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Abstract

Background: Stochastic fluctuations in molecular numbers have been in many cases shown to be crucial for the
understanding of biochemical systems. However, the systematic study of these fluctuations is severely hindered by
the high computational demand of stochastic simulation algorithms. This is particularly problematic when, as is often
the case, some or many model parameters are not well known. Here, we propose a solution to this problem, namely
a combination of the linear noise approximation with optimisation methods. The linear noise approximation is used
to efficiently estimate the covariances of particle numbers in the system. Combining it with optimisation methods in
a closed-loop to find extrema of covariances within a possibly high-dimensional parameter space allows us to answer

Stochastic biochemical models, Systems biology

various questions. Examples are, what is the lowest amplitude of stochastic fluctuations possible within given
parameter ranges? Or, which specific changes of parameter values lead to the increase of the correlation between
certain chemical species? Unlike stochastic simulation methods, this has no requirement for small numbers of
molecules and thus can be applied to cases where stochastic simulation is prohibitive.

Results: We implemented our strategy in the software COPASI and show its applicability on two different models of
mitogen-activated kinases (MAPK) signalling — one generic model of extracellular signal-regulated kinases (ERK) and one
model of signalling via p38 MAPK. Using our method we were able to quickly find local maxima of covariances
between particle numbers in the ERK model depending on the activities of phospho-MKKK and its corresponding
phosphatase. With the p38 MAPK model our method was able to efficiently find conditions under which the coefficient
of variation of the output of the signalling system, namely the particle number of Hsp27, could be minimised. We also
investigated correlations between the two parallel signalling branches (MKK3 and MKK6) in this model.

Conclusions: Our strategy is a practical method for the efficient investigation of fluctuations in biochemical
models even when some or many of the model parameters have not yet been fully characterised.
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Background

Random fluctuations in discrete molecular numbers can
have significant impact, both detrimental and construc-
tive, on the functioning of biochemical systems [1,2].
Systems that contain only relatively small numbers of
particles of a certain chemical species, such as in signal
transduction or gene expression, are particularly prone
to this intrinsic noise. Here, the underlying discreteness
of the system and stochastic timing of reactive events
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can lead to fluctuations in species abundances of high
relative amplitude. Even when particle numbers are
high, stochastic effects can significantly affect the
dynamic behaviour of certain biochemical networks [3].
Biochemical systems have evolved to be robust against
molecular fluctuations by attenuation, or even to exploit
them (see [4,5] for examples). Therefore, these fluctuations
should be considered whenever quantitative and dynamic
models are devised to describe biochemical systems.
Different mathematical formalisms have been developed
to allow stochastic modelling and to explicitly take into
account random fluctuations. Such systems are usually
modelled by a continuous-time Markov process which fol-
lows the chemical master equation. The chemical master
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equation describes the time evolution of the system state
probability distribution, i.e. how probable it is that a
chemical species in the system will have specific particle
numbers at a specific point in time. Both analytic and
numerical solutions of this chemical master equation are
difficult to obtain for most biologically relevant systems.
Even though there exist methods to numerically solve the
master equation [6] these are only feasible for relatively
simple systems. A popular substitute is to apply Gillespie’s
stochastic simulation algorithm [7] to calculate single tra-
jectories of the system’s dynamics. By calculating very
many of such (random) instances one can then approxi-
mate the trajectory of the probability density function of
each chemical species and calculate relevant time-depen-
dent statistics, such as the mean value or covariances.
However, the stochastic simulation of single trajectories
alone can be computationally demanding. The calculation
of very many of them quickly becomes impracticable even
when accelerated approximate stochastic simulation meth-
ods [8] are employed.

For a quick characterisation of the fluctuations in a bio-
chemical system there exists an alternative, namely the
linear noise approximation (LNA; see, e.g., [9-11]). This
approximate method is based on van Kampen’s system-
size expansion of the chemical master equation [12-14].
The LNA estimates the variances of the species abun-
dances and the covariances between them. Even though,
theoretically, the LNA is only locally valid in the vicinity
of macroscopic steady states or other system trajectories,
in practical terms, it often gives good results even when
the behaviour of the stochastic model and the behaviour
of the corresponding deterministic model are quite dif-
ferent [15]. The LNA is particularly interesting because it
is independent of computationally demanding stochastic
simulations but, instead, only uses information about the
stoichiometries in the system and the macroscopic reac-
tion rates — therefore it can be calculated very quickly.
Other approaches have also been proposed for the esti-
mation of steady state noise. For instance, in [16], analyti-
cal estimates of the fluctuations are found using error
growth techniques. These are based on ideas from non-
linear dynamics and do not begin from a master equa-
tion. This is in contrast to the work presented here,
where the molecular basis of the model is central, and
where the nature of the fluctuations can be explicitly cal-
culated. There are, of course, many studies of fluctua-
tions in biochemical systems. For instance, in [17] the
authors use data from time series to infer the values of
the model parameters. This is in some sense the converse
of our approach.

Often, in practice, one or more of the parameters of a
model, such as reaction rates or initial concentrations,
cannot be exactly determined. For instance, such para-
meters might only be known to lie within a certain range
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or nothing might be known about them at all. This
uncertainty about parameters can translate into uncer-
tainty about the system behaviour when it has high sensi-
tivity towards those parameters. This is also true for
molecular fluctuations in the system since their expected
amplitude and other properties depend on parameter
values. If only one or two parameters are unknown it is
possible to exhaustively scan this parameter space using a
regular grid or other techniques to probe how the model
is affected by variations in values of those parameters.
However, this approach is not feasible if the number of
unknown parameters is large since the hyper-volume of
the parameter search space increases exponentially with
the number of uncertain parameters, and consequently
so does the computational time.

