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Abstract

Background: Identification of essential proteins plays a significant role in understanding minimal requirements for
the cellular survival and development. Many computational methods have been proposed for predicting essential
proteins by using the topological features of protein-protein interaction (PPI) networks. However, most of these
methods ignored intrinsic biological meaning of proteins. Moreover, PPI data contains many false positives and
false negatives. To overcome these limitations, recently many research groups have started to focus on
identification of essential proteins by integrating PPI networks with other biological information. However, none of
their methods has widely been acknowledged.

Results: By considering the facts that essential proteins are more evolutionarily conserved than nonessential
proteins and essential proteins frequently bind each other, we propose an iteration method for predicting essential
proteins by integrating the orthology with PPI networks, named by ION. Differently from other methods, ION
identifies essential proteins depending on not only the connections between proteins but also their orthologous
properties and features of their neighbors. ION is implemented to predict essential proteins in S. cerevisiae.
Experimental results show that ION can achieve higher identification accuracy than eight other existing centrality
methods in terms of area under the curve (AUC). Moreover, ION identifies a large amount of essential proteins
which have been ignored by eight other existing centrality methods because of their low-connectivity. Many
proteins ranked in top 100 by ION are both essential and belong to the complexes with certain biological
functions. Furthermore, no matter how many reference organisms were selected, ION outperforms all eight other
existing centrality methods. While using as many as possible reference organisms can improve the performance of
ION. Additionally, ION also shows good prediction performance in E. coli K-12.

Conclusions: The accuracy of predicting essential proteins can be improved by integrating the orthology with PPI
networks.
Background
Essential proteins (also known as lethal proteins) are in-
dispensable to life as without them the lethality or infer-
tility is caused. Identification of essential proteins has
been the pursuit of biologists for two main purposes.
From the theoretical perspective, identification of essen-
tial proteins provides insight in understanding minimal
requirements for cellular survival and development. It
also plays a significant role in the emerging science of
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synthetic biology which aims to create a cell with min-
imal genome [1]. From the practical perspective, essen-
tial proteins are drug targets for new antibiotics, due to
their indispensability for bacterial cell survival [2]. More-
over, research results suggest that essential proteins (or
genes) have associations with human disease genes [3].
Studying of essential proteins also facilitates identifying
the disease genes. In biology, there are many experimen-
tal methods which can predict and discover essential
proteins, such as single gene knockouts [4], RNA inter-
ference [5] and conditional knockouts [6]. However,
these experiments are expensive and inefficient. Further-
more, they are limited to a few species. So a highly
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accurate computational method becomes a very import-
ant choice for identifying essential proteins.
Recently, many computational methods have been

proposed to identify essential proteins, based on the fea-
tures of essential proteins. One of the most important
features of essential proteins is their conservative prop-
erty. Previous studies have shown that essential proteins
evolve much slower than other proteins. They are more
evolutionarily conserved than nonessential proteins [7-9].
This is because essential genes are more likely involved
in basic cellular processes, thus the negative selection
acting on essential genes are more stringent than non-
essentials [8]. In several studies [10-12], the term ‘phyletic
retention’ is introduced to describe the homology map-
ping of a protein in other organisms by using BLAST or
reciprocal best hit [12], in place of the term ‘conservation’.
Moreover, Gustafson et al. [10] point out the phyletic re-
tention is the most predictive of essentiality. Besides the
phyletic retention trait of proteins, other types of genomic
features, such as GC content, protein length, ORF length
[10-12], cellular localization [13], and so on, are also men-
tioned for predicting essential proteins by taking the ad-
vantage of supervised machine learning-based methods.
Since these methods develop a classifier to learn traits of
essential genes in one organism and then predict those in
the other organism or in the test dataset of the same
organism, a set of essential proteins and their related
properties have to be known in prior. Consequently, the
performance of these methods closely depends on classi-
fier and the distance between training organisms and test
organisms.
Another important feature of essential proteins is their

topological properties in Protein-Protein Interaction
(PPI) networks. Proteins in cells interact with each other
and construct a PPI network. A group of researchers
focus on studying the relationships between essentialities
and topological properties of proteins in PPI networks.
Study has shown that there is a positive correlation be-
tween the lethality and the centrality in PPI networks
[14]. Thus, the most highly connected proteins are more
likely to be indispensable. As a consequence, a series of
centrality measures based on network topological fea-
tures have been used for identifying essential proteins,
such as Degree Centrality (DC) [15], Betweenness Cen-
trality (BC) [16] Closeness Centrality (CC) [17], Sub-
graph Centrality (SC) [18], Eigenvector Centrality (EC)
[19], Information Centrality (IC) [20] and Edge Cluster-
ing Coefficient Centrality (NC) [21] and so on. These
methods rank proteins in terms of their centrality in PPI
networks. Then the ranking scores of these proteins are
used to judge whether a protein is essential. The merit
of these methods is that they identify essential proteins
directly and don’t need to train a classifier according to
a set of known essential proteins.
However, there exist some limitations on these cen-
trality methods. Firstly, the available PPI data is incom-
plete and contains many false positives and false
negatives, which impacts the correctness of discovering
essential proteins. Secondly, most of these methods sel-
dom analyze other intrinsic properties of the known es-
sential proteins while using only topological properties
of networks. To overcome these limitations, recently
many research groups have focused on identification of
essential proteins by integrating PPI networks with other
biological information. Li et al. [22] construct a weighted
PPI network by taking consideration of gene annota-
tions. With the integration of network topology and
gene expression, the same group of researchers proposes
a new method called PeC [23]which increases the pre-
dictability of essential proteins in comparison with those
centrality measures only based on network topological
features. On the other hand, by using supervised ma-
chine learning-based methods, some researchers com-
bine network topological properties with genomic
features, such as cellular localization [13] to identify es-
sential proteins.
Additionally, Pereira-Leal et al. [24] have reported that

essential proteins are, on average, more frequently con-
nected to other essential proteins than nonessential pro-
teins are. By analyzing the topological properties of
interactions between essential proteins, they have
detected an almost fully connected exponential network,
which implies a strong correlation between the essential-
ity of a protein and that of its neighbors.
Based on the facts mentioned above, we propose an it-

