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the complex input-output maps of nonlinear
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Abstract

Background: Statistical approaches to describing the behaviour, including the complex relationships between
input parameters and model outputs, of nonlinear dynamic models (referred to as metamodelling) are gaining
more and more acceptance as a means for sensitivity analysis and to reduce computational demand.
Understanding such input-output maps is necessary for efficient model construction and validation. Multi-way
metamodelling provides the opportunity to retain the block-wise structure of the temporal data typically generated
by dynamic models throughout the analysis. Furthermore, a cluster-based approach to regional metamodelling
allows description of highly nonlinear input-output relationships, revealing additional patterns of covariation.

Results: By presenting the N-way Hierarchical Cluster-based Partial Least Squares Regression (N-way HC-PLSR)
method, we here combine multi-way analysis with regional cluster-based metamodelling, together making a
powerful methodology for extensive exploration of the input-output maps of complex dynamic models. We
illustrate the potential of the N-way HC-PLSR by applying it both to predict model outputs as functions of the input
parameters, and in the inverse direction (predicting input parameters from the model outputs), to analyse the
behaviour of a dynamic model of the mammalian circadian clock. Our results display a more complete cartography
of how variation in input parameters is reflected in the temporal behaviour of multiple model outputs than has
been previously reported.

Conclusions: Our results indicated that the N-way HC-PLSR metamodelling provides a gain in insight into which
parameters that are related to a specific model output behaviour, as well as variations in the model sensitivity to
certain input parameters across the model output space. Moreover, the N-way approach allows a more transparent
and detailed exploration of the temporal dimension of complex dynamic models, compared to alternative 2-way
methods.

Keywords: Parameter-phenotype map, Dynamic models, Metamodelling, N-way Partial Least Squares Regression,
Hierarchical analysis, HC-PLSR, Cluster-analysis, Input-output relationships, Circadian clock
Background
Dynamic models in systems biology as well as in other
fields become increasingly complex as more detailed
knowledge is incorporated. The massive presence of
nonlinear relationships between their high-dimensional
parameter- and solution- spaces is a key characteristic
of such systems. Moreover, dynamic models typically
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reproduction in any medium, provided the or
generate multidimensional blocks of temporal data.
Clearly it is very challenging to obtain a comprehensive
overview of the behavioural repertoires of such models
across the high-dimensional input parameter space,
including the sensitivity of the model output to changes
in the various input parameters, as well as interactions
between input parameters and correlation patterns
between model outputs. For dynamic model construc-
tion and validation, sound handling of such information
is crucial. Since most of the existing methods for param-
eter estimation and sensitivity analysis are appropriate
only for systems of relatively low output dimensionality
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Figure 1 Illustration of the N-way data structure used in N-way
HC-PLSR. Illustration of the data structure used in N-way
metamodelling. Here the number of modes (ways) N = 3, where the
first mode is the different simulations carried out using varying
parameter combinations and/or initial conditions, the second mode
is the various state variables of the analysed dynamic model and the
third mode is the trajectories of the state variables. Hence, the data
is here represented as a 3-way array. However, using more than
three modes is possible. The decomposition of the 3-way data is
described and illustrated in Additional file 1: Section S1.
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and typically focus on one output variable at a time
[1,2], a generic methodology for analysis of model
behaviour that is able to handle the entire range of
model complexities and give a comprehensive overview
of the relationships between the input parameters and
all model outputs, is sorely needed.
Statistical approaches are gaining acceptance as a

means for analysis of input-output relationships of com-
plex dynamic models [2-10], and statistical emulation of
dynamic models (metamodelling [11]) has been demon-
strated to be a useful tool both for speeding up compu-
tations [12] and as a basis for sensitivity analysis [2,3,13]
and uncertainty assessment [14-16]. Multi-way (N-way)
methods have previously been shown to be effective for
data integration in e.g. systems biology [17,18]. We
therefore hypothesise that N-way approaches will be
especially advantageous for metamodelling of dynamic
models due to the capability of integrating temporal data
from several output state variables simultaneously while
retaining the information about which state trajectory
that corresponds to which state variable throughout the
analysis (with 2-way methods, this information is lost
when concatenating the trajectories for the different
state variables prior to the analysis). Consequently, a
more detailed exploration of the temporal dimension of
dynamic models is possible. This is important in order
to obtain a comprehensive overview of how variation in
the input parameters is manifested in the model output.
Moreover, methods utilising several model outputs sim-
ultaneously have already been demonstrated to reduce
the model sloppiness by imposing more constraints on
the system [5].
The N-way Hierarchical Cluster-based Partial Least

Squares Regression (N-way HC-PLSR) presented here is
designed for efficient handling of block-wise nonlinear
data structures, and works by combining several regional
N-way Partial Least Squares Regression (NPLSR) [19]
models within which the mappings between input
parameters and output state variables can be more
adequately represented than in a global NPLSR model.
The nonlinear capabilities of this metamodelling ap-
proach are obtained by combining clustering and gener-
ation of local linear metamodels for the various cluster
regions. This is an N-way extension of our previously
published method Hierarchical Cluster-based Partial
Least Squares Regression (HC-PLSR) [8]. HC-PLSR is
based on separate (2-way) PLSR [20-23] analyses of dis-
tinct regions of the parameter space (where the resulting
regression coefficients are measures of the model sensi-
tivity to the different input parameters), while in N-way
HC-PLSR, the separated regions are defined according
to the dynamic behaviour of the output state variables
and the output from the dynamic model is represented
as an N-way array (in our example the number of ways
or modes N=3; observations×state variables×time points
of the state trajectories (see Figure 1)). A common meta-
model based on all state variable trajectories can thereby
be generated. This allows simultaneous analysis of
nonlinear relationships between all model outputs and
input parameters of complex dynamic models, in a low-
dimensional subspace spanned by estimated latent
variables (called NPLSR factors). The NPLSR factors
represent the features that are most important for the
covariance between the inputs and outputs (see Add-
itional file 1: Section S1 for a description of the NPLSR
methodology). The method is therefore suited for visua-
lising covariance structures both within and between the
input parameters and the model outputs, and thereby
also useful for finding and removing possible redundan-
cies (leading to model reduction) and prioritizing experi-
ments for e.g. model validation by identification of key
inputs and outputs describing the system behaviour.
Hence, this can also guide experimentalists in the choice
of quantities to measure when studying a biological
system. Moreover, the NPLSR approach provides consid-
erable dimension reduction possibilities through projec-
tion of the data into a low-dimensional subspace. In our
opinion, this methodology should be considered as par-
ticularly useful in future multivariate metamodelling for
analysis of complex spatiotemporal models. In N-way
metamodelling, the three spatial dimensions can be
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included as separate modes in the N-way analysis, in
addition to the temporal dimension on which we focus
in this paper. The spatial structure of the data can
thereby be kept throughout the analysis. We hypothesise
that this will be a great advantage in the analysis of
spatiotemporal models.
Traditionally, metamodelling is carried out in the causal