In this article we introduce a different strategy to study
random fluctuations in biochemical models with para-
meters that are not well characterised. Our approach
combines the LNA with optimisation methods to search
the unknown parameter space for parameter values that
lead to extrema in covariance estimates. This can drama-
tically reduce the required computation time compared
to exhaustive searches with stochastic simulations,
thereby permitting types of studies of stochastic fluctua-
tions that were not possible before. We will show a rele-
vant biological example of a search for conditions that
minimise the noise in the output of a p38 MAPK signal-
ling system. Scanning the parameter space and using sto-
chastic simulation is clearly impossible here because this
would take more than 2.4 - 10" years. Our method, in
contrast, was able to find these conditions in 25 min.
Therefore, the strategy we are proposing makes it possi-
ble to gain biological insight about the noise structure of
relevant biological systems even if these systems are big
and the parameters are not well defined.

Global optimisation methods have been shown to be
effective in finding good extrema estimates of dynamic
properties of biochemical network models even in high-
dimensional search spaces [18,19]. The strategy proposed
here is similar to an earlier one successfully applied to
the search for extreme values of sensitivities [20].

The application of this strategy passes through a closed
loop containing the automatic calculation of a steady state,
the LNA method and one optimisation algorithm; alterna-
tively the method is also appropriate to use with para-
meter scanning or sampling algorithms instead of the
optimisation. We implemented this strategy in the soft-
ware COPASI [21,22], which already contains optimisa-
tion, scanning and sampling algorithms. We demonstrate
the application of this new strategy on two different mod-
els of mitogen-activated kinase (MAPK) signalling path-
ways, namely a model of extracellular signal-regulated
kinases (ERK) by Kholodenko [23] and a model of p38
MAPK by Hendriks et al. [24].
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Results

Implementation of the method in COPASI

The software COPASI [21,22] gives all interested
researchers easy access to modelling and simulation for
biochemical networks, because it is freely available
under the Artistic license version 2.0 at [22] and sup-
ports the Systems Biology Markup Language (SBML)
standard [25] for the exchange of model files with other
software. An implementation of the method described
here was integrated in COPASI, comprising a new LNA
task that, using the linear noise approximation (see
Methods), generates as output a matrix of covariance
estimates between all the species’ particle numbers in a
given biochemical model (see Figure 1). Prior to this,
the method can also automatically calculate a steady
state for the model which is important if parameters,
and thus the system’s steady state, have been changed.
The covariances estimated by the LNA task can then be
subsequently used by other tasks in COPASI, in particu-
lar optimisation, parameter scanning or sampling in a
closed-loop fashion. This combination results in a prac-
tical method for the investigation of fluctuations in
models even when some or many of the model para-
meters have not yet been fully characterised.
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Our implementation allows arbitrary objective func-
tions to be optimised. For instance, LNA estimates of
covariances of different chemical species, as well as
other model observables, can be combined into a com-
plex objective function. This allows the calculation of
various quantities of interest, for instance, Fano factors
[26] or coefficients of variation (CV), as shown below.
In terms of parameter search, our implementation can
use a large variety of numerical optimisation algorithms,
both local and global, that are accessible in COPASI —
gradient-based, particle swarm [27], simulated annealing,
evolutionary algorithms and others [28]. This is particu-
larly important since the performance of global optimi-
sation algorithms has been shown to be problem-
dependent, and no single one is guaranteed to converge
to a global optimum for all problems [29].

Application of the method on MAPK signalling systems

Signalling through mitogen-activated protein kinases
(MAPK) is involved in a broad range of cellular pro-
cesses, such as proliferation, differentiation, stress
responses and apoptosis. Therefore it is also implicated
in a variety of diseases like cancer, stroke or diabetes
[30]. As such, it has been the object of a number of
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Figure 1 Screen shot of the LNA implementation in COPASI. Screen shot of the COPASI graphical user interface and the linear noise
approximation task. Shown is the resulting covariance matrix of species’ particle numbers in the p38 MAPK model by Hendriks et al. [24]. The
matrix is colour coded, positive values have a green background and negative values a red one with intensities corresponding to the absolute
values.
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computational modelling studies that helped elucidate
dynamic properties of the system, such as amplification
of signals, noise reduction or switching behaviour [31].

There exist different specific MAPK signalling path-
ways with different functions, for example ERK1/2, p38
or JNK, with different topologies and characteristics.
However, in most cases the basic structure is that of a
three-tier cascade. Here, the MAPKs on the output
level, such as ERK1/2 or p38, phosphorylate transcrip-
tion factors or other proteins to trigger specific cellular
responses. The MAPKSs are, in turn, activated via phos-
phorylation by other protein kinases, so-called MAP2K
(or MKK) that are themselves activated by MAP3K (or
MKKK) further upstream.

Fluctuations in a model of ultrasensitivity in ERK MAP
kinase signalling

We will now apply the LNA to a MAPK cascade model
due to Kholodenko [23], which is a popular model of a
generic extracellular signal-regulated kinases (ERK)
MAPK signalling cascade. Due to a negative feedback
loop, the model can exhibit limit cycle behaviour for
some parameter values, and a stable steady-state for
others. While Kholodenko examined the model in the
limit cycle regime [23], we reduced the feedback
strength by increasing the kinetic constant Kj to 45, so
that a stable steady-state exists (all other parameter
values remain as in the original paper). A typical sto-
chastic simulation of the system is shown in Figure 2,
simulated with Gillespie’s Direct Method [7] (as imple-
mented in COPASI).