eration method for predicting essential proteins by inte-
grating orthology with PPI network, named as ION. In
ION, the conservative property of proteins is also taken
into account. To measure the conservation of proteins,
we find orthologous proteins in other species, instead of
sequence alignment using BLAST. Orthologs are hom-
ologous proteins that are derived from a common ances-
tor. They usually have high similar amino acid
sequences and retain the same or very similar functions.
This allows us to infer biological information between
these proteins. Many studies use orthologous informa-
tion to identify evolutionary signals of PPI networks
[25,26], discover the rate of protein evolution [27], infer
protein conservation [28,29]. Recently more and more
algorithms have been used to detect orthologs, such as
IsoRank [30,31]. Furthermore, many databases and pub-
lic resources of orthologs are available now, for instance,
COG [32], ORTHOMCL [33], OMA [34], IsoBase [35]
and Inparanoid [36], which facilitate orthologs-based
researches.
In addition to orthologous properties of proteins, the

connectivity and features of their neighbors are also con-
sidered in ION. Comparing with supervised machine
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learning methods, ION combines the three features to
give each protein a ranking score using the iteration
method without knowing a set of essential proteins. Dif-
ferently from other centrality methods, ION identifies
essential proteins depending on not only the connec-
tions between proteins but also their orthologous prop-
erties and features of their neighbors. To evaluate the
performance of ION, we predict essential proteins by
using yeast data sets. Experimental results show that the
prediction performance of ION by integrating the pro-
teins’ orthologous property with their neighbor’s prop-
erty in the PPI network is better than that by using only
either property. Moreover ION can achieve better per-
formance in essentiality prediction than above eight
other existing centrality methods (DC, BC, CC, SC, EC,
IC, NC and PeC) in terms of their precision-recall (PR)
curves and jackknife curves. In top 100 ranked proteins,
ION identifies 78 essential proteins and NC only identi-
fies 55 essential proteins, which illustrates that ION
achieves 42% improvement than NC that has the best
performance among the seven existing centrality meth-
ods(DC, BC, CC, SC, EC, IC and NC). Compared with
PeC which identifies essential proteins by integrating
gene expression data with PPI networks, ION also out-
performs it. Especially, with more candidate proteins
selected, the advantage of ION in the prediction of es-
sential proteins becomes increasingly obvious. Moreover,
compared with PeC, NC and DC, more proteins in top
100 ranked by ION belong to the complexes with certain
biological functions. In order to investigate whether the
amount of reference organisms have influence on the
performance of ION, some experiments are carried out.
The experimental results show that using all available
reference organisms can improve the performance of
ION. At the last part of the paper, we compare the pre-
diction performance of ION with that of other seven
centrality methods (DC, BC, CC, SC, EC, IC and NC),
based on proteins from E. coli K-12 (E. coli). Results
confirm that ION gets better performance on prediction
of essential proteins in E. coli than the seven centrality
methods.

Methods
Proteins in cells are not independent. They interact with
each other and construct PPI networks. A PPI network
can be represented by an undirected graph G=(V, E),
where V is the set of nodes (proteins) and E is the set of
edges (binary interactions). Many prediction methods se-
lect essential proteins in a PPI network by ranking them
according to some criteria. The outcome is an ordered
list of proteins, such that the proteins near the top of
the list are most likely to be essential.
ION is developed to compute the ranking scores of

proteins. It initializes the ranking scores of proteins with
their orthologous scores. For sake of modularity of es-
sential proteins, the edges connecting proteins are asso-
ciated with weights. Finally, the ranking scores are
computed by considering the orthologous scores, the
neighbors’ features and the connections of proteins.
Since the ranking scores of proteins relate to the scores
of their neighbors, an iteration process is proposed.

Experimental data and analysis
The computational analysis is performed using the PPI
network from S. cerevisiae (Bakers’ Yeast), because both
its PPI and gene essentiality data are the most complete
and reliable among various species. The PPI data of S. cer-
evisiae is downloaded from DIP database [37] updated to
Oct.10, 2010, without self-interactions and repeated inter-
actions. There are total of 5093 proteins and 24743 inter-
actions. The list of 1285 essential proteins is integrated
from the following databases: MIPS [38], SGD [39], DEG
[40], and SGDP [41]. Among the 1285 essential proteins,
1167 essential proteins present in the PPI network. In our
study, these 1167 proteins are considered as essential pro-
teins while other 3926(=5093-1167) proteins are nones-
sential proteins. Information on orthologous proteins is
taken from Version 7 of the InParanoid database (an
ortholog database) which contains a collection of pairwise
comparisons between 100 whole genomes (99 eukaryotes
and 1 prokaryote) constructed by the INPARANIOD pro-
gram. In our study, only the proteins in seed orthologous
sequence pairs of each cluster generated by INPARANIOD
are chosen as orthologous proteins, because they have the
best match between two organisms and stand for the high
homology. The UNIPORT flat file is used to match DIP en-
tries with the Ensembl Gene IDs used by InParanoid to
index yeast genes.
In order to get the relationship between essentiality

and orthologous properties of proteins, we check the
yeast proteins if they have orthologs in 99 reference
organisms ranging from H.sapiens to E. coli. As a result,
4511 proteins (present in the yeast PPI network) are la-
beled to have orthologs in at least one of 99 reference
organisms. Furthermore, 1118 out of 1167 known essen-
tial proteins are included in these 4511 proteins. It
means that 96% (1118/1167) of essential proteins in the
PPI network are evolutionarily conserved. For further
analysis, Pep is used to describe the percentage of essen-
tial proteins out of all proteins that occur in orthologous
seed pairs not less than number ep of times, here ep
ranges from 1 to 99. Figure 1 outlines the data.
As Figure 1 indicated, with the increase of ep the value

of Pep rises accordingly. For instance, when proteins have
orthologs in at least 80 organisms, the percentage of es-
sential proteins in them is about 51%. Note that one pro-
tein having orthologs in all 99 organisms is an essential
protein. However, from the proteins that don’t have
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Figure 1 Cumulative percentage of essential proteins in orthologs sets. Figure1 shows the percentages of essential proteins out of the
proteins that have orthologs in 99 reference organisms not less than number ep of times. It illustrates the relationship between the essentiality
properties of proteins and the number of orthologs that they have in reference organisms.
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orthologs in any one of 99 organisms, 22 percent are es-
sential proteins, near to random probability [42]. Conse-
quently, we can conclude that the more frequently the
yeast proteins appear in orthologous seed pairs with re-
spect to reference organisms, the more possible they are
essential. This just confirms that essential proteins are rela-
tively conserved. Therefore, in this study we will explore
the orthologous properties to predict essential proteins.