direction, predicting model outputs as functions of the in-
put parameters using e.g. regression methods. Application
of metamodelling in the reverse direction is, however, also
of potential interest [5]. The two modelling directions can
be understood as extensions of the classical/inverse cali-
bration modelling [22]. Accordingly, we refer to the causal
direction as classical metamodelling, and the reverse dir-
ection as inverse metamodelling, and in our application of
the N-way HC-PLSR we demonstrate how their combin-
ation provides more detailed insight into the complexity
of the mapping between input parameters and model out-
puts. Inverse metamodelling may also facilitate fitting of
nonlinear models to large amounts of experimental data.
Given that the results from the computations can be sub-
stituted with relevant experimentally measured data or
quantities calculated from measurements, these can be
used to predict corresponding parameters. Moreover,
combinations of classical and inverse metamodelling can
identify the key metrics to measure in order to validate the
models. A more comprehensive introduction to the multi-
variate metamodelling methodology is given in Additional
file 1: Section S1.
As long as they handle high-dimensional data with

nonlinear relationships and yield interpretable represen-
tations, a wide variety of statistical methods can be
effectively used for multivariate metamodelling. We have
recently shown that multivariate metamodelling based
on PLSR and our nonlinear extension HC-PLSR [8] pro-
vides good approximations of the input-output map-
pings [8] as well as informative insight into complex
interaction patterns between parameters [9] of advanced
nonlinear dynamic models. PLSR can use multiple
response variables simultaneously and utilise inter-
correlations between them for model stabilisation. PLSR
analysis has been shown to effectively reveal covariation
patterns in large and complex data sets, and extract cor-
relations between possibly noisy and partially redundant
input variables and outputs [6]. The success of PLSR in
the context of sensitivity analysis and for constraining
input parameter values from dynamic model outputs has
also been demonstrated by Sobie et al. [5,6]. Highly non-
linear input-output structures may, however, be difficult
to model adequately with linear models such as PLSR,
even with polynomial extensions. To confront these pro-
blems, HC-PLSR was introduced [8]. Heterogeneity in
model sensitivity to certain parameters between various
regions in the parameter space of a dynamic model of
the mouse ventricular myocyte was identified by HC-
PLSR-based sensitivity analysis in [9]. Similarly, zooming
into different regions of the state variable behavioural
domain provides the opportunity to identify regions
where the relationship between certain parameters and
the model output is less ambiguous, indicating that
these parameters are especially important for defining a
specific type of temporal model behaviour. In cases
where variation in the input parameters can be directly
related to genotypic variations, this may provide valuable
information about how a specific genotype can be of
particular importance for the manifestation of certain
phenotypic characteristics.
Here, we combine three different aspects of multivari-

ate metamodelling: 1) Description of highly nonlinear
input-output relationships by regional metamodelling, 2)
NPLSR, allowing a retention of a tensor data structure
throughout the analysis and 3) Inverse metamodelling
in addition to the classical approach, providing more
confident conclusions and a more comprehensive model
overview. Moreover, particularly complex details are
pursued by more detailed metamodelling of individual
outputs and their relationships to the varied input para-
meters. Altogether, this provides a powerful, robust
and efficient approach to exploration of the behavioural
repertoire of complex dynamic models.
We illustrate our methodology by an application to a

complex dynamic model of the mammalian circadian
clock developed by Leloup and Goldbeter [24], which is
a well-established and validated model. Models of cir-
cadian rhythms have e.g. been used for identifying
mechanisms of chronotolerance and chronoefficacy for
anticancer drugs [25]. The dynamic model we analyse
describes circadian oscillations of cellular activity in
conditions of continuous darkness, and consists of 16
coupled ordinary differential equations (ODEs) describ-
ing the dynamics of three genes through intertwined
positive and negative feedback loops. By combining the
classical and inverse approaches of the N-way HC-PLSR,
we capture several interesting parts of the present com-
plex input-output relationships, which are difficult to
deduce directly from the model’s differential equations.

Results
In silico data set
The analysed mammalian circadian clock model con-
sisted of 16 linear and nonlinear ODEs coupled together
through numerous feedback mechanisms. To analyse the
behaviour of this complex nonlinear dynamic model,
nine of the model input parameters were systematically
varied at eight equally spaced levels each in an Opti-
mised Multi-level Binary Replacement (OMBR) design
[7,26], using the ranges given in Table 1. This resulted in
8192 simulations with the circadian clock model, 99.3%



Table 1 Description and range of the parameters varied in the mammalian circadian clock model simulations

Parameter
name

Unit Description Minimum
value

Level
step size

Maximum
value

vmB nMh-1 Maximum rate of Bmal1 mRNA degradation 0.02 0.05 0.38

vmC nMh-1 Maximum rate of Cry mRNA degradation 0.95 0.08 1.54

vmP nMh-1 Maximum rate of Per mRNA degradation 0.98 0.16 2.09

vdPCN nMh-1 Maximum rate of degradation of nuclear phosphorylated Per-Cry complex 0.99 0.02 1.14

vdIN nMh-1 Maximum rate of degradation of nuclear Per-Cry-Clock-Bmal1 complex 0.08 0.21 1.52

k1 h-1 Rate constant for entry of the Per-Cry complex into the nucleus 0.08 0.21 1.52

k3 nM-1 h-1 Rate constant for the formation of the Per-Cry complex 0.08 0.21 1.52

k5 h-1 Rate constant for entry of the Bmal1 protein into the nucleus 0.27 0.02 0.41

k7 nM-1 h-1 Rate constant for the formation of the inactive Per-Cry-Clock-Bmal1 complex 0.05 0.13 0.95
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of which (8135 simulations) converged to a stable
limit cycle. The results of these 8135 simulations,
represented as a 3-way array of 8135 observations x
16 state variables (corresponding to the 16 coupled
differential equations in the dynamic model) x 200
time points in each trajectory, were related to the
matrix of input parameter combinations (8135 x 9)
in the metamodelling study described below.
A separate test set based on 8192 parameter combina-

tions found by random Monte Carlo sampling [27,28]
within the same parameter levels as used in the cali-
bration set was also generated, resulting in 8125 conver-
ging simulations.