It is interesting to see how the magnitude of fluctua-
tions changes with the reaction parameters. As an exam-
ple, we used our LNA implementation in COPASI in
combination with a parameter scan to investigate how
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Figure 2 Stochastic simulation of the ERK MAPK model. MKKK

and phospho-MKK particle numbers vs. time [s], with K = 45, Vo =
10" I and all other parameters as in [23].
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changes in the reaction parameter v, affect the variance
of MKKK (MAPK kinase kinase). Values of v, were
scanned within a certain range and the LNA automati-
cally calculated for each value of v,. In the model, this
parameter corresponds to the V,,,, of phospho-MKKK
dephosphorylation and so refers to the activity of
MKKK-phosphatase.

Presently protein kinases are much better characterised
at the molecular level than protein phosphatases. As a
consequence the effect of phosphatases are often also not
studied in signalling models. However, here we are able
to show that the activity of the MKKK-phosphatase does
not only influence the type of dynamics the system exhi-
bits, namely that the steady state becomes unstable at
vy = 0.446 due to a Hopf bifurcation. It also strongly
affects the intrinsic fluctuations in the system. As can be
seen in Figure 3, the estimated variance of MKKK
becomes large as v, approaches the bifurcation point
and, interestingly, it shows a local maximum at v, = 0.32
of 987.7 particles®. The value of v, in Figure 3 does not
go as far as the bifurcation point, as the LNA loses accu-
racy near this value.

We then wanted to investigate the conditions under
which fluctuations in chemical species at different posi-
tions of the signalling cascade become correlated. To
achieve this, we used the optimisation task in COPASI to
maximise the covariance of the fluctuations of MKKK
and MKK-P, allowing the reaction parameters v, and ky
to vary over a given range of values. Using the evolution-
ary programming algorithm [28] (which took 199
seconds to run) 4004 steady state and LNA evaluations
were carried out. A local maximum of the covariance was
found with a value of 4035 particles” for v, = 0.3226 and
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Figure 3 Parameter scan of MKKK particle number variance
against reaction parameter v, in the ERK MAPK model. A
parameter scan of the variance of the particle number of species
MKKK has been carried out for a range of values of the reaction
parameter v,, with K, = 45, V,; = 107" | and all other parameters as
in [23].
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ky = 0.0166. The algorithm converged to this value
already after 880 iterations. A parameter scan over the
same parameter space was also performed to better illus-
trate the change in correlation with these two para-
meters. Figure 4 shows how the covariance of the
fluctuations of MKKK and MKK-P varies with the reac-
tion parameters, and provides a visualisation of the land-
scape that the optimisation algorithm must traverse.
Note that the covariance becomes negative for some
parameter values.

Fluctuations in a model of p38 MAPK signalling

The so-called p38 mitogen-activated protein kinases (p38
MAPK) are responsive to proinflammatory cytokines and
stress factors [32]. One prominent signal are lipopolysac-
charides (LPS), which are components in the cell wall of
bacteria. Their presence indicates a bacterial infection and
triggers a strong immune response in animals. The MAPK
of this pathway, p38, can, inter alia, activate MAP kinase-
activated protein kinase 2 (MK2). One substrate of MK2 is
the heat shock protein 27 (Hsp27) and the concentration
of the active/phosphorylated form of Hsp27 is regularly
used to estimate the activity of the p38 MAPK signalling
pathway. The level of Hsp27 will also represent the main
signalling output in the model.

The model we use for this study was developed in
Hendriks et al. 2008 [24]. Its structure is shown in the
additional file 1. The original model included the rapid
inactivation of a (TAK1L:TAB1:TAB2) complex. This was
represented by a degradation reaction which, after an
initial peak, led to an abrogation of p38 MAPK activity.
For this study we removed this degradation reaction
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Figure 4 Two-dimensional parameter scan of MKKK and MKK-P
particle numbers’ covariance in the ERK MAP model. A two-
dimensional parameter scan of the covariance of the particle
numbers of species MKKK and MKK-P. The parameter v, was varied
between 0.22 and 041 and the parameter k, between 0.015 and
0.035.
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which allows the system to reach a steady state of sus-
tained p38 MAPK signalling depending on the amount
of LPS. We also reformulated the model in such a way
that it no longer contained three compartments (med-
ium, cytosol and nucleus) but, instead, uses a single
reference volume for all species, including the nuclear
ones, corresponding to the volume of the whole cell.
This was needed because the current implementation of
the LNA can only handle models with one compart-
ment. In [24] the model was fitted to experimental mea-
surements, and in the following we will use the set of
parameters which showed the best fit.

As mentioned above, random fluctuations in signalling
systems are particularly interesting to study, since here
copy numbers of the different species are often low. For
instance, MKK3 and MKK®6 are typically present in the
order of only ten thousand particles per cell. This could
lead to pronounced fluctuations which hamper reliable
information transfer through this signalling pathway.
But perhaps there are conditions (parameter values) for
which these fluctuations are minimised, which is what
we want to investigate.

