from
randomly generated initial control profiles. A comparison of optimal solutions obtained by means of p = 7 piecewise constant and linear control
interpolations is presented. For both OCP1 (a) and OCP2 (b) the best reported value was obtained with piecewise linear interpolation.

In order to check for the robustness of the NLP solver
10 optimizations for each of the optimal control prob-
lems have been performed. The results are summarized in
Table 1. Note that the dispersion of these results is orders
of magnitude lower than in the multistart cases and the
mean value of the hybrid approach is comparable to the
best value obtained with the multistart. For the case of
OCP1 the value J1gest = 2.59 x 10~* is achieved in
around 400 s while for OCP2 the optimal control profile
found lead to JopesT = 2.92 x 10~ in 500 s. Note that
none of the multistarts were able to reach those values. In
fact a reduction of a 28% was obtained for J; grs, while
Jo,BesT was improved by one order of magnitude. Also the
time required to reach those solutions is much lower as
compared with the total time of the multistarts.

Solution with control refinement The best optimal con-
trol profiles obtained in the previous step (p = 7) are
now refined (p = 14). The FSQP solver is employed to
compute the solution of the optimization problem.

For the OCP1, the hybrid approach with control refin-
ing allowed us to arrive to Jipest = 2.36 X 10~% with
15 s of extra computational effort. Note that an improve-
ment of around an 8 % on the objective function value
was achieved. On the other hand, when considering OCP2

Table 1 Optimization results for the chemotaxis case after
10 runs with eSS

Best value Mean value Worst value
OCP1T 259 x 1074 (-359) 560 x 1074 (-3.25) 239 x 1073 (-2.62)
OCP2 292 x 1077 (-853) 411 x1078(-738) 149 x 107/ (-6.83)

The values between parenthesis correspond with logio (J).

the objective function value was improved by one order of
magnitude /1 gesT = 1.63 X 10710 when refining the con-
trol up to p = 14. The mean relative error between the
optimal control solution and the desired profile is lower
than 4% for OCP1 and 1.4 x 1073% for OCP2. Therefore
both objectives are achieved with satisfactory accuracy
and no further refinement will be performed. To illustrate
this fact, the optimal control profiles and the correspond-
ing cell density distributions are depicted in Figure 3(a)
and 3(b), respectively.

Case Study lI: The FitzZHugh-Nagumo problem
Some physiological processes, such as the heart beating
or the neuron firing, are related to electrical potential
patterns. Their normal operation is associated to the for-
mation of a traveling plane wave which spreads all over
the tissue. Figure 4(a) shows a snapshot of this behavior
while Figure 4(c) represent the cross section of the front
at different times. Under certain circumstances, such as
the presence of an obstacle in the cardiac tissue, the plane
front can break leading to spiral wave formation as illus-
trated in Figure 4(b) (snapshot of the spiral behavior) and
4(c) (cross section at different times) [56]. This class of
behavior is related to neurological disorders or cardiac
dysfunctions such as arrhythmia and can lead, in case the
spiral breaks, to more serious problems like fibrillation.
Due to the obvious necessity of preventing and/or con-
trolling such undesirable behaviors, many research efforts
have been devoted to the modeling of such processes. Par-
ticularly successful was the one developed by Hodgkin
and Huxley [51] in early 50’s, able to predict the periodic,
quasiperiodic and chaotic responses of the action poten-
tial in sinusoidal current stimulated giant squid axons.
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Figure 3 (a) Optimal control profile obtained by the hybrid (o = 14), linear interpolation) technique. (b) Cell density distribution at final time.

The complexity of that model led to the development
of simplified versions, such as the one by FitzHugh and
Nagumo [27,28].

It is worth mentioning that the control and stabilization
of spatio-temporal fronts in biological system, and in par-
ticular the FHN system, has been successfully approached
in the literature -see [25,57-59] and references therein-.
Most of these works made use of electric fields of moder-
ate intensity, computed through given feed-back control
logics to attain the desired objective. However, to our
knowledge, there is no previous works on the dynamic
optimization of the FHN system. This work proposes
the solution of a related dynamic optimization problem
to calculate the stimulus that drives the system back to
the desired behavior, in this case a traveling plane wave.
Remark that the optimal dynamics may be then embed-
ded into a feed-back control loop, for instance introduc-
ing the optimal solution into a model predictive control
approach.