Orthologous score
The first step of ION is to assign an orthologous score to
each protein in a PPI network. To formally define the
orthologous score, the following variables are introduced.
Given a PPI network represented as a graph G=(V, E),

N denotes the number of node in set V.
Let S be the set of reference organisms which is used

to get orthologous information of node V. s denotes its
element. |S| denotes the number of its elements.
Let Xs be a subset of node V. Its element has orthologs

in organism s.
Let o(i) be the number of times that node vi has ortho-

logs in reference organisms, where vi2V (i=1,. . .,N).

o ið Þ ¼
X
m2S

Ti where Ti ¼ 1 if vi 2 Xm

0 otherwise

�

Then the orthologous score d(i) of node vi is defined as

d ið Þ ¼ oðiÞ
MaxðoðiÞÞ

i2N

ð1Þ

According to the definition, for proteins that have
orthologs in all organisms included in set S, their
orthologous scores are 1. On the contrary, for proteins
that don’t have orthologs in any one of organisms in set
S, their orthologous scores are 0.
For proteins in yeast PPI network, following steps are

taken to assign orthologous scores to them.

Assignment of orthologous score
Step1. Let set S include 99 organisms ranging from
H.sapiens to E. coli.
Step2. Retrieve a list of set Xs from the InParanoid
database with respect to species s, where s 2 S.
Step4. For eachvi 2 V , compute o(i).
Step5. For eachvi 2 V , compute d(i).

Weighting edges
Although it is believed that an essential protein tends to
have a high correlation with its connectivity, there are
many nonessential proteins having high connections
while a certain ratio of essential proteins having low
connections in reality. Hart et al. [43] indicated that es-
sential proteins strongly cluster together. The essentiality
is the product of protein complexes rather than individ-
ual proteins. This indicates the modular nature of essen-
tial proteins. The connections between the nodes in a
complex are denser than connections with the rest in
networks. To describe how close two proteins are, the
edge-clustering coefficient is introduced. It is widely
used to identify the modularity of networks [44,45]. The
edges with the higher clustering coefficient are more
probably involved in the community structure in net-
works. Therefore, a node has a high probability to be
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essential if it possesses more adjacent edges with a
higher edge-clustering coefficient. Those proteins with a
high degree are nonessential proteins because the edge-
clustering coefficients of their adjacent edges are rela-
tively low. By contrast, those proteins with the low con-
nectivity are essential because the edge-clustering
coefficients of their adjacent edges are relatively high.
Based on the edge-clustering coefficient, Wang et al. [21]
propose method NC to predict essential proteins. This
method gives proteins scores according to the sum of
edge-clustering coefficients of their adjacent edges and
outperforms other six centrality measures (DC, BC, CC,
SC, EC and IC) in predicting essential proteins.
In this work, we associate a weight with each edge in

terms of its edge-clustering coefficient. It is defined as
the number of triangles to which a given edge belongs,
divided by the number of triangles that might poten-
tially include it. Mathematically it can be expressed as
follows:

ECC i; jð Þ ¼ zi;j=min ki � 1; kj � 1
� � ð2Þ

where Zi, j is the number of triangles built on edge(vi,vj).
ki and kj are the degrees of nodes vi and vj, respectively.
min(ki-1, kj-1) is actually the maximal possible number of
triangles that might potentially include the edge (vi,vj). In a
weighted network, the correlations between proteins
and their neighbors are thus not identical. Furthermore,
the essentiality of a protein tends to depend on that of
its neighbors if the edges connecting the protein and its
neighbors have high edge-clustering coefficients. Note
that differently from NC, ION predicts essential pro-
teins taking into account not only the connections be-
tween proteins but also the orthologous properties of
proteins and the features of their neighbors.

Computation of ranking scores
After computing the edge-clustering coefficient for each
edge, an adjacency matrix is constructed to represent
the connections between proteins. Its element is the
normalized edgeclustering coefficient of each edge.
Let H be an N×N adjacency matrix of the graph G=(V, E).

Its element h(i, j) is defined as follows.

h i; jð Þ ¼
Normi ECC i; jð Þð Þ ¼ ECC i; jð ÞX

w2Ne ið Þ
ECC i;wð Þ if

X
w2Ne ið Þ

ECC i;wð Þ > 0

0 otherwise

8>><
>>:

ð3Þ
where Ne(i) is the set of neighbors of node vi and ECC(i, j)
denotes the edge-clustering coefficient of edge(vi,vj). There-

fore, for each row i of matrix H, either
X

j2Ne ið Þ
h i; jð Þ ¼ 1or

X
j2Ne ið Þ

h i; jð Þ ¼ 0.
Let pr(i) be the ranking score of node vi. Define the

neighbor-induced score as
X

j2Ne ið Þ
h i; jð Þpr jð Þ . Then for

each protein in the PPI network, its ranking score can
be computed as follows.

pr ið Þ ¼ 1� αð Þd ið Þ þ α
X

j2Ne ið Þ
h i; jð Þpr jð Þ ð4Þ

From the above definition, the ranking score of a pro-
tein is viewed as a linear combination of its orthologous
property score and the neighbor-induced score. The par-
ameter α (0≤α<1) is used to adjust the weight of two
scores in the ranking score. As the value of α is equal to
0, the ranking score only depends on the orthologous
properties of proteins. If the value of α is between 0 and
1, ranking scores are computed based on both the ortho-
logous properties of proteins and their neighbor’s fea-
tures. In Equation (4), for a node i, pr(j) presents the
score of its neighbor j. Value in element h(i, j) depends
on the edge-clustering coefficient of edge(vi, vj). The
ranking score of node i has correlation with all of its
neighbors which are not treated equally. The correla-
tions between node i and its neighbors depend on the
values of elements in matrix H.
It can be seen that Equation (4) is a coupled linear sys-

tem in unknown pr(i). As the number of unknowns is
very large, it is impossible to analytically solve this sys-
tem. To numerically solve Equation (4), we rewrite
Equation (4) in the matrix–vector format as follows

pr ¼ 1� αð Þd þ aH � pr ð5Þ
where pr=(pr(1),. . ..pr(N)) and d=(d (1),. . ..,d(N)). In this
study, we adopt the Jacobi iterative procedure to numer-
ically solve Equation (5) as follows

prtþ1 ¼ 1� αð Þd þ aH � prt ð6Þ
t (=0,1,2,. . .) represents the iteration steps.