First we looked at the estimated variances of different
signalling intermediates, such as phospho-MKK3, phos-
pho-MKK®, cytosolic phospho-p38 and nuclear phospho-
p38 with varying stimulus strength, i.e. concentration of
LPS (Figure 5, panel A). We performed a parameter scan
in COPASI where the initial concentration of LPS was var-
ied within a certain range and the LNA was automatically
calculated at each LPS concentration. We found that the
variances increase with increasing stimulus strength but
saturate at high values of LPS (resembling hyperbolic
functions).

By contrast, phospho-Hsp27, the endpoint of the
modelled signalling pathway, shows a decrease in its var-
iance with increasing stimulation (Figure 5, panel B).

However, looking at the coefficient of variation (CV)
both nuclear phospho-p38 and cytosolic phospho-Hsp27
show a decrease of variation with increasing stimulation
due to increasing steady state particle numbers (Figure 6
shows the CV of nuclear phospho-p38 against the con-
centration of LPS). This means that, in both cases, the
relative amplitude of fluctuations decreases with increas-
ing signal strength — the higher the stimulus, the less
ambiguous it becomes.

An interesting property of the p38 MAPK pathway is the
existence of two parallel signalling branches, through
MKK3 and MKKS®6, that both can phosphorylate p38
MAPK. Therefore, we were interested in whether fluctua-
tions in the MKK3 branch correlate with fluctuations in
the MKK6 branch. First, we scanned the estimated covar-
iance of phospho-MKK3 and phospho-MKK6 over a
range of stimulus strengths. We found that the fluctua-
tions in the two branches seem to be mostly uncorrelated
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Figure 5 Variances of species’ particle numbers versus stimulation strength in the p38 MAPK model. Panel A: Variance of cytosolic
phospho-MKK3 (x), phospho-MKK6 (7), phospho-p38 (©), and nuclear phospho-p38 (A) particle numbers vs. strength of stimulation
(concentration of LPS [ng/ml]). Panel B: Variance of cytosolic phospho-Hsp27 versus strength of stimulation (concentration of LPS [ng/ml]).

(the LNA actually estimates a very weak anti-correlation
for higher initial concentrations of LPS, data not shown),
an indication that the largest part of the fluctuations does
not originate from the common upstream part of the two
branches but rather from within the branches themselves.
We now wanted to investigate how the parameters in
the system influence this anti-/correlation. Therefore, we
searched for extreme values of the LNA-estimated corre-
lation coefficient of phospho-MKK3 and phospho-MKK6

cov(phospho-MKK3, phospho-MKKG6)
/var(phospho-MKK3) \/var(phospho—MKKG)

within a fixed, but large, range of all parameter values.
We therefore ran the LNA in combination with the

particle swarm optimisation algorithm of COPASI, using

the correlation coefficient as the objective function for
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Figure 6 Coefficient of variation of nuclear phospho-p38 vs.
stimulation strength in the MAPK model. Coefficient of variation
of nuclear phospho-p38 vs. concentration of LPS [ng/ml].

maximisation. In addition we set constraints on the
number of steady state particle numbers in the system.
Both phospho-MKK3 and phospho-MKK6 particle num-
bers were allowed to change only 4-fold, i.e. within 50%
- 200% of their original values. All other species’ particle
numbers were allowed to change 100-fold, i.e. within
10% - 1000% of their original values. The reasons for
this were, firstly, that we did not primarily want to
change the steady state of the system but rather only
wanted to affect the fluctuations around the steady
state. Secondly, if particle numbers are not constrained
the optimisation often converges towards degenerate
cases where one or both of the steady state particle
numbers are very close to zero, i.e. the lower limit — a
situation where the LNA estimation can have large
errors due to its assumption of Gaussian fluctuations.

We used a particle swarm optimisation [27] method
with a swarm size of 50. The parameters to vary were
all 29 reaction rates of the first 20 reactions in the
model (see [24]), which includes all receptor (complex)-
related reactions, both MKK3 and MKK6 branches, and
the phosphorylation and dephosphorylation of p38. The
parameters were allowed to change 100-fold, e.g. within
10% - 1000% of their original values. With these settings
our method was able to find conditions where the esti-
mated correlation between phospho-MKK3 and phos-
pho-MKK6 was larger than 0.95 with a computation
time of roughly 70 min.

Finally, we were interested in the influence that differ-
ent choices for parameters in the two branches have on
the fluctuations of the output of the signalling pathway
(phospho-Hsp27) or, in other words, how reliable or
noisy the overall signalling pathway can be. We used a
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particle swarm optimisation (swarm size = 50) [27]
in combination with the LNA to minimise the coeffi-
cient of variation (CV) of phospho-Hsp27
\/var(phospho-Hsp27)
|phospho-Hsp27 |
parameters that were allowed to change were the 21
reaction rates of all reactions listed in Table 1. All rates
were allowed to change 4-fold (e.g. from 50% to 200% of
their original value). Column “Changes (no constraints)”
in Table 1 details how the optimisation minimised CV
(phospho-Hsp27). Most of the rates were increased or
decreased until they reached the given limits. Briefly,
one can see that the phosphorylation steps of MKK3,
MKK®6 and p38 are made faster, whereas their respective
dephosphorylations are made slower. Obviously, the CV
can be minimised by just increasing the steady state par-
ticle number and leaving the variance as it is. Because
this was the result of our first attempt, we carried out a
second run where we constrained the phospho-Hsp27
particle number to stay below the limit of 4.65 - 10° par-
ticles. With the original parameter set the steady-state
particle number of phospho-Hsp27 was 4.647 - 10° par-
ticles. The result of this second calculation is shown in
column “Changes (constrained)” of Table 1. The most
notable differences compared to the unconstrained case
can be found in the MKK3 branch. Now the phosphory-
lation of p38 by phospho-MKK3 (MKK3P) is slower
than in the original model. Also, the rates for both the
binding and dissociation of phospho-p38 (p38P) and its
phosphatase (p38_phosphatase) have been increased as

(CV (phospho-Hsp27) = ). The
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well as the rate for the corresponding dephosphoryla-
tion. The binding of phospho-MKK6 and its phospha-
tase (MKK6_phosphatase) is now faster while the rate
for the corresponding dissociation seems to be almost
unchanged from its original value.