Mathematical model

In this work, we consider a 2D version of the FHN model.
The system is defined over the square spatial domain
V = {0 < (&1, &) < 200} with the boundary B being the
sides of the square, this is B = (£1,&)/(§1 = Oand&; =
200, V&; €[0,200]), (&2 = 0 and&y = 200, VE; €[0,200]).
The model equations are [56]:

av v 3%
= (8&124_8522>_+f(v’ wHi f(v, w) = (a—v)(v—1)v—w;

(24)

dw
1 =Ewws ghw) =elyw—38 - pv); (25)
with boundary conditions:
Y (26)
on B

In Equations (24)-(26), v (fast variable) is related to the
membrane potential and is known as the activator while
w (slow variable), the inhibitor, collects the contributions
of ions such as sodium or potassium to the membrane
current [50]. ¢ denotes the ratio between time scales for
the activator and inhibitor kinetics. The parameters o €
(0,1), B, y and § are non negative. The control inputs,
related to low intensity currents, are collected in the term
u. Finally, in Eqn. (26), n indicates a unit vector point-
ing outwards the surface. In this case study, the initial
conditions take the form:

1 if 0<& <10
Vo = (27)

0 if 10< & <200

wo =0, V&,& (28)

By setting the parameters « = 0.1, ¢ = 0.01, 8 = 0.5,
y = land § = 0, the solution of system (24)-(28) is a trav-
eling plane front as the one shown in Figure 4(a). The FHN
model is also able to capture the phenomenon related to
cardiac arrhythmia illustrated in Figure 4(b). Such solu-
tion is obtained by resetting the superior half plane at
a given time instant (i.e., the plane front is broken from
£, = 100 to £y = 200).
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The finite element method with a grid of around 2300
points has been employed to solve the boundary value
problem (24)-(28). Coarser grids result into a front-type
solution with low resolution while finer grids do not
alter the solution. Note that, since two state variables
are considered, such grid implies solving around 4600
ODEs which, for optimization purposes, is computation-
ally involved. In order to overcome such limitation an
accurate reduced order model derived by using the POD
technique will be developed.

Reduced order model

As mentioned previously, the POD technique will be
employed to obtain the reduced order model. In this
methodology, five steps can be distinguished:

e Obtain a set of snapshots representative of the system
behavior

e Obtain the POD basis

e Decide how many basis will be employed in the
projection

Project the model equations (24)-(28) over the
selected POD basis

Solve the resulting ODE set

Snapshots computation: This is a critical point in the
POD technique. In order to obtain an accurate reduced
order model, the snapshots must be representative of the
system behavior. Unfortunately, there is no systematic
approach to decide the conditions that better represent
the system behavior. However, the idea is to capture as
much information as possible from a limited set of snap-
shots that may be obtained either through simulation of
the original model or through appropriate experimental
setups.
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In our case all the snapshots were obtained from sim-
ulation of system (24)- (26). The first set of snapshots
aimed to capture the front-type behavior, to that purpose
the simulation started with initial conditions (27)- (28)
setting the control # = 0 and lasted for ¢ = 200 taking
one snapshot each At = 10. A second set was com-
puted to capture the spiral behavior, first such behavior
was induced by resetting the superior half plane at a given
instant then snapshots have been taken each At = 10 till
t = 200 with # = 0. Finally, 15 extra simulation experi-
ments were performed to capture the effect of the control
variable. In each of these experiments initial conditions
correspond with the spiral behavior (see Figure 4(b)) and
time was divided into 10 equally spaced segments with a
duration of At = 6. During each time segment a randomly
generated control input # €[ —1, 1] was applied.

200
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Figure 6 Distribution of the six actuators over the spatial
domain.