Results from the N-way HC-PLSR metamodelling of the
mammalian circadian clock model
A combined classical (parameter matrix as X, 3-way
state trajectory array as Y) and inverse (3-way state tra-
jectory array as X, parameter matrix as Y) metamodel-
ling with N-way HC-PLSR was carried out, in order to
assess the complex input-output map of the mammalian
circadian clock model. The developed methodology is
illustrated in Figure 2 and described in more detail in
the Methods section and in Additional file 1: Section S1.
The N-way HC-PLSR metamodels each contain both a
global NPLSR model, and several regional NPLSR mod-
els calibrated within clusters corresponding to different
model behaviour. Here we present the results from the
global NPLSR metamodelling first, and the additional
insights provided through the regional metamodelling
thereafter. The statistics of the global metamodels can
be found in Additional file 1: Section S2.
The low percentage explained Y-variance (Additional

file 1: Section S2, Figure S3) showed that the global
metamodelling was inadequate in both the classical and
inverse direction. However, before proceeding to
improved, regional metamodelling, the dominating rela-
tionships and patterns between the 9 input parameters
and the 16 output state trajectories of the mammalian
circadian clock model were assessed using the global
approximations.

Input-output map characteristics revealed by the global
classical and inverse metamodels

The dominating input-output covariation patterns
In NPLSR, like in other subspace regression methods,
the high-dimensional data is projected into a low-
dimensional subspace spanned by estimated latent vari-
ables that represent the most relevant patterns of input
(regressor)-output (response or regressand) covariation
(see Additional file 1: Section S1). The couplings be-
tween the original variables and the latent variables are
called loadings. The global relationship patterns between
the 9 varied mammalian circadian clock parameters
(Table 1) and the 16 state variables (Table 2) were
assessed through plots of the first three global second
mode NPLSR loadings for the output state variables and
the input parameters (Figure 3). Variables placed close
to each other in the loading plots are positively corre-
lated, while variables placed opposite each other are
negatively correlated in the NPLSR factor space.
Within the parameter space analysed here, the para-

meters vmB (maximum rate of Bmal1 mRNA degrad-
ation), vmC (maximum rate of Cry mRNA degradation)
and vmP (maximum rate of Per mRNA degradation) had
the highest correlation to the circadian clock state vari-
ables along the first three global NPLSR factors, both in
the inverse (Figure 3A) and classical (Figure 3B) meta-
modelling. The same over-all covariation patterns could
be seen both in the inverse and the classical global meta-
modelling, since the orthogonal design in the parameters
used in the global metamodelling has no dominant co-
variance directions, and both the inverse and classical
NPLSR metamodels will consequently be dominated
by the covariance structures of the state variables (but
restricted to the parameter design). The input param-
eter vmB were e.g. negatively correlated with the state
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Figure 2 Illustration of the combined classical and inverse N-way HC-PLSR metamodelling. The inverse metamodelling was carried out
first, defining the clusters to use also in the classical metamodelling. The classification of the test set observations to be predicted in the classical

metamodelling was based on T̂OutputA;Inverse , predicted from T̂YA;NWay (see Additional file 1, eq. S12c for a definition) using second order polynomial

Ordinary Least Squares (OLS) regression (called function F̂ (.)). See Additional file 1 sections S1.5-S1.7 for a more comprehensive description of this
methodology, including predicting equations for test set observations. *See Additional file 1, equation S9b. **CA and C2A were calculated by
equation S12b in Additional file 1.

Tøndel et al. BMC Systems Biology 2012, 6:88 Page 5 of 21
http://www.biomedcentral.com/1752-0509/6/88
variables BC, BN, BNP and BCP in the NPLSR factor
space, which was not surprising since these state vari-
ables represent the dynamics of the phosphorylated and
non-phosphorylated protein Bmal1 concentrations in the
cytosol and nucleus [24]. Similarly, vmP was negatively
correlated with the state variables MP (dynamics of Per
mRNA) and PCP (dynamics of phosphorylated Per pro-
tein concentration in the cytosol), while vmC was nega-
tively correlated with MC (dynamics of Cry mRNA) and
PCCP (dynamics of phosphorylated Per-Cry complex in
the cytosol). These patterns were all in concordance with
our intuition of the mammalian circadian clock model.

Prediction results from the global inverse metamo-
delling The test set prediction results from the inverse
metamodelling shown in Figure 4A, indicated that the
input parameters vmB, vmC, vmP and k5 (rate constant for
entry of the Bmal1 protein into the nucleus) were pre-
dicted with reasonably high accuracy (correlation coeffi-
cient (R2)-values higher than 0.8) from the circadian



Table 2 Description of the mammalian circadian clock model state variables

State variable name Unit Description

MP nM Concentration of Per mRNA

BN nM Concentration of non-phosphorylated Bmal1 protein in the nucleus

MC nM Concentration of Cry mRNA

MB nM Concentration of Bmal1 mRNA

PC nM Concentration of non-phosphorylated Per protein in the cytosol

PCP nM Concentration of phosphorylated Per protein in the cytosol

PCC nM Concentration of non-phosphorylated Per-Cry protein complex in the cytosol

CC nM Concentration of non-phosphorylated Cry protein in the cytosol

CCP nM Concentration of phosphorylated Cry protein in the cytosol

PCCP nM Concentration of phosphorylated Per-Cry protein complex in the cytosol

PCN nM Concentration of non-phosphorylated Per-Cry protein complex in the nucleus

PCNP nM Concentration of phosphorylated Per-Cry protein complex in the nucleus

IN nM Concentration of inactive complex between Per-Cry and Clock-Bmal1 in the nucleus

BC nM Concentration of non-phosphorylated Bmal1 protein in the cytosol

BCP nM Concentration of phosphorylated Bmal1 protein in the cytosol

BNP nM Concentration of phosphorylated Bmal1 protein in the nucleus

The 16 state variables correspond to the 16 ODEs in the mammalian circadian clock model.
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clock state trajectories, indicating that the circadian clock
model was highly sensitive to changes in these input para-
meters and that the relationship between these para-
meters and the model output was quite linear. For the
input parameters vdPCN, vdIN, k1, k3 and k7, the prediction
error was high using global NPLSR metamodelling.

Prediction results from the global classical metamo-
delling The results from the test set prediction of the
state variable trajectories from the input parameters in
the classical metamodelling shown in Figure 4B, indi-
cated that the temporal behaviour of the following state
variables could be predicted with high accuracy from the
input parameters using global NPLSR: BN, MC, MB, BC,
BCP and BNP, while the prediction error was especially
high for the state variables PC, PCC, CC, PCN, PCNP

and IN.
Analogous to the results from the inverse metamodel-

ling described above, the matrix plot of the global
NPLSR-estimated sensitivities (estimated as products be-
tween the X- and Y- loadings) of the model output state
variables to the nine varied parameters in Figure 5 indi-
cated that the circadian clock model was only sensitive
to the input parameters vmB, vmC, vmP and k5. However,
the predictive ability obtained with the global metamo-
delling was not adequate, and important patterns of
variation were therefore left un-described. Hence, the
parameter-state variable map of the circadian clock
model was relatively complex and nonlinear. Since the
analysed model was deterministic, we assumed that a
higher number of state trajectories would be predicted
with high accuracy from the input parameters using
a nonlinear metamodel. We therefore hypothesised
that hierarchical cluster-based metamodelling would
reveal more details of the input-output relationship
of the mammalian circadian clock model through
regional metamodelling.
Separately analysed output space regions in the
hierarchical cluster-based metamodelling