We would like to note here that a (naive) comprehen-
sive search for optima using a regular grid approach and
stochastic simulations of the system in this particular
case would have taken a prohibitively long computation
time. Assuming that, within the given limits, we only
look at ten different values per parameter we would
have 10<no-Parameters>_ 1021 sample points. For each
point we would need to carry out a stochastic simula-
tion that, including the calculation to allow the system
to settle down to a steady state, takes approximately
7700 s on a typical desktop computer (for a simulated
time of 10000 s). Neglecting the time needed to calcu-
late the actual statistics on the simulated time series this
would lead to a computation time of more than 10*! .
7700 s ~ 2.4 - 10"7 years. And this would only explore
ten values of each parameter (i.e. it would be at a low
resolution.) In contrast our method, using the linear
noise approximation in combination with numerical
optimisation, took 25 min to converge. This clearly
shows the utility of the method we propose here: it
makes tractable to calculate many phenomena that
otherwise would be computationally prohibitive. Finally,
although an approximation had to be adopted, it is typi-
cally so good that this has very little impact on the
accuracy of the method.

Table 1 Optimisation of the coefficient of variation of phospho-Hsp27 particle numbers

Reactions

complex + MKK6 <« complex_MKK6
complex_MKK6 — complex + MKK6P
MKK6_phosphatase + MKK6P «» Ppase_MKK6P
Ppase_MKK6P — MKK6_phosphatase + MKK6
complex + MKK3 « complex_MKK3
complex_MKK3 — complex + MKK3P
MKK3_phosphatase + MKK3P «» Ppase_MKK3P
Ppase_MKK3P — MKK3_phosphatase + MKK3
MKK6P + p38 «> MKK6P_p38
MKK6P_p38 — MKK6P + p38P
MKK3P + p38 < MKK3P_p38
MKK3P_p38 — MKK3P + p38P
p38_phosphatase + p38P «> Ppase_38P
Ppase_p38P — p38_phosphatase + p38

Changes Changes
(no constraints) (constraints)
=> =>
=> =>
< ~
<= R
= =>
> =>
<= <
< f=
= =>
= =>
=> <
=> <
= =4
<= =>

Optimisation of the coefficient of variation of phospho-Hsp27 particle numbers with regards to all 21 reaction parameters of the listed reactions ([LPS]o = 1 ng/
ml). “Changes (no constraints)” means that the coefficient was optimised without any further constraints, whereas “Changes (constrained)” means that during
optimisation the phospho-Hsp27 particle number was constrained in the optimisation to stay below the limit of 4.65 million particles. “=" ("<") denotes an
increase (decrease) in the forward rate and a decrease (increase) in the reverse rate, in case of a reversible reaction. “<” means that both forward and reaction

rates are increased and “~" means that the optimisation led to no clear change
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Discussion

Our contribution with this work is two-fold. First, we
implemented the linear noise approximation in the freely
available software COPASI, and thus made it accessible
to a large group of users. Secondly, we showed how the
LNA in combination with multi-dimensional parameter
scans or with global numerical optimisation methods is
appropriate to quickly characterise the influence of para-
meters on intrinsic fluctuations in biochemical models
even when there is considerable uncertainty about a
number of parameters. We showed, with realistic bio-
chemical signalling models, that using this approach one
is able to explore parameter space such that conditions
can be found for which there is minimal, or maximal,
noise. It is also possible to search for conditions where
specific model variables are highly (or poorly) correlated.
This new method thus provides a new and important
way to explore the universe of behaviours displayed by
models. Given the importance of noise and fluctuations
in intracellular biochemistry, this method is therefore of
great value for the study of those systems.

In the recent article by Komorowski et al. [33] a related
method is proposed. There, the linear noise approximation
is used to calculate Fisher information matrices for sto-
chastic models, primarily to inform experimental design,
e.g. by examining the information content of different
experimental samples. Our approach, on the other hand,
focuses on exploring the model independently of any phy-
sical measurements. Therefore, the two approaches are
complementary.

In certain cases, however, care should be taken when
using the LNA. This is due to the assumption that the
fluctuations are Gaussian in nature. Problems can arise if
the system is close to a boundary. For example, if the
number of molecules for a particular species is very close
to zero the probability distribution for the fluctuations
becomes ‘squashed’ (which the LNA does not take into
account), to satisfy the requirement that the probability
to have a negative number of molecules present is zero.
Boundaries can also arise due to conservation relations,
which are discussed in the Methods section, as these add
constraints to the system. When using the LNA in com-
bination with one of the optimisation algorithms in
COPASI, such systems near boundaries are sometimes
found, especially when the user wishes to minimise a
covariance, as we found when studying the p38 MAPK
model. This is because the fluctuations can be very small
when the system is close to a boundary, which can give
the impression that the fluctuations of two different spe-
cies are uncorrelated, which may not be the case away
from the boundary. In these cases, adding constraints to
the particle numbers (as we did when studying the p38
MAPK model) helps to keep the system away from these
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states. The current implementation of the LNA in
COPASI is only able to consider models in which the
reactions all occur within one compartment. As many
biochemical models involve multiple compartments we
hope to extend our work, so that in future it will be pos-
sible to use the LNA to study a wider range of models.