Algorithm
As described in ION algorithm below, based on input data
each protein is initialized with an orthologous score in
terms of its orthologous property. Then, for sake of modu-
larity of essential proteins, the edge-clustering coefficient
of each edge is computed. After that, the ranking scores of
proteins are calculated by taking consideration of their
orthologous scores and their neighbor-induced scores as in
Equation (4). A dumping factor α is used to adjust the con-
tribution of their orthologous scores and their neighbor-
induced scores. The algorithm is convergent. The number
of iteration depends on parameters α and E. The proof of
convergence and the discussion of the effect of related
parameters on the algorithm convergence can be found in
Additional file 1.



Table 1 Effect of parameter α on the performance of ION

K 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

1% 0.75 0.84 0.78 0.78 0.78 0.80 0.80 0.78 0.80 0.76 0.69

5% 0.65 0.70 0.72 0.73 0.73 0.74 0.74 0.74 0.73 0.71 0.67

10% 0.62 0.66 0.65 0.66 0.65 0.65 0.64 0.64 0.63 0.61 0.61

15% 0.56 0.58 0.59 0.58 0.58 0.58 0.58 0.58 0.57 0.57 0.54

20% 0.51 0.52 0.52 0.53 0.55 0.54 0.54 0.53 0.52 0.51 0.48

25% 0.47 0.47 0.48 0.49 0.50 0.50 0.48 0.48 0.48 0.46 0.43

The table shows the effect of parameter α on the performance of ION. Column
‘K’ represents top K percent of ranked proteins. Column 2 to 11 represents
prediction accuracy of ION in each top percentage of ranked proteins by
setting different values of α, ranging from 0 to 0.99.
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ION algorithm
Input: A PPI network represented as Graph G=(V, E),

orthologs data sets between Yeast and 99 other
organisms (ranging from H.sapiens to E. coli),
stopping error E, parameter α, parameter K.

Output: Top K percent of proteins sorted by pr in
descending order

Step1: Calculate each protein orthologous score by
Equation (1)
Step2: Compute the edge-clustering coefficient of each
edge by Equation (2)
Step3: Construct matrix H by Equation (3)
Step4: Initialize pr with pr0=d, let t=0
Step5: Compute prt+1 by Equation (6), let t=t+1
Step6: Repeat step 5 until

prt � prt�1
�� ��

1≤E

Step7: Sort proteins by the converged value of pr in the
descending order.
Step8: Output top K percent of sorted proteins.
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Figure 2 PR curves of ION when α is set as 0, 0.5 and 0.99. In
Results and discussion
In order to evaluate the essentiality of proteins in PPI
networks, they are ranked in the descending order based
on their ranking scores computed by ION in Section 2,5
as well as eight other existing centrality methods (DC,
BC, CC, SC, EC, IC, NC and PeC). After that, top 1%,
5%, 10%, 15%, 20% and 25% of the ranked proteins are
selected as candidates for essential proteins. According
to the list of known essential proteins, the number of
true essential proteins is used to judge the performance
of each method. This evaluation measure has been
widely used in earlier research procedures [21-23,42,].
In this section, we first discuss the effect of parameter-

αon the performance of ION. Then we compare ION
with eight other existing centrality methods. After that,
the results of ION and eight other existing centrality
methods are analyzed in details. Furthermore, we discuss
whether the number of reference organisms influences
on the prediction performance of ION. Finally, the pre-
diction performance of ION is tested on a protein data-
set of E. coli.
ION, the ranking score of a protein which stands for its essentiality in
PPI network is viewed as a linear combination of its orthologous
score and the neighbor-induced score. The parameter α is used to
adjust the weight of two score in the ranking score. As the value of
α is equal to 0, the ranking scores only depends on the orthologous
properties of proteins. As the value of α is equal to 0.99, the ranking
score almost only depends the neighbor’s information. When α is
set as other values ranging from 0.1 to 0.9, such as 0.5, the
prediction is implemented by integrating the proteins’ orthologous
property with their neighbor’s property in the PPI network. The
Figure shows precision-recall (PR) curves of ION when α is set as 0,
0.5 and 0.99, respectively.
Effects of parameter α
In ION, the ranking scores of proteins are changed with
different values of α. To study the effect of parameter α
on performance of ION, we evaluate the prediction ac-
curacy by setting different values of α, ranging from 0 to
0.99. The detailed results are listed in Table 1. Here, the
parameter K is from top 1% to top 25%. The prediction
accuracy is measured in terms of the percentage of true
essential proteins in candidates. Moreover, to display the
overall performance of ION when α is set as 0, 0.5 and
0.99, we plot their PR curves in Figure 2.
Both Table 1 and Figure 2 shows that for α=0 the pre-

diction only considers orthologous properties of pro-
teins. Its results are comparable with those for α=0.99,
where the prediction almost only considers the neigh-
bor’s information. Furthermore, the prediction perform-
ance when α is either 0 or 0.99 is poorer than when α is
set as other values ranging from 0.1 to 0.9, which means
that the prediction performance by integrating the pro-
teins’ orthologous property with their neighbor’s prop-
erty in the PPI network is better than that by using only
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either property. With each top percentage (1%, 5%, 10%,
15%, 20%, or 25%), the value of parameter α ranging
from 0.1 to 0.9 has some effects on the prediction per-
formance of ION but it is not crucial. Furthermore their
medium values are 0.784, 0.729, 0.649, 0.581, 0.530 and
0.483, respectively, which are near to the corresponding
prediction accuracy when α is 0.5. As a result, we think
the optimum α value is 0.5.