To facilitate comparison, it was decided to use the same
grouping (clustering) of the observations in both clas-
sical and inverse metamodelling. The state variable
NPLSR X-factors from the inverse metamodelling were
more directly related to the state variable behaviour than
the Y-factors representing the state variables in the clas-
sical metamodelling due to the asymmetric nature of the
NPLSR models (defined primarily based on the X-scores,
not the Y-scores). The inverse metamodelling was there-
fore carried out first, i.e. the clustering of the 8135 cali-
bration set observations was carried out on the inverse
metamodelling X-factors obtained from the output
state trajectories (TOutput,A,Inverse, see Figure 2), thereby
ensuring that the clusters represented different model
behaviours. The same clusters were then also used in
the classical N-way HC-PLSR metamodelling. This
was chosen due to that clustering on the X-factors

or the predicted Y-factors ( T̂YA;NWay ) in the classical
metamodelling (as would be a more traditional procedure)
would both make the clustering more related to the



Figure 3 Maps of the global covariance patterns between the circadian clock state variables and input parameters. Global NPLSR
second mode loadings (Fac 1-Fac 3) for the state variables (red dots) and the parameters (blue dots) from A) the inverse metamodelling and
B) the classical metamodelling.
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designed parameter combinations instead of the state vari-
able behaviour, since the predicted Y-factors were here
predicted as linear combinations of the X-factors that are
related to the parameter combinations (see Additional file
1, equation S12c). Predicted Y-factors would have to be
used in the clustering instead of the Y-factors directly cal-
culated from the state variable data in the classical
Figure 4 Test set prediction results from the global NPLSR metamode
test set validation of the inverse metamodelling. Correlation coefficient (R2)
from the state variable trajectories are shown, using 19 factors in the globa
metamodelling. R2-values from the global NPLSR test set prediction of the
factors in the global NPLSR model.
metamodelling, since otherwise the classification of new
observations (for which state variable data are not avail-
able) would not be possible on variables equivalent to
those used to cluster the calibration set observations.
Based on an assessment of the ability to constrain

parameters from the state trajectories using from 1 to
20 clusters (Figure 6), using six clusters was considered
lling of the mammalian circadian clock model. A) Results from the
-values from the global NPLSR test set prediction of the parameters
l NPLSR model. B) Results from the test set validation of the classical
state variable trajectories from the parameters are shown, using 8



State variables

In
p

u
t 

p
ar

am
et

er
s

MP BN MC MB PC PCP PCC CC CCP PCCP PCN PCNP IN BC BCP BNP

vmB

vmC

vmP

vdPCN

vdIN

k1

k3

k5

k7 −1.5

−1

−0.5

0

0.5

1

1.5

Figure 5 Mammalian circadian clock model sensitivities estimated from the global classical NPLSR metamodel. Model sensitivities to
variations in the nine varied input parameters calculated as the products between the second mode X-factors (X-loadings) and the transpose of
the second mode Y-factors (Y-loadings) from the global classical NPLSR metamodel.

Tøndel et al. BMC Systems Biology 2012, 6:88 Page 8 of 21
http://www.biomedcentral.com/1752-0509/6/88
optimal in order to balance between predictive ability
and interpretational complexity. As seen from Figure 6,
some of the parameters and state variables could be pre-
dicted even more accurately using a higher number of
clusters in the N-way HC-PLSR, but that would lead to
a more complex model that would be more difficult to
interpret in a sensitivity analysis. Keeping the number
of clusters as low as possible also helps avoiding overfit-
ting of the data. We therefore assumed that the most
important input-output map characteristics could be
revealed using six regional NPLSR models in the N-way
HC-PLSR.
The clustering of the calibration set observations used

in the final N-way HC-PLSR metamodelling is illustrated
in Figure 7 both in the NPLSR factor spaces from the in-
verse (Figure 7A) and classical (Figure 7B) metamodel-
ling and in the original state variable trajectory space
(Figure 7C). Figure 7B illustrates that the NPLSR Y-
factors from the classical metamodelling were (as
expected) highly related to the designed parameter com-
binations, and hence did not give as good representation
of the state variable behaviour as the X-factors from the
inverse metamodelling. As described above, the cluster-
ing was therefore based on the latter both in the classical
and the inverse metamodelling. Figure 7C confirmed
that the six clusters represented different types of
dynamic behaviour for the mammalian circadian clock
model. For example, Cluster 1 was characterised by e.g.
an especially large spread in the values of the state vari-
able CC, while Cluster 2 was characterised by high values
of several of the circadian clock state variables (espe-
cially MP, PC, PCP, PCC, PCN, PCNP and IN). The param-
eter ranges for the clusters are given in Table 3, and
showed that the clustering of the observations had a
close relation to the values of the parameters vmB, vmC

and vmP, which also spanned the first three global NPLSR
factors both in the inverse and classical metamodelling.

Additional input-output map characteristics revealed by the
regional classical and inverse metamodelling

Prediction results from the hierarchical inverse meta-
modelling The test set prediction results from the hier-
archical inverse metamodelling shown in Figure 8A
indicated that the two input parameters k1 (rate constant
for entry of the Per-Cry complex into the nucleus) and
k3 (rate constant for the formation of the Per-Cry com-
plex) were predicted with considerably higher accuracy
in the hierarchical metamodelling compared to the glo-
bal metamodelling. Figure 6 indicated that increasing
the number of clusters in the N-way HC-PLSR had a
large effect on the prediction accuracy for these two
parameters; R2-values higher than 0.8 could be achieved
using 20 clusters. However, the increase in prediction ac-
curacy obtained also using only six clusters indicated
that the circadian clock model was sensitive to these two
parameters, in contrast to what the global metamodel-
ling indicated. Hence, the hierarchical metamodelling
could provide additional insights into the input-output
map of the analysed model.