Methods

Biochemical network models of the kind we analyse
here can be described as consisting of g species
Y1,..., Yz enclosed in a volume V. There will be M
reactions which interconvert species:

mYp+... +TI‘<1YR — pqu +... +pf<1Yf<

TiMY1 + .o+ Y = pimY1 + .+ P Vi

where the numbers r;, and p;, (i=1,...,K;p=1,...,M)
describe respectively the population of the reactants and
the products involved in the reaction. This may be written
more compactly as

K S
DorYi—> Y piYi w=1,2 ..M. ey
i=1 i=1

All the reactions above are strictly irreversible, there-
fore, without loss of generality, any chemically reversible
reactions must be described as two separate irreversible
reactions. The elements of the stoichiometry matrix,
Viu = Piy - Tiw describe how many particles of species Y;
are transformed due to the reaction y. Although there
are [ species present in the system, they may not all be
able to vary independently. This is because mass conser-
vation relations are often present in the system which
cause some variables to be linear combinations of
others. As a simple example of this, consider the
Michaelis-Menten reaction mechanism in an open sys-
tem, described in Table 2.

A substrate, S, is converted to a product, P, via an
enzyme E. The substrate and enzyme form a complex,
SE. A constant flux of S molecules is supplied to the
system and P molecules are able to leave the system. In
our notation above, Y; =S, Y, = E, Y3 = P and Y, = SE.
Also, r1; = 1, r9; = 0 and so on. The total number of

Table 2 Michaelis-Menten reaction mechanism

Reactions Kinetics
-5 vi =k
S+E—SE Vo =k - [S] - [E]
SE—>S+E v3 = k3 - [SE]
SE>P+E vy = ky - [SE]
P— Vs = ks - [P]
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enzyme molecules, i.e. the number of free enzyme mole-
cules plus the enzyme molecules bound in a complex, is
fixed. If the number of SE molecules decreases by one,
the number of E molecules increases by one. This con-
servation relation means that there is only one indepen-
dent variable here, not two. In general, if the system
contains A conservation relations, then the dimension
of the system can be reduced from g to g = g — A. It is
necessary to reduce the size of the system in this way to
facilitate the linear algebra to be done later. In the
Michaelis-Menten system above, g = 4 and A = 1, so
K=3.

To specify the model, kinetic functions f, (n, V) asso-
ciated with reaction y need to be given. They are functions
of the vector of particle numbers n = (ny, ..., ng) and
volume V. Note that the vector of particle numbers has
been ‘shortened’ from length g to K using the conserva-
tion relations. This will be discussed in more detail later in
this section. In the limit where both the particle numbers
and the volume become large, the kinetic functions
become functions of the species concentration 7,;/V only;
we then denote them by f,(x), where x; = limy_,.. n;/V. In
this limit the conventional, macroscopic and deterministic,
description of the systems applies and a set of ordinary dif-
ferential equations (ODEs) can be written down to
describe it:

dy & '
d; - Z"iufu(x), i=1,...,K. ©)

=1

(The ODE:s for the species that have been eliminated
can be found by using the conservation relations.) How-
ever, the large system size limit is inappropriate for many
systems of interest, in particular when the molecular
populations are low (and the volume is small, as in most
cells), then the discrete nature of the molecules has
important consequences. In these cases a stochastic
description is required.

The starting point for the stochastic description is the
chemical master equation, which specifies how the prob-
ability that the system is in the state n at time ¢, P(n, £),
changes with time. If T,(n|n’) is the transition rate from
state n’ to state m associated with reaction g, then the
master equation takes the form

dP(n,1) & - b N b
e Z[ p(nln—v )P(n—vy, 1) = Tu(n+v,|n)P(n, t)]/ (3)

=1

where v, = (vy,, ..., Vk,) is the stoichiometric vector
corresponding to reaction y. This completely defines the
stochastic dynamics of the system once the initial condi-
tion P(n, 0) is given. If we multiply Eq. (3) by #, and
sum over all possible values of # one finds, after shifting
the change of variable » — n + v in the first term,
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M
d“('i(tt)) =3 v (T (n+ v, ln)). (@)
n=1

Dividing Eq. (4) by V and taking the limit V' — o, we
see that we recover the deterministic description Eq. (2)
if we make the identification f,(x) = limy,.V*! (Ty(n +
v,|n)). To go further than the macroscopic description
Eq. (2) we need to develop an approximation scheme
which goes beyond the deterministic dynamics in a sys-
tematic way. Fortunately such a scheme exists: the sys-
tem-size expansion of van Kampen, which allows one to
calculate corrections to the deterministic results in
powers of V"' by writing n/V = x + £/+/V, where x is
found by solving Eq. (2). To next-to-leading order,
which in general gives results in very good agreement
with simulations, this is equivalent to assuming that the
stochastic fluctuations are Gaussian, and so determined
by stochastic processes which are linear. For this reason,
this is frequently known as the linear noise approxima-
tion (LNA). Details of the general application of the
method are given in the book by van Kampen [14], and
for chemical reactions of the kind we are considering
here by Elf and Ehrenberg [9]. In [14,34], terms an
order smaller than the LNA are included. In most cases
the LNA is very accurate, and these extra terms are not
significant, provided the steady-state solution is not near
a boundary, in which case the fluctuations would no
longer be Gaussian. One finds that the stochastic
dynamics of the LNA is governed by the Fokker-Planck
equation