Comparison with eight centrality methods
To evaluate the performance of ION, we compare the
number of essential proteins identified by ION (α=0.5) and
eight other existing centrality methods, when selecting vari-
ous top percentages of ranked proteins as candidates for es-
sential proteins. Figure 3 shows the comparison of results.
As illustrated in Figure 3, the prediction performance

of ION has a significant improvement. By selecting top
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network data, ION also outperforms it. Especially, with
more candidate proteins selected, the advantage of ION
in the prediction of essential proteins becomes increas-
ingly obvious.

Validated by precision-recall curves
Moreover, we also employ precision-recall (PR) curves
and the corresponding areas under the PR curve (AUC)
values to evaluate the overall performance of each
method. At the beginning, the proteins in PPI networks
are ranked in the descending order according to the
ranking scores computed by each method. After that,
the top K proteins are selected as candidate essential
proteins (positive data set), then the remaining proteins
in PPI networks are regarded as candidate nonessential
proteins (negative data set). The cut-off values of K
range from 1 to 5093. With different values of K
selected, the values of precision and recall are com-
puted for each method, respectively. Then, the values
of precision and recall are plotted in PR curves with
different cut-off values. The experimental results are
illustrated in Figure 4. Figure 4 (a) shows the PR curves
of ION, PeC, NC and DC. Figure 4 (b) shows the PR
curves of ION and two global centrality methods: BC
and CC, and other tree centrality methods: IC, EC, SC.
Note that the PR curves of EC and SC are undistin-
guishable in Figure 4(b). From Figure 4, we can see that
the PR of ION is clearly above those of all other
methods.
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Validated by jackknife methodology
For further comparison, the jackknife methodology [46] is
used to test the prediction performance of ION and the
eight other existing centrality methods. The experimental
results are described in Figure 5, where the x-axis from left
to right represents the proteins in PPI networks ranked in
the descending order according to their ranking scores
computed by corresponding methods while the Y-axis is
the cumulative count of essential proteins with respect to
ranked proteins moving left to right. The areas under the
curve for ION and the eight other existing centrality
methods are used to compare their prediction perform-
ance. In addition, the 10 random assortments are also
plotted for comparison. Figure 5 (a) shows the comparison
result of ION, PeC, NC, DC. From this figure, ION has
consistently excelled PeC which identifies essential pro-
teins by integrating gene expression data with PPI data.
Figure 5 (b) shows the comparison result of ION and two
global centrality methods: BC and CC. Figure 5 (c) shows
the comparison result of ION and other three centrality
methods: IC, EC, SC. Compared with the seven centrality
methods, ION also outperforms them. Moreover, all of the
nine methods achieve better prediction performance than
the randomized sorting.

Analysis of the differences between ION and the eight
centrality methods
To understand why and how ION gets better results
than the eight other existing centrality methods, firstly
(b)
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Figure 5 Jackknife curves of ION and eight other existing centrality methods. The x-axis represents the proteins in PPI network ranked by
ION and eight other existing centrality methods, ranked from left to right as strongest to weakest prediction of essentiality. The Y-axis is the
cumulative count of essential proteins encountered moving left to right through the ranked. The areas under the curve for ION and the eight
other existing centrality methods are used to compare their prediction performance. In addition, the 10 random assortments are also plotted for
comparison. (a) shows the comparison results of ION, PeC, NC and DC. (b) shows the comparison results of ION and two global centrality
methods: BC and CC. (c) shows the comparison results of ION and other three centrality methods: IC, EC and SC.

Table 2 Number of essential proteins with low-
connectivity or high-connectivity identified by ION and
eight other existing centrality methods

K DC IC EC SC BC CC NC PeC ION

deg<=10 1% 0 0 0 0 0 0 0 0 17

5% 0 0 0 0 0 0 3 40 66

10% 0 0 0 0 1 0 27 84 108

15% 0 0 8 8 18 7 66 117 146

20% 0 0 28 28 41 20 101 153 188

25% 11 20 73 73 76 55 156 192 253

deg > 10 1% 22 24 24 24 24 24 32 39 24

5% 101 102 96 96 95 104 156 133 122

10% 207 210 195 195 181 193 255 209 223

15% 320 316 271 271 253 277 307 255 299

20% 413 406 349 349 320 344 363 285 359

25% 491 484 394 394 357 393 388 302 381

The top part and the bottom part of this table are the number of essential
proteins with low-connectivity (degree < =10) and high-connectivity (degree >
10) identified by different methods, when selecting top K percent of proteins
(top 1%, 5%, 10%, 15%, 20%, 25%).
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we compare them in identifying essential proteins with
low-connectivity (degrees less than 10). A significantly
proportion (76% on average) of proteins in the yeast PPI
datasets are of low-connectivity. 58% of essential pro-
teins in known essential proteins list also have low con-
nectivity in the PPI networks. However, the eight other
existing centrality methods are connectivity-based, which
results in proteins with low-connectivity are largely missed
out. ION implements the prediction of proteins essential-
ity depending on orthologous properties of proteins and
the features of their neighbors, which can compensate the
shortcomings of centrality methods.
As indicated in the top part of Table 2, for each top

percentage of proteins, ION finds more essential pro-
teins with low-connectivity than eight other existing
centrality methods. From Table 2, the six centrality
methods (DC, IC, EC, SC, BC and CC) can barely find
essential proteins with low-connectivity in up to top
10% of proteins while ION discovers many of these.
With top 25% of proteins selected, the number of essen-
tial proteins with low-connectivity found by ION is al-
most five times of the average number found by the six
centrality methods. Although NC and PeC find some es-
sential proteins with low-connectivity, ION is able to
find essential proteins with low-connectivity about 60%
and 30% more than NC and PeC, respectively, as top
25% of proteins are selected. The bottom part of Table 2
describes that ION also finds a large number of essential
proteins with high connectivity (degree >10). Up to top
10% of proteins, ION detects more essential proteins
with high-connectivity than the six centrality methods
(DC, IC, EC, SC, BC and CC). In top 25% of proteins,
ION still outperforms the methods BC in finding essential
proteins with high-connectivity, while that performance of
SC, EC, CC and NC only slightly better than ION. Com-
pared with PeC, with more candidate proteins selected,
the performance of ION in identifying essential proteins
with high-connectivity surpasses that of PeC. In summary,
ION achieves comparable performance in finding essential
proteins with high-connectivity with some of the eight
other existing centrality methods. However, ION can also
discover a large number of essential proteins with low-
connectivity ignored by the eight other existing centrality
methods. This can explain the great performance of ION
in the prediction of essential proteins.