Figure 6 Optimalisation of the number of clusters in hierarchical metamodelling of the mammalian circadian clock model. A) Results
from inverse hierarchical metamodelling using from 1–20 clusters in the N-way HC-PLSR. Left: Mean parameter prediction correlation coefficient
(R2)-values within the calibration set, over the nine varied circadian clock model input parameters vs. the number of clusters used in the N-way
HC-PLSR metamodelling. The calibration set observations were here treated as "new observations" (see Figure 2), and classified in the prediction
stage. Using six clusters was considered optimal. Right: Parameter prediction R2-values within the calibration set for the nine different circadian
clock model input parameters vs. the number of clusters used in the N-way HC-PLSR metamodelling. B) Results from classical hierarchical
metamodelling using from 1–20 clusters in the N-way HC-PLSR. Left: Mean state variable prediction R2-values within the calibration set, over the
16 circadian clock model state variables vs. the number of clusters used in the N-way HC-PLSR metamodelling. The calibration set observations
were here treated as "new observations", and classified in the prediction stage. Right: State variable prediction R2-values within the calibration
set for the 16 circadian clock state variables vs. the number of clusters used in the N-way HC-PLSR metamodelling. Using six clusters was
considered optimal.
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The three parameters vdPCN (maximum rate of
degradation of nuclear phosphorylated Per-Cry com-
plex), vdIN (maximum rate of degradation of nuclear
Per-Cry-Clock-Bmal1 complex) and k7 (rate constant
for the formation of the inactive Per-Cry-Clock
-Bmal1 complex) were predicted with low accuracy
also in the inverse hierarchical metamodelling. This
indicated that either the circadian clock model was
relatively insensitive to variations in these input para-
meters, or our metamodelling was not able to describe
the complex relationships between these parameters
and the model outputs. This has been assessed in more
detail below.

Prediction results from the hierarchical classical
metamodelling Several of the circadian clock state vari-
able trajectories could be predicted with considerably
higher accuracy in classical metamodelling using N-way
HC-PLSR compared to the global NPLSR (Figure 8B).
Only the state variables PCC (concentration of the Per-
Cry protein complex in the cytosol), PCN (concentra-
tion of the Per-Cry protein complex in the nucleus)



Figure 7 Clustering results used in the N-way HC-PLSR metamodelling with six clusters. A) Plot of the TXA;NWay factors (Fac 1-Fac 3) from
the global inverse metamodelling (=TOutput,A,Inverse). The observations are coloured according to cluster memberships. Cluster1=blue, cluster2=red,
cluster3=yellow, cluster4=green, cluster5=magenta, cluster6=cyan. X is the 3-way state variable trajectory array, while Y is the parameters. The
clustering was done on the TXA;NWay factors explaining a significant amount of the variation in the state variable space, that is the 19 first factors.

B) Plot of the predicted Y-scores T̂YA;NWay (see Additional file 1, eq. S12c) from the global classical metamodelling, colour coded according to the
cluster memberships of the observations found using TOutput,A,Inverse. The classification of the test set observations to be predicted in the classical

metamodelling was based on T̂Output;A;Inverse , predicted from T̂YA;NWay using second order polynomial OLS regression. This OLS prediction model
was calibrated in the calibration step of the classical metamodelling, based on the TXA;NWay factors from the inverse metamodelling

(=TOutput;A;Inverse , plotted in panel A) and calibration set T̂YA;NWay (plotted here). C) Circadian clock state trajectories for the observations belonging
to each cluster, coloured according to cluster memberships from the inverse N-way HC-PLSR. Cluster1 = blue, cluster2 = red, cluster3 = yellow,
cluster4 = green, cluster5 =magenta, cluster6 = cyan. All state variables are given in nM units.
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and IN (concentration of the inactive complex between
Per-Cry and Clock-Bmal1 in the nucleus) were pre-
dicted with low accuracy (R2-values below 0.4), indicat-
ing that the metamodelling with N-way HC-PLSR was
able to capture the main features of the input-output
mappings for most of the 16 circadian clock state
variables.
Figure 7 indicated that the data for the three above

mentioned state variables contained extreme outliers
(especially in Cluster 1 and 2), which may have caused



Table 3 Parameter ranges and mean values for the observations in the six N-way HC-PLSR clusters

Cluster vmB (nMh-1) vmC (nMh-1) vmP (nMh-1) vdPCN (nMh-1) vdIN (nMh-1) k1 (h
-1) k3 (nM

-1 h-1) k5 (h
-1) k7 (nM

-1 h-1)

1 0.02-0.23 (0.11) 0.95-1.12 (0.99) 1.14-2.09 (1.65) 0.99-1.14 (1.06) 0.08-1.52 (0.81) 0.08-1.52 (0.78) 0.08-1.52 (0.82) 0.27-0.41 (0.34) 0.05-0.95 (0.49)

2 0.02-0.28 (0.11) 0.95-1.54 (1.26) 0.98-1.14 (1.02) 0.99-1.14 (1.06) 0.08-1.52 (0.77) 0.08-1.52 (0.78) 0.08-1.52 (0.83) 0.27-0.41 (0.34) 0.05-0.95 (0.49)

3 0.02-0.07 (0.04) 1.03-1.54 (1.32) 1.14-2.09 (1.65) 0.99-1.14 (1.07) 0.08-1.52 (0.80) 0.08-1.52 (0.81) 0.08-1.52 (0.77) 0.27-0.41 (0.32) 0.05-0.95 (0.51)

4 0.07-0.33 (0.18) 0.95-1.54 (1.25) 1.14-2.09 (1.70) 0.99-1.14 (1.07) 0.08-1.52 (0.80) 0.08-1.52 (0.79) 0.08-1.52 (0.81) 0.27-0.41 (0.34) 0.05-0.95 (0.50)

5 0.12-0.38 (0.27) 0.95-1.54 (1.29) 0.98-1.30 (1.09) 0.99-1.14 (1.06) 0.08-1.52 (0.80) 0.08-1.52 (0.82) 0.08-1.52 (0.79) 0.27-0.41 (0.34) 0.05-0.95 (0.50)

6 0.23-0.38 (0.33) 0.95-1.54 (1.29) 1.14-2.09 (1.69) 0.99-1.14 (1.07) 0.08-1.52 (0.80) 0.08-1.52 (0.80) 0.08-1.52 (0.79) 0.27-0.41 (0.35) 0.05-0.95 (0.51)

The mean values are given in parenthesis, while the ranges give the minimum and maximum parameter values observed in each cluster.
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Figure 8 Prediction results from the hierarchical inverse and classical metamodelling. A) R2-values from the hierarchical NPLSR test set
prediction of the parameters from the state variable time series using six regional regression models, using 18, 19, 19, 18, 19 and 17 NPLSR
factors, respectively. The clustering was done on the global TXA;NWay factors, using 19 factors. B) R2-values from the hierarchical NPLSR test set
prediction of the state variable trajectories from the parameters using six regional regression models, all using 9 NPLSR factors. The same clusters
as in the inverse metamodelling were used.
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the low prediction accuracy for these state variables.
Both for the calibration set and the test set, being an
outlier seemed to be closely associated to having
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Figure 10 Prediction results from hierarchical classical metamodelling within each regional regression model in the N-way HC-PLSR.
The R2-values from test set prediction of the state variable trajectories from the parameters are shown for regional model 1–6, corresponding to
the clusters used in the N-way HC-PLSR. All regional models use 9 NPLSR factors. The same clusters as in the inverse metamodelling were used.
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Detailed interpretation of the revealed model sensi-
tivity patterns The parameter- and state variable pre-
diction results within each of the regional NPLSR
metamodels, shown in Figure 9 and Figure 10, indicated
clear regional differences in the state variable space with
regard to the prediction accuracy for the different para-
meters and state trajectories. This may be used to iden-
tify the parameters that are especially important for
certain types of model behaviour. We recently showed
that regional differences in model sensitivity to the
input parameters also represent complex interaction
patterns between the parameters [9]. In order to illus-
trate the usefulness of the methodology in providing bio-
logical insight, we give below some examples of detailed
interpretations of the sensitivity patterns illustrated in
Figures 9, 10 and 11.
As shown in Figure 10, the temporal behaviours of