POD basis computation: Once the snapshots are avail-
able they are employed to construct the kernel R(&,§) as
in Eqn (10). In fact two kernels (R,(£,&’) and Ry, (£,£"))
will be constructed from the snapshots of the state vari-
ables v and w, respectively. Then the POD basis are
computed by solving the integral eigenvalue problem (9).
To that purpose, the mass matrix obtained from the
application of the finite element method is exploited to
numerically compute spatial integrals (for a detailed dis-
cussion see [60]). As a result of this step, two basis sets

(®y =[dv1, 2, ..., Pvn] and Py =[Pw1, du2, ... Puml)
are obtained.

Number of POD basis employed to project: This will
determine the dimension of the reduced order model. The
criteria used to compute the number of POD basis is based
on the energy captured by them -see Eqn (11)- which
is represented in Figure 5(a). A 99.95% of the energy is
enough to accurately represent the system, therefore, 85
and 28 PODs basis will be employed, respectively, in the
projection of state variables v and w.

Frequency

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5
log 10(J)
Figure 7 Histogram of solutions for the multistart of the FHN
system (Jggst = 1.44 x 10™%).
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Projection of the PDE system: As explained in section
numerical methods for simulation projection is carried out
by multiplying the original PDE system by the POD basis
and integrating the result over the spatial domain V. Note
that the finite element structure may be also exploited
in this step [60]. In this case this procedure leads to the
following ODE system:
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where

2P, 9%,
pA=/ ol + dg;
v V(aﬁ 983

m=/¢3mm&
A\

uAZ/ ol ude;
A%

dmy _p Fa + Un; (29)
G = Pamy + Fa + Ua; Ga = / oL, wyd
\
Initial conditions are also projected as follows:
dmy, _ _
—— = Ga; (30) myo = SyvodE;  myo = @y wodé (31)
de v \%
(a) (b)
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Figure 8 Figures (a) and (b) represent the v-field final time spatial distribution after the implementation of an intermediate control
profile from the multistart and the global optimal control profile, respectively. Figures (c) and (d) represent the absolute error between the
desired profile (Figure 4(a)) and the profiles obtained with the optimal control.
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As a result a system with 113 ODEs (more than 40
times lower than the classical finite element method) is
obtained.

Solution of the ODE set: Finally, the solution of (29)-
(31) is computed by a standard initial value problem
solver. Figure 5(b) represents spatial distribution of the
v state variable at a given time instant computed using
the reduced order model. Note that this solution approx-
imates with satisfactory accuracy that one obtained using
the finite element method with a grid of around 2300
points - see Figure 4(a) -.

Optimal control problem formulation

The aim of this section is to design an open-loop optimal
control policy (u) able to drive the spiral behavior back to
the plane front. For practical reasons, it is assumed that
only a limited amount of actuators (n, = 6) are available.
In this regard, as shown in Figure 6 the spatial domain
is divided into six vertical bands which correspond to
actuators supplying spatially independent currents.

The optimal control problem is then formulated as fol-
lows: find ur(t) with k = 1,...,6 within t €[0,60] so
as to drive the system from the spiral behavior to the
desired front pattern v (&1, §2) represented in Figure 4(a).
Mathematically this can be expressed as to find:

g
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Subject to:

e The reduced order model dynamics (29)-(31)
e Bounds on the control variables, —1 < u () < 1.

Results

Similarly to the previous case, a multistart approach of the
FSQP method was selected to study the possible multi-
modal nature of the problem. As a first approximation we
selected a discretization level p = 10 and piecewise con-
stant control. 250 randomly generated initial control pro-
files were used to launch FSQP method. To do so matrices
of dimension 250 x 6p, were generated within the lower
and upper bounds using the Matlab® function rand.

Results obtained are summarized in Figure 7. A quick
view to this figure shows us two things: first, the pres-
ence of several suboptimal solutions and second, the huge
distance, more than three orders of magnitude in the
objective function values, between the worst and the best
solutions. Note also that less than 5 % of the times the local
solver converged to values close to the global solution.