Table 3 Overlap and different proteins identified by ION and eight other existing centrality methods

Centrality measures (Mi) |ION\Mi| |Mi− ION| nonessential proteins
in {Mi− ION}

non-essential proteins
percentage in {Mi− ION}
with low ION value

Degree Centrality (DC) 1 99 54 59.26%

Betweenness Centrality (BC) 1 99 56 57.14%

Closeness Centrality (CC) 0 100 59 55.93%

Subgraph Centrality(SC) 1 99 63 52.38%

Eigenvector Centrality(EC) 1 99 63 52.38%

Information Centrality(IC) 0 100 56 55.36%

Edge Clustering Coefficient Centrality (NC) 14 86 42 73.81%

PCC and ECC centrality(PeC) 27 73 24 45.83%

This table shows the common and the difference between ION and the eight other existing centrality methods (DC, BC, CC, SC, EC, IC, NC and PeC) when
predicting top 100 proteins. |ION \ Mi | denotes the number of proteins identified by both ION and one of the eight other existing centrality methods Mi.
{Mi− ION} represents the set of proteins detected by Mi while ignored by ION. |Mi− ION| is the number of proteins in set {Mi− ION}. The last column describes the
percentages of different nonessential proteins with low ION scores (less than 0.55) in top 100 proteins.
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Figure 6 Percentages of different essential proteins resulted by
ION and eight other existing centrality methods. Different
proteins between two prediction methods are the proteins
predicted by one method while neglected by the other method.
The figure shows the percentages of the essential proteins in the
different proteins between ION and eight other existing centrality
methods (DC, BC, CC, SC, EC, IC, NC and PeC), respectively.
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Secondly, we compare proteins ranked in top 100 by
each method (DC, IC, EC, SC, BC, CC, NC, PeC and
ION) to view how many overlap and different proteins
are identified by these methods. In Table 3, |ION \ Mi |
denotes the number of proteins detected by both ION
and one of the eight other existing centrality methods
Mi. {Mi–ION} represents the set of proteins detected by
Mi ignored by ION. |Mi–ION| is the number of proteins
in set {Mi–ION} .As described in Table 3, there exist
huge differences between the proteins identified by ION
and Mi. Taking DC, IC, EC, SC, BC and CC for example,
there are almost no common proteins identified by both
ION and them. For NC and PeC, there are only few pro-
teins identified by both ION and them. These results
show that ION is a special method compared with the
other methods. For further analysis, we compare the
percentages of different essential proteins resulted by
ION and by the eight other existing centrality methods.
As shown in Figure 6, ION can detect more different es-
sential proteins than these methods. Compared with
PeC, there are 73 different proteins detected by ION. 53
out 73(about 73%) of these proteins are essential. By
contrast, there are only 54% of different proteins
detected by PeC while ignored by ION are essential pro-
teins. In fact, for the top 100 of proteins, ION can detect
52 different essential proteins which can’t be detected by
anyone of the eight other existing centrality methods
(see Additional file 2). Additionally, we also find that
more than 50% of nonessential proteins in top 100
ranked by DC, IC, EC, SC, BC and CC possess low rank-
ing scores (less than 0.55) computed by ION. As we can
see from Table 3, about 70% of nonessential proteins in
the result of NC have low ION ranking scores. More
over, among the top 100 of proteins predicted by PeC,
there also exist about 46% of nonessential proteins with
low ION ranking scores. This means that ION can exclude
many nonessential proteins which can’t be ignored by the
other methods. Since ION can not only detect more essen-
tial proteins ignored by the eight other existing centrality
methods but also exclude a large number of nonessential
proteins which can’t be ignored by these methods, it is not
surprise that ION has high performance in the prediction
of essential proteins.

Modularity, orthology and essentiality of the proteins
ranked by ION
Since ION is designed by considering the orthology,
connectivity, modularity and neighbor dependency of
proteins, the proteins with high ranking scores com-
puted by ION should be conserved, essential and con-
nect with each other. To verify this hypothesis, we select



Figure 7 Proteins ranked in top 100 by ION, PeC, NC and DC and the complexes they belong to. The figure shows the proteins ranked in
top 100 by ION, PeC, NC and DC, and the networks constructed by these proteins. The proteins included in a red square belong to a common
complex. The yellow nodes denote true essential proteins. In (a), the nodes with the shape of round rectangle represent the different proteins
detected by ION while ignored by all of the eight other existing centrality methods.
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a list of proteins ranked in top 100 by ION, NC, PeC
and DC, respectively. According to the known 408
manually annotated complexes[47], proteins in each list
are annotated with the index of complexes which they
belong to. The interaction networks of these proteins
Table 4 Information of proteins ranked in top 100 by ION, Pe

method Number of essential
proteins

Number of protein
belonging to comp

ION 78 72

PeC 74 57

NC 55 59

DC 46 53

This table shows the statistic information of proteins ranked in top 100 by ION, PeC
essential proteins in the proteins ranked in top 100 by corresponding methods. Col
ranked in top 100 by corresponding methods belong to a least one known comple
orthologs that the proteins ranked in top 100 by corresponding methods have in re
presents the average interaction rate between the sub-complexes including these p
are visualized by using the software CYTOSCAPE [48].
Figure 7 shows these networks. The proteins included in
a red square belong to a common complex. The yellow
nodes denote true essential proteins. Table 4 lists the
statistic information of these proteins. More detailed
C, NC and DC

s
lex

Average number
of orthologs

average interaction rate
with known complex

93 0.39

78 0.37

65 0.32

62 0.33

, NC and DC. Column “Number of essential proteins” presents the number of
umn “Number of proteins belonging to complex” presents how many proteins
x. Column “Average number of orthologs” presents the average number of
ference organisms. Column “average interaction rate with known complex”
roteins and known complexes.



Figure 8 (See legend on next page.)
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(See figure on previous page.)
Figure 8 Number of yeast orthologs in each reference organism and percentage of essential proteins in each ortholog set. The figure
lists 99 reference organisms. These organisms are ordered by their phylum and the decreasing percentage of essential proteins out of their yeast
orthologs (red: vertebrate, blue: invertebrate, yellow: plant, green: fungi, purple: protist, prey: prokaryote). The number of yeast proteins which
have orthologs in each reference organism is shown in the left part of the figure. The percentage of essential proteins in each ortholog set is
shown in the right part of the figure.