the state variables PCC and PCN were predicted with
higher accuracy by all regional metamodels except re-
gional model 1 and 2 (corresponding to clusters con-
taining outliers for these state variables), compared to
the global NPLSR. However, the state variable IN was
predicted with very low accuracy in all the regional
metamodels, and the parameters vdPCN, vdIN and k7
could not be well predicted in any of the regional in-
verse metamodels (Figure 9). Two of the parameters
that were predicted with low accuracy, vdIN and k7,
appeared in the differential equation corresponding to
the state variable IN. Hence, the low prediction accur-
acy was probably due to an insufficiently described
mapping between IN and these parameters in the N-
way HC-PLSR.
In order to reveal the sensitivity patterns for the state

variable IN, a separate sensitivity analysis of the relation-
ship between IN and the circadian clock input para-
meters was carried out using 2-way second order
polynomial HC-PLSR analogous to the analysis pre-
sented in [8], but with the parameter ranges given in
Table 1. This showed that in order to be well-predicted,
the state variable IN had to be logarithmised prior to the
analysis. This might explain why this state variable trajec-
tory could not be well described together with the other
state variables in the N-way HC-PLSR. The results are
given in Additional file 1: Section S3.1, and indicated that
the parameters having the largest effects on the IN state
trajectory were vmB, vmC, vmP, vdIN, k1 and k7. Several
interactions between these input parameters were also
identified.



MP BN MC MB PC PCP PCC CC CCP PCCP PCN PCNP IN BC BCP BNP

vmB

vmC

vmP

vdPCN

vdIN

k1

k3

k5

k7
MP BN MC MB PC PCP PCC CC CCP PCCP PCN PCNP IN BC BCP BNP

vmB

vmC

vmP

vdPCN

vdIN

k1

k3

k5

k7

In
p

u
t 

p
ar

am
et

er
s

MP BN MC MB PC PCP PCC CC CCP PCCP PCN PCNP IN BC BCP BNP

vmB

vmC

vmP

vdPCN

vdIN

k1

k3

k5

k7
MP BN MC MB PC PCP PCC CC CCP PCCP PCN PCNP IN BC BCP BNP

vmB

vmC

vmP

vdPCN

vdIN

k1

k3

k5

k7

State variables
MP BN MC MB PC PCP PCC CC CCP PCCP PCN PCNP IN BC BCP BNP

vmB

vmC

vmP

vdPCN

vdIN

k1

k3

k5

k7

State variables
MP BN MC MB PC PCP PCC CC CCP PCCP PCN PCNP IN BC BCP BNP

vmB

vmC

vmP

vdPCN

vdIN

k1

k3

k5

k7

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5

1) 2)

3) 4)

5) 6)

Figure 11 Mammalian circadian clock model sensitivities estimated from each of the regional classical NPLSR metamodels. Model
sensitivities to variations in the nine varied input parameters calculated as the products between the second mode X-factors and the transpose of
the second mode Y-factors from regional NPLSR model 1–6 in the N-way HC-PLSR metamodelling.

Tøndel et al. BMC Systems Biology 2012, 6:88 Page 14 of 21
http://www.biomedcentral.com/1752-0509/6/88
The parameter k7 (rate constant for the formation of
the inactive Per-Cry-Clock-Bmal1 complex) was also
involved in the differential equations representing the
dynamics of the concentration of non-phosphorylated
Bmal1 protein in the nucleus (state variable BN) [24] and
the concentration of the non-phosphorylated Per-Cry
protein complex in the nucleus (state variable PCN),
in addition to IN. PCN was not well described by the
classical metamodelling, but BN was predicted with high
accuracy from the parameters (Figure 8B and Figure 10).
Hence, the low prediction accuracy for k7 indicated that
the state variable BN was relatively insensitive to the par-
ameter k7 according to our analysis (within the analysed
parameter range), even though the differential equation
for this state variable involved k7. This was confirmed
by the plot of the model sensitivities estimated from the
regional metamodels shown in Figure 11 (only in
regional model 3 a sensitivity was identified, but this
was also low), as well as the separate sensitivity analysis
for the state variable BN described in Additional file 1:
Section S3.2 (carried out in the same way as for IN). This
illustrates how a combination of a classical and inverse
metamodelling can provide more confident conclusions
about model behaviour and sensitivity patterns.
The third parameter that could not be constrained

from the state variable data was vdPCN (maximum rate of
degradation of nuclear phosphorylated Per-Cry com-
plex), which was only involved in the differential equa-
tion describing the dynamics of the concentration of the
phosphorylated Per-Cry complex in the nucleus (state
variable PCNP). This state variable was predicted with an
R2-value of approximately 0.7 in the classical metamo-
delling, which is not particularly low. Thus our results
indicated a low sensitivity of PCNP to the rate of degrad-
ation of the corresponding protein. This result was con-
firmed by the results shown in Figure 11 and the
separate sensitivity analysis for the state variable PCNP

described in Additional file 1: Section S3.3. This was not
straight-forward to explain, and calls for a more compre-
hensive analysis of the relationship between the state vari-
able PCNP and the input parameter vdPCN. Possible
explanations might be that our analysis did not cover the
relevant range for this parameter, causing the model sen-
sitivity to this parameter not to be detected, or that its
input-output relationship is very complex.
As seen from Figure 11, the parameter vdPCN seemed

to have negative impact on the state variable PC (con-
centration of non-phosphorylated Per protein in the
cytosol) in regional NPLSR model 2, even though nei-
ther this parameter nor the state variable PCNP (concen-
tration of the phosphorylated Per-Cry complex in the
nucleus, for which this parameter was involved in the
differential equation), appeared in the differential equa-
tion representing PC. Both PC and PCNP were related to
the Per protein, though. In this region of the state variable
space, the effect of vdPCN on PC was either more pro-
nounced, or the relationship between these variables was
less complex and therefore more visible in the analysis.
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As seen from Figure 7C, Cluster 2 was characterised by
high values of several of the circadian clock state variables
(especially MP, PC, PCP, PCC, PCN, PCNP and IN).
The input parameter k3 (rate constant for the forma-