In order to illustrate the effects of falling into suboptimal
solutions, one of the locally optimal control profiles (with
log10(J) = —2.5) was applied to the system. Figure 8(a) and
(c) represent the resulting v-field spatial distribution at
final time and the absolute error with respect the desired
profile, respectively. The front obtained is not only larger
than the desired one but also three new (undesirable)
fronts appear from &; > 100. The use of the hybrid tech-

minJ; with J = 1 Z (v- (t) — VT')Z (32) nique is thus suggested so as to achieve the best possible
u '’ ng — e ' solution in reasonable computational costs.
60 Actuator 1 Actuator 2 Actuator 3 Actuator 4 Actuator 5 Actuator 6
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1

Figure 9 Heat map of the optimal control profiles for the FitzHugh-Nagumo problem.
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As in the chemotaxis case study we choose here the
NLP solver eSS to compute the optimal solution. In order
to compare the results with those of the multistart, the
control discretization was fixed to p; = 10, i.e. 60 deci-
sion variables and 10 optimization were performed to
check the robustness of the solver. The best optimal pro-
file found lead to a cost function value of Jp,; = 1.44 x
10~*(log10(Jpess) = —3.76) which coincides with that
of the multistart best solution while the mean and the
worst cases over the 10 runs were, respectively, Jyean =
2.53 x 10~*(log10Umean) = —3.60) and Jyorsy = 4.56 x
10’4(log10(]w0,3t) = —3.34). It is important to highlight
that the computational time required to arrive to such a
value was several orders of magnitude lower as compared
with the total time of the multistart approach.

From that solution the FSQP method was used with
a refining on the control discretization level (o2 = 20),
resulting into a NLP problem with 120 decision variables.
After the optimization, a value of the objective function of
Jeest = 1.32 x 10™% was achieved, i.e., an improvement
of around a 6%. This optimal solution obtained using the
reduced order model (29)- (31) was implemented in the
“real” (finite element) process. The resulting v-field spa-
tial distribution at final time and the absolute error with
respect the desired profile (Figure 4(a)) are represented
in Figures 8(b) and (d), respectively. The larger differ-
ences now concentrate in those regions where the front is
steeper while, in the rest of the spatial domain, errors are
negligible.

Finally, the optimal control profiles for the spatially
independent currents are represented in Figure 9.

Conclusions
The combination of advanced numerical optimization
techniques with reduced order based models enables the
possibility of efficiently solve dynamic optimization prob-
lems related to complex distributed biological systems.

The simulation of non-linear and distributed models
by means of typical spatial discretization techniques is
usually computationally intensive. In addition, non-linear
dynamics often induce multimodality in the associated
optimization problems. Therefore calling for global opti-
mization methods which often require a large number of
model simulations. These pose important constraints to
the solution of dynamic optimization problems related to
distributed biological systems.

This work has shown, with two illustrative examples,
how these difficulties can be surmounted with the follow-
ing procedure:

e Use spatial discretization techniques, such as the
finite differences or the finite element method, to
handle process simulation under different control
conditions and generate the snapshots, i.e., numerical
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values of the spatio-temporal evolution of the state
variables.

e Use these snapshots to obtain a more efficient
dynamic representation (reduced order model) via
the proper orthogonal decomposition approach. Such
reduced order model will be employed instead of the
complete model, in the following steps, to enhance
the efficiency of the solution of the optimization
problem.

e Solve the dynamic optimization problem with a
coarse discretization and stepwise approximation of
the control variables by means of a local NLP solver
with a multistart approach (i.e. using multiple initial
guesses). If and when the presence of multimodal
objective function is confirmed from multistart local
optimizations (typically involving 25-50 initial
guesses), a hybrid stochastic-local optimization
method such as the scatter search based approach
should be used.

e Obtain smoother control profiles, if required, by
means of a mesh refining technique or a piecewise
linear interpolation of the control variables.

Endnote
2 For the sake of clarity and without loss of generality, the
vector field x(&, t) in Eqn (2) will be considered as a scalar

x(§,1)
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