Table 5 Number of essential proteins identified by ION
with respect to different number of reference organisms

Results 1% 5% 10% 15% 20% 25%

ION_10 39 192 335 442 534 601

ION_20 42 195 344 447 540 627

ION_40 42 197 338 443 549 627

ION_60 40 190 337 448 543 631

ION_80 40 182 331 442 542 630

ION_90 41 185 331 445 544 637

ION 41 188 331 445 547 634

Row ‘ION_10’, ‘ION_20’, ‘ION_40’, ‘ION_60’, ‘ION_80’, ‘ION_90’ and ‘ION’ show the
prediction results of ION in each percentage of proteins when selecting 10, 20,
40, 60, 80, 90 and 99 organisms as reference, respectively.
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information about these proteins and the corresponding
complexes is listed in the Additional file 3. From Figure 7
and Table 4, compared with PeC, NC and DC,we can
clearly see that more true essential proteins are detected
by ION, but also more of these proteins ranked in top
100 by ION belong to the complexes with certain bio-
logical functions. The average count that the proteins
ranked in top 100 by ION have orthologs in reference
organisms is about 93, 78 out of 100 these proteins are
essential and 72 out of 100 these proteins belong to the
complexes. By contrast, the average count that the pro-
teins ranked in top 100 by PeC has orthologs in refer-
ence organisms is about 78, 74 out of 100 these proteins
are essential and 57 out of 100 these proteins belong to
the complexes. Additionally, as indicated in Table 4, the
sub-complexes containing the proteins ranked in top
100 by ION have higher interaction rate with known
complexes than that containing the proteins ranked by
other methods. For example, there 18 proteins ranked in
top 100 by ION belong to complex 370. The complex
370 is 19/22 S regulator and its GO term is GO:
0008541 with function of proteasome regulatory particle,
lid subcomplex. For PeC and NC, there are only 14 pro-
teins and 13 proteins in top 100 proteins ranked by
them belong to the complex 370, respectively.

Discussions on the orthologous score
We assign orthologous scores to yeast proteins based on
the counts they have orthologs in 99 organisms. The
orthologous data can be conveniently obtained from the
Inparanoid database. How about the performance of
ION if we select a small number of reference organisms?
Hence, according to known essential protein data in
yeast, we first calculate how many proteins have ortho-
logs in each of the 99 reference organisms and then
analyze the percentages of essential proteins in each
ortholog set. With respect to NCBI Taxonomy common
tree, the 99 organisms are divided into six groups. They
include 19 vertebrates, 35 invertebrates, 7 plants, 19 fun-
gus, 18 protists and 1 prokaryote (E. coli). Figure 8 illus-
trates the detailed information.
The average percentage of essential proteins in each

group is vertebrate: 37.69%, invertebrate: 39.24%, plant:
38.36%, fungi: 32.57%, protist: 44.43% and prokaryote:
20.10%. For all organisms except E. coli, the percentage
of essential protein is higher than random probability.
This is in agreement with the finding that essential pro-
teins are more conserved than nonessential proteins. It
is not surprise that the percentage of essential proteins
in the proteins that have orthologs in E. coli is the lowest
because of distant relation between yeast and E. coli. An-
other interesting discovery is that even if there are a
small number of proteins having orthologs in protistan
organisms, the ratio of essential proteins to those pro-
teins is high. It may be the protists are old eukaryotic
organisms. By contrast, although a large number of pro-
teins have orthologs in fungal organisms which have
close evolutionary distances with yeast, they generate a
relatively low ratio of essential proteins. In spite of the
big difference among organisms in group vertebrate, in-
vertebrate and plant, they generate general similar per-
centage of essential proteins. All of these findings can
provide us some helpful information about selecting ap-
propriate reference organisms.
To check the influence of referent organisms on pre-

diction performance, according to Taxonomy common
tree, we assign orthologous scores to proteins by select-
ing 10, 20, 40, 60, 80, 90 organisms as reference (see
Additional file 4), respectively. The prediction results are
correspondingly named by ION_10, ION_20, ION_40,
ION_60, ION_80 and ION_90. Table 5 shows the num-
ber of true essential proteins in top 1%, 5%, 10%, 15%,
20% and 25% of these results. Furthermore, these results
are also validated by PR curve and jackknife curve,
which are illustrated in Figure 9. It can be seen from
Table 5 and Figure 9 that no matter how many organ-
isms are selected as references, the prediction accuracy
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Figure 9 Jackknife curves and PR curves of NC, PeC and different ION results. The prediction performance of ION with respect to different
number of reference organisms are validated by the jackknife method and the PR method, respectively. All of those results are also compared
with both NC and PeC by using the jackknife method and the PR method.
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of ION surpasses that of both NC and PeC. In general,
the more reference organisms are used, the better pre-
diction performance of ION can be achieved. However,
when selecting more than 10 organisms as references,
the difference of these results is not obvious.
Table 6 Number of essential proteins identified by ION
and seven other existing centrality methods based on
protein data from E. coli

K DC IC EC SC BC CC NC ION

1%(27) 8 7 2 2 9 7 3 8

5%(136) 38 36 34 34 40 36 35 51

10%(273) 69 68 60 60 65 67 60 85

15%(409) 94 95 93 93 84 92 82 104

20%(545) 116 112 110 110 103 113 94 122

25%(682) 129 127 124 124 120 130 118 153

This table shows the comparison of the number of essential proteins identified
by ION and seven other existing centrality methods (DC, BC, CC, SC, EC, IC and
NC) based on protein data from E. coli. Since the total number of ranked
proteins in E. coli is 2727. The number of proteins ranked in top 1% is about
27(=2727*1%). The digits in brackets denote the number of proteins ranked in
each top percentage.
Prediction performance of ION based on protein data
from E. coli
To further evaluate the performance of ION, we perform
the prediction of essential proteins in E. coli. The PPI
data of E. coli is also downloaded from DIP database
updated to Oct.10, 2010. There are total of 2727 pro-
teins and 11803 interactions. The self-interactions and
repeated interactions are ignored. The list of the essen-
tial proteins of E. coli comes from database DEG, which
contains 296 essential genes. 291 out of 296 essential
genes are mapped to 254 distinct proteins which present
in the PPI data of E. coli. In our study, these 254 pro-
teins are considered as essential proteins of E. coli while
other 2473(=2727–254) proteins are nonessential pro-
teins of E. coli. The orthologous information of E. coli
proteins is retrieved from InParanoid, by checking the
counts that E. coli proteins have orthologs in the 99
reference organisms. Therefore, 1422 out of 2727 pro-
teins have orthologs in at least one of reference organ-
isms. 216 out of 254 essential proteins are included in
these 1422 proteins.
The ranking scores of E. coli proteins are calculated by