tion of the Per-Cry complex) had a large negative effect
on CCP that was visible only in Cluster 5 (Figure 11).
This could be explained by the fact that k3 was involved
in the equation for CC, which was part of the differential
equation for CCP. Furthermore, vdIN (maximum rate of
degradation of nuclear Per-Cry-Clock-Bmal1 complex)
seemed to have a slight negative effect on PCNP in Clus-
ter 1. This result was not easily deducible from the equa-
tion structure of the circadian clock model, and could
not be detected in the global metamodelling. Cluster 1
was characterised by e.g. an especially large spread in
the values of the state variable CC.
The parameter k7 (rate constant for the formation

of the inactive Per-Cry-Clock-Bmal1 complex) seemed
to have a positive effect on the state variable CC (non-
phosphorylated Cry protein in the cytosol) in regional
metamodel 1. However, since the inactive Per-Cry-Clock
-Bmal1 complex represses the Per and Cry genes in the
nucleus, a positive effect of k7 on CC seemed unlikely.
An additional sensitivity analysis was therefore carried
out by adding eight simulations to the data set, keeping
all parameters except k7 constant at the mean values
found for Cluster 1. The results are shown in Additional
file 1: Section S3.4, and indicated that increasing k7
resulted in a very small decrease in CC and CCP, had a
clear positive effect on IN (as expected from the differen-
tial equation for IN), and a negative effect on PCN and
PCNP. In order to try to explain the positive effect of k7
on CC seen in Cluster 1, a separate 2-way PLSR-based
sensitivity analysis was therefore also carried out for the
state variable CC in Cluster 1 (see Additional file 1: Sec-
tion S3.4). The effects of vmB, vmC, vmP and k3 on CC

indicated for Cluster 1 were also manifested in the 2-
way PLSR analysis, but a positive main effect of k7 was
not confirmed. However, several interaction terms in-
volving k7 seemed to have effects on CC, such as the
interaction between vmP and k7 (which had a positive ef-
fect). Since cross-terms between the input parameters
were not included in the N-way PLSR analysis, con-
founding of these interaction effects with the main effect
of k7 may explain the positive sensitivity to k7 indicated
by the N-way PLSR. The indication of a positive effect of
k7 on CC could also have been caused by other sources
of uncertainties in the NPLSR analysis.
Analogous to the increased prediction accuracy

obtained for the two parameters k1 and k3, model sensi-
tivity to these parameters could be revealed in several
local regions of the state variable space (Figure 11), even
though this was not evident from the global metamodel-
ling (Figure 5). According to Figure 11, the model
seemed to be insensitive to these parameters in the
region represented by Cluster 6. However, the inverse
metamodelling indicated that also in Cluster 6 these
parameters could be predicted with a much higher
accuracy than by the global NPLSR metamodel, indicat-
ing model sensitivity to these parameters also in this
region of the state variable space. This illustrates the
importance of carrying out both classical and inverse
metamodelling to gain a more detailed insight into the
sensitivity patterns of a complex model.

Discussion
The main traditional approach to analysis of input-
output relationships has been to use aggregated outputs
derived from the state trajectories, representing the dy-
namics of the state variables. For instance, in their ori-
ginal publication of the mammalian circadian clock
model [24], the authors employed a sensitivity analysis
of only one aggregated output – the circadian clock
period– a very important trait, but too aggregated to
give sufficient overview of the entire model behaviour.
Multivariate metamodelling has, at least in principle, the
capacity to reveal the relationships between all input
parameters and all model outputs simultaneously. This
has here been illustrated for the nine input parameters
assumed to be most interesting for the mammalian cir-
cadian clock and the 16 state variables of the model,
where the generated N-way metamodels allowed flexible
quantitative input-output regressions yielding inform-
ative graphical insight into the main underlying input-
output map characteristics. In our example N=3, but the
analysis can be extended to more than three modes.
Our analysis confirmed the main conclusions from the

original classical sensitivity analysis of the circadian
clock period carried out by Leloup and Goldbeter [24],
namely that the mammalian circadian clock model was
highly sensitive to parameters related to synthesis and
degradation of the protein Bmal1 and its mRNA. How-
ever, our analysis improved the overview of the input-
output relationships on which the circadian clock period
is based. The main patterns found in our previous ana-
lysis of the same model, using conventional (2-way)
PLSR [7], were also confirmed in the global NPLSR
metamodelling. However, the present cluster-based N-
way analysis revealed additional aspects of the input-
output relationships, for example the negative effect of
increasing vdPCN on the state variable PC in the part of
the model output space defined by Cluster 2. Hence,
the N-way HC-PLSR-based metamodelling worked as
intended in this illustration example. In the example
used here, the focus was on oscillating state variables.
Other types of behaviour of nonlinear dynamic systems
such as multiple steady states could potentially lead to
additional nonlinearities in the input-output mapping,
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probably increasing the gain of using a cluster-based ap-
proach compared to a global analysis.
An alternative to using NPLSR would be to unfold the

state variable trajectory array by concatenating all the
trajectory data into one 2-way matrix and use 2-way
HC-PLSR to analyse the data. However, the information
about related trajectories for different state variables
would then be left unused, leading e.g. to loss of the
opportunity to visualise covariance structures. In order
to evaluate the gain of keeping the 3-way structure in
the data, the same analysis was carried out using 2-way
HC-PLSR on unfolded state trajectory data as well as on
aggregated outputs calculated from the state trajectories.
The clustering results from these analyses (shown in
Additional file 1: Section S4) indicated that the increased
resolution achieved using N-way HC-PLSR could not be
achieved when the state trajectory array was unfolded
into two dimensions or transformed into aggregated out-
puts, due to a less reasonable clustering of the observa-
tions. Hence, using the NPLSR factors seems to enable
identification of more relevant clusters in which to carry
out regional metamodelling. The global parameter predic-
tion accuracies obtained were comparable to those
obtained with the global inverse N-way PLSR. However,
in the hierarchical metamodelling, neither the unfolded
state trajectories nor the aggregated outputs could predict
the circadian clock parameters with as high accuracy (on
average) with 2-way HC-PLSR as with the N-way HC-
PLSR.
In contrast to the results obtained using N-way HC-

PLSR, our previously published metamodelling of each
of the circadian clock state variables separately [8]
showed that all circadian clock state variables could be
predicted with high accuracy from the parameters
(within the parameter space analysed in that publication,
which was slightly different in the present analysis).
However, there is a clear gain of using a common meta-
model for all state variables in terms of obtaining
overview of the input-output relationships as well as
covariance patterns between the state variables. Never-
theless, as demonstrated here, a separate analysis of the
Table 4 Parameter value variances in the calibration and test