M 9 1~ 9210
iy =—§a& (Mi<5)n>+2ij§Bﬁa&8§, 5)

K
Where T1(£, t) = P(n, t) and M;(€) = ijl Aji. There-

fore the entire dynamics is defined by two matrices A
and B which are given by

& ofu(x) u
Ay =D vy e Byl) = () (6

In all the investigations we will carry out in this paper,
we will be interested in fluctuations about the stationary
state. In terms of the deterministic dynamics Eq. (2), the
solution x(£) will be replaced by its fixed point value x*,
and so the A and B matrices will be independent of
time.

The Fokker-Planck Eq. (5) is linear, and so therefore
its solution, TI(&, ¢), is Gaussian, and may be charac-
terised by its first two moments. The ansatz used to set
up the system-size expansion implies that the first
moment, (&(t)), is zero to this order. In the stationary
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state the covariance, (£;(£)(¢)) will only depend on |z -
'|. Therefore, Z;; = (&(£)¢,(2)) will be independent of
time, and will satisfy [14]

AZ+ BAT+B=0. (7)

All the matrices in Eq. (7) are dimension K x K and
are independent of time. In applications we are fre-
quently interested in the covariance in terms of particle
numbers

Cij = ((ni — () (nj — (mp))). (8)

Since (n;) = V; and since the average of the fluctua-
tions is zero to the order we are working,

Ci=((vve) (vve)) - ves )

The Lyapunov equation, analogous to Eq. (7) is there-
fore

AC + CAT + VB = 0. (10)

The equation can be solved for C numerically by
employing the Bartels-Stewart algorithm [35]. Here, A is
transformed to lower real Schur form and A” is trans-
formed to real Schur form. This allows elements of the
transformed matrix C to be solved for successively. The
solution of C is found by reversing the original transfor-
mation. It is important that the conservation relations
are used to reduce the dimension of the system before
the Bartels-Stewart algorithm is applied. The matrices
for the ‘unreduced’ system will contain linearly depen-
dent columns or, equivalently, zero eigenvalues. When
this is the case, the solution to the equation is no longer
unique [35].

Therefore our implementation of the LNA first auto-
matically determines existing conservation relations
(also known as conserved moieties) and reduces the sys-
tem from g to K independent chemical species. Then
the LNA is applied to the reduced system and the corre-
sponding covariance matrix is calculated. In the last step
the covariance matrix for the full system is recovered as
follows.

For convenience, the state vector n should be written
with the g = gk — A independent species first i.e. filling
the first K positions, and then the dependent species
should be written at the end. This anticipates shortening
n (when the size of the system is reduced) to contain K
elements, rather than g. The dependent species may be
written in terms of the independent species by using the
conservation equations which are linear combinations
and so, in general, are of the form:

K
nj=cj+2(xjknk, j=K+1,...,K,
k=1

(11)
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where the ¢; and aj are constants.

Examining the conservation relations after the change
of variables used in the van Kampen expansion
(nj = Vx; + ~/V§) is introduced, the above equation
becomes:

K
ij + \/ng =q+ Zajk(ka + \/ka).

k=1

(12)

But the conservation equations should hold in the
deterministic limit (V — o), too, ie.

K
Vxj=¢ + Za]-kak. (13)
k=1
Therefore,
K
§ = Z%’kék- (14)
k=1

We can now use the above results to compute the
remaining covariances. First of all we calculate E;,
where i is an independent species and j is a dependent
species:

K
Bij = (&§) = (&(Zajkfk))l

k=1

(15)

since (£;) = () = 0. Now we have an expression for Z;
in terms of known quantities, the covariances of the
independent species, which are found from solving the
Lyapunov equation. Now we calculate Z;; for the case
where i and j are both dependent species.

K K
g = (&) = (O anti) O enér)). (16)
k=1 I=1

Again, we have obtained an expression in terms of
known quantities. As before, C;; = VE;;. Using a so-
called link matrix L that connects the reduced and the
full systems, as defined by Reder [36]

1 0 I
.. C(K+1)1 * - (K+1)K
DR DR R (17)
0 1
Lo % YRk
we can write this more concisely:
C=LC*L, (18)

with C™% the K x K covariance matrix of the reduced
system.

We will illustrate the procedure by examining the
Michaelis-Menten reaction mechanism, described earlier



Pahle et al. BMC Systems Biology 2012, 6:86
http://www.biomedcentral.com/1752-0509/6/86

in Table 2. The macroscopic model of the system, writ-
ten as a set of ODEs, is as follows:

dx
dtl = k] — kzX1X4 + k33€2,
dx
dt2 = kox1x4 — (ks + k4)x2,
(19)
95 s — ks
de 4X2 5X3,

dx = (ks + ka)xa — kox1x4,
dt
where x; is the concentration of species S, x, is the
concentration of SE, x5 is the concentration of P and x,
is the concentration of E. The system contains one con-
servation relation, as the total number of enzyme mole-
cules (whether they are free, or bound in the
intermediate complex) is constant. We will write this as
x5 + x4 = 3, where 3 is a constant. Therefore, we can
eliminate x4, from the ODEs, and re-write them in a
simpler form,

dx

dtl = ky — kax1 (B — x2) + k3xa,

(ictz = kox1 (,3 — JCQ) — (k3 + k4)x2/ (20)
dx

dt3 = k4x2 — k53€3.