using of ION (α=0.5) and the seven other existing
centrality methods (DC, BC, CC, SC, EC, IC and NC),
respectively. The number of essential proteins in top 1%,
5%, 10%, 15%, 20% and 25% of proteins ranked by these
methods are listed in Table 6. The PR curves and jack-
knife curves of each method are illustrated in Figures 10
and 11. We do not compare ION with PeC because it
requires gene express data of E. coli. All of these experi-
mental result shows that the performance of ION in pre-
dicting essential proteins is better than that of the seven
other existing centrality methods. Specially, as selecting
top 10% and 25% ranked proteins, ION achieves 33%
and 23% improvement than the average result of the
seven methods, respectively.
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Figure 10 PR curves of ION and seven other centrality methods based on protein data from E. coli. The prediction performance of ION
and seven other existing centrality methods (DC, BC, CC, SC, EC, IC and NC) based on protein data from E. coli are validated by the PR method.
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Conclusions
Essential proteins play a key role in the life activities of
cells. In this work we propose ION, an iteration method
for predicting essential proteins based on orthology and
PPI networks. In contrast to supervised machine learn-
ing methods, this method requires no prior knowledge
of some reported essential proteins. Differently from
centrality methods, ION identifies essential proteins de-
pending on not only the connections between proteins
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Figure 11 Jackknife curves of ION and seven other centrality method
ION and seven other existing centrality methods (DC, BC, CC, SC, EC, IC and NC
but also their orthologous properties and features of
their neighbors, which can overcome the limitation of
the unreliability of PPI network data. Based on yeast PPI
data, orthologs data and the data of known essential pro-
teins, we firstly analyze the correlation between the es-
sentiality of proteins and the counts that the proteins
have orthologs in reference organisms. We further study
the probability distribution of essential proteins in
orthologs with respect to each available organism. From
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statistic data, we confirm the evolutionary conservation
of essential proteins. In order to evaluate the perform-
ance of ION, we carry out experiments on yeast proteins
data and assign proteins orthologous score based on 99
organisms. Experimental results show that (1) ION per-
forms much better prediction of essential proteins than
the eight other existing centrality methods. (2) ION is
able to identify many essential proteins with low-
connectivity ignored by the eight other existing central-
ity methods. (3) In top 100 of ranked proteins, ION can
not only detect more essential proteins ignored by the
eight other existing centrality methods but also exclude
a large number of nonessential proteins which can’t be
ignored by these methods. (4) More proteins in top 100
ranked by ION are essential proteins but also belong the
complexes with certain biological functions. (5) In order
to predict essential proteins accurately, we should select
as many as possible reference organisms. (6) Considering
the effect of α on ION, the smaller the value of α, the
faster ION can converge, yet the lower the prediction ac-
curacy of ION is. From experiments we suggest the
optimum α value is 0.5. In the final part of this paper we
show that in the prediction of essential proteins of E. coli,
ION also outperforms the other seven existing centrality
methods.
All kinds of experiment data indicate that integrating

the orthology with PPI networks can indeed provide bet-
ter performance in prediction of essential proteins. It
confirms that there is a close relationship between the
essentiality and both network connectivity and evolu-
tionarily conserved properties of proteins. With more
resources of orthologs being available, we can conveni-
ently use the information of orthologs to predict essen-
tial proteins of other species by integrating PPI network
data. The weighted PPI networks constructed by ION
can be decomposed into the modules by using some
methods [49,50]. As these modules include proteins both
conserved and essential, this can give us a new insight
for the research of biology evolution and conserved
function modules. Additionally, ION can also provide us
a framework to identify essential proteins by integrating
biological properties with PPI network. By using ION,
we can identify essential proteins and modules with cer-
tain biological functions by using other biological prop-
erties of essential proteins instead of their conserved
properties.
Additional files

Additional file 1: Algorithm convergence. This file provides the proof
of the algorithm convergence and the discussion about the effect of
parameter α and ε on the speed of convergence.

Additional file 2: Proteins in top 100 ranked by ION while ignored
by eight other existing centrality methods. This file provides the list
of proteins in top 100 ranked by ION while ignored by eight other
existing centrality methods: Degree Centrality (DC), Betweenness
Centrality (BC), Closeness Centrality (CC), Subgraph Centrality (SC),
Eigenvector Centrality (EC), Information Centrality (IC), Edge Clustering
Coefficient Centrality (NC) and centrality based on edge clustering
coefficient and pearson correlation coefficient (PeC). In column Essential,
the values “1” or “0” mean the proteins are either essential or
nonessential. The values in column Ortholog_counts represent the
counts that the proteins have orthologs in 99 referent organisms. The
columns ranging from ION to PeC represent the ranking orders of the
proteins in the results of corresponding methods.

Additional file 3: Top 100 proteins identified by ION and eight
other centrality measures. This file is composed by the lists of the top
100 proteins identified by ION and eight other centrality measures (DC,
BC, CC, SC, EC, IC, NC and PeC). Furthermore, according to known
complex lists, the proteins in top 100 ranked by ION, PeC, NC and DC are
annotated with the index of the complexes that they belong to, but also
these complexes are also annotated with their functions.

Additional file 4: Information about how to select reference
organisms. This file provides the detailed information how to select the
10, 20, 40, 60, 80, 90 reference organisms, when we discuss the effect of
the number of reference organisms on the performance of ION in
section “Discussions on the orthologous score”. In column ION_10,
ION_20, ION_40, ION_60, ION_80, ION_90, the values “1” denote the
organism is one of 10, 20, 40, 60, 80, 90 reference organisms, respectively.
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