The steady state is calculated by setting the time deri-
vatives to zero and solving the resulting equations
simultaneously. The steady state values for the concen-
trations are shown below:

x* _ klkg +k1k4 * _ kl x* _ kl (21)
1 k2k4(ﬂ kl) X k4, 3 kS.
From Eq. (6), A and B are found to be:
—k2 (/3 — x’;_) ksz + k3 0
A= kz(ﬂ — x’;_) —ksz — (k3 + k4) 0 , (22)
0 ky —ks
ki + kox(B — x5) + kaxy  —kax((B — x3) — k3x} 0
B ( —lox{ (B — x3) — ks kox((B —x%) + (ks + ka)x;  —kax} ) - (23)
0 —kyx; ksx + kaX

Once values of the reaction parameters have been cho-
sen, numerical values of A and B may be found. The cov-
ariance matrix C can then be solved by using the Bartels-
Stewart algorithm. Table 3 shows the entries of the cov-
ariance matrix calculated using the LNA in COPASI, and
compares them with values obtained from simulation.

As just mentioned, we implemented the LNA
described above in the software COPASI [21,22].
COPASI is a widely used software for the analysis and
simulation of biochemical networks. It lets the users
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Table 3 Covariance matrix C for the Michaelis-Menten
reaction system.

S SE P E
S 145582 (145557) 6135 (61.23) 3346 (32.80) -61.35 (-61.23)
SE 61.35 (61.23) 59.09 (59.07) -436 (-443)  -59.09 (-59.07)
P 3346 (32 80) -4.36 (-443)  773.86 (773 41) 4.36 (443)
E -61.35 (-61.23)  -59.09 (-59.07) 4.36 (443 59.09 (59.07)

The convariance matrix C for the Michaelis-Menten reaction system. Reaction
parameters were chosen to be k; = 02 nMs™, k, =4 nM s, k3 =3 s, k, = 1
s, ks = 0.15 5. The system volume was 10”2 |. The covariances calculated
using the LNA was compared with those obtained from simulation (values in
brackets) using 10* time series generated using the Gillespie algorithm (Direct
Method) in COPASI

access sophisticated mathematical methods, such as
deterministic, stochastic and hybrid simulation, meta-
bolic control analysis, sensitivity analysis, optimisation
and parameter fitting, to study their models. COPASI
also allows closed-loop applications of parameter scan-
ning, sampling and optimisation with one of the other
analyses, for example sensitivity analysis or the linear
noise approximation. Models can be conveniently
imported and exported using the Systems Biology
Markup Language (SBML) [25]. COPASI is an open
source software and is freely available under the Artistic
license version 2.0 at [22].

Briefly, our LNA implementation in COPASI first
detects dependent species (conservation relations) and
carries out the corresponding reduction of the system, if
needed. Then an automatic search for a steady state of
the system is started. If a steady state has been found
the Lyapunov equation Eq. (10) for the reduced system
is solved at this steady state using the Bartels-Stewart
algorithm. Finally, the covariance matrix for the full sys-
tem is recovered as described above.

In addition, before the LNA is carried out COPASI
automatically checks the model according to a number
of criteria that preclude a direct calculation of the LNA.
For instance, if there are reversible reactions present in
the model COPASI will notify the user that all reversible
reactions have to be split into irreversible reactions
before the LNA can be applied. There exists a tool in
COPASI which can do this in an automated way for a
large class of models.

Optimisation is a general modelling tool with a wide
application to the solution of diverse problems. Essen-
tially, if something can be specified as a maximum or
minimum of some function, optimisation will be the way
to solve such a problem. In biochemical network model-
ling the most common application is parameter estima-
tion; another one is the design of genetically engineered
pathways (commonly known as metabolic engineering)
where one seeks to maximise a flux, titre or a yield of a
biotransformation [18]. Other popular applications are
those where a specific parameter set is sought that
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produces a desired behaviour of the model. This is the
basis of a method that tabulates all maxima and minima
of each parameter sensitivity towards a specific model
variable [20], as a means of approaching global sensitivity
analysis. All of these applications require that a simulator
be integrated with an optimisation algorithm in a closed
loop.

There are many different numeric algorithms for search-
ing minima (or maxima) of functions: the traditional gra-
dient-based methods, direct search that use geometric
heuristics, population-based algorithms like evolutionary
algorithms and particle swarm [27,28], and stochastic
searches like simulated annealing. Often problems are
complex in that the objective function is not convex and
can have several local minima yet one seeks one of the
global minima. For such problems it is necessary to
employ algorithms that are not trapped in local minima,
as are the gradient-based algorithms. Empirical evidence
shows that population-based and stochastic search algo-
rithms are commonly the most efficient at finding global
minima. In our experience with biochemical networks this
is usually achieved by evolutionary algorithms [19] or the
particle swarm algorithm. All of these algorithms are avail-
able in our COPASI implementation.

Additional material

Additional file 1: Model of p38 MAPK signalling. The model of p38
MAPK signalling [24] used. Diagram created with CellDesigner version 4.1
[37,38].
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