Data set vmB vmC vmP vdPCN

Calibr. set 0.0138 0.0373 0.1308 0.0024

Cluster 1 0.0041 0.0030 0.0936 0.0024

Cluster 2 0.0044 0.0348 0.0046 0.0024

Cluster 3 0.0006 0.0225 0.0854 0.0024

Cluster 4 0.0043 0.0320 0.0714 0.0024

Cluster 5 0.0061 0.0347 0.0095 0.0024

Cluster 6 0.0025 0.0326 0.0787 0.0024

Test set 0.0139 0.0373 0.1289 0.0024
input-output relationships for insufficiently described
state variables should accompany this type of analysis in
order to gain a more complete insight into the input-
output relationships. This was illustrated in our appli-
cation example for e.g. the state variable IN, which
had to be logarithmised and analysed separately in order
for its relationships to the input parameters to be
adequately described.
In NPLSR, relations between model outputs and input

parameters are easily interpretable through plots of the
loadings, in contrast to results produced e.g. by genetic
algorithms which are often more difficult to interpret
(although the latter can also handle multiple outputs).
Moreover, due to the decomposition of the data into
estimated latent variables, NPLSR can provide efficient
dimension reduction possibilities in high-dimensional
systems. However, since the NPLSR models presented
here used a high number of factors to explain the input-
output covariance, the dimension reduction possibilities
of NPLSR may not have been fully utilised. This was
caused by the differences in the time-to-peak for the dif-
ferent state variables, which the NPLSR uses many fac-
tors to describe. Hence, a more careful pre-processing of
the data would probably result in NPLSR models using
fewer factors, perhaps through shift correction as
described by Westad and Martens [29]. Work is in pro-
gress on testing whether this allows the NPLSR models
to use fewer factors while still keeping the same predict-
ive ability. However, even when using relatively many
factors, the NPLSR models still enable great dimension
reduction possibilities.
In regional regression modelling, there is a risk that

the variance in some input- or output variables is highly
reduced in the regional models compared to the entire
data set. Hence, the robustness of the predictions may
decrease and the regression coefficients as well as the
R2-values may be misleading for these variables. How-
ever, as shown in Table 4, the criterion used for defining
local clusters (based on fuzzy clustering searching for
spherical clusters) ensured that variances in the nine in-
put parameters did not differ much between the clusters,
set and the six N-way HC-PLSR clusters

vdIN k1 k3 k5 k7

0.2225 0.2225 0.2220 0.0021 0.0869

0.2340 0.1916 0.2166 0.0016 0.0819

0.2391 0.2338 0.2133 0.0019 0.0890

0.2065 0.2252 0.2196 0.0017 0.0869

0.2268 0.2328 0.2330 0.0025 0.0895

0.2165 0.2211 0.2232 0.0022 0.0848

0.2186 0.2217 0.2164 0.0019 0.0871

0.2220 0.2272 0.2203 0.0021 0.0871
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and were about the same in the calibration set and the
test set; the only parameters for which the variance
decreased in the clusters compared to in the original
datasets were vmB, vmC and vmP. This was not surprising,
since these three parameters had the largest impacts on
the first three NPLSR factors of the global NPLSR mod-
els, and hence the clustering using the NPLSR factors
was mostly based on these three parameters. However,
since these three parameters were also predicted with
high R2-values in the global inverse metamodel, high R2-
values were not artefacts of low cluster variance in this
study. This is primarily a problem occurring when using
small test sets, and here the test set was of approxi-
mately the same size as the calibration set (more than
8000 simulations in each).
Since the selection of data subsets in N-way HC-

PLSR is based on fuzzy clustering, no prior knowledge
about the structure of the data is needed. Hence, this
method automatically detects regions of different
model behaviour. The number of clusters to use in the
hierarchical metamodelling was here specified in ad-
vance, based on exploration of the predictive ability of
metamodels of varying complexity. However, using in-
stead an optimisation algorithm to find the optimal
number of clusters would make semi-automatic explor-
ation of input-output relationships of computational
models possible.

Conclusions
The N-way HC-PLSR method presented here provides
the opportunity to improve both prediction accuracy
and analytical insight by identification of regional sub-
sets of the data within which the relationships between
input parameters and model outputs are more transpar-
ent than in a global regression analysis. This was exem-
plified by the model sensitivity to the two parameters k1
and k3 that was detected in the regional analysis but not
in the global metamodelling.
Our results also indicate that analysing all state trajec-

tories simultaneously using N-way methodology is more
effective for identification of different behavioural
domains for a system and regions where input-output
mappings can be predicted with higher accuracy, than
unfolding the state trajectory array into two dimensions
or transforming state trajectories into aggregated out-
puts prior to the analysis. This is due to a more
reasonable clustering of the observations. Moreover, ap-
plication of the method for metamodelling in both the
classical and the inverse direction represents a more
comprehensive approach to the analysis of complex rela-
tionships between the model inputs and the temporal
behaviour of the outputs, and allows more confident
conclusions. Our results showed that the mammalian
circadian clock model was highly sensitive to parameters
related to the protein Bmal1, as previously found by
Leloup and Golbeter [24], but in addition our approach
revealed also more complex sensitivity patterns of the
model.
Based on these results, we believe that the presented

N-way HC-PLSR method will be instrumental for effect-
ive construction and validation of complex models. Due
to its efficient handling of N-way data structures,
demonstrated here in the analysis of the temporal model
behaviour, we hypothesise that N-way HC-PLSR will be
an especially useful tool for multivariate metamodelling
of spatiotemporal models, a large future application area.

Methods
Generation of the in silico data set
A model of the mammalian circadian clock developed
by Leloup and Goldbeter [24] was used to estimate the
circadian oscillations of cellular activity in conditions of
continuous darkness. The model consists of 16 coupled
differential equations with state variables describing
the dynamics of three key genes (Bmal1, Per and Cry),
including their mRNA level, nonphosphorylated and
phosporylated proteins as well as protein complexes.
The model contains intertwined positive and negative
feedback loops driving the circadian oscillations. A
curated CellML implementation [30-32] of the model
was downloaded from http://models.cellml.org. The
integration was carried out in SUNDIALS 2.3 [33] using
a wrapper for PySundials (http://pysundials.sourceforge.
net) in the same way as in [8].
The parameter combinations in the calibration set

were generated using an Optimised Multi-level Binary
Replacement (OMBR) Design [26] of 9 variables with 8
equally spaced levels each (Table 1). This resulted in
8192 simulations with the circadian clock model. The
ranges of each parameter are given in Table 1, and were
found by an initial range-finding experiment published
in [7]. A full factorial design of 9 variables ´a 8 levels
would require 89>134 million runs. Hence, the OMBR
design was chosen, in order to explore the effects of
as many parameters and parameter values as possible.
In the OMBR design method, the values of a original
parameters are replaced by multi-bit binary representa-
tions, and the binary factor bits are then combined in a
fractional factorial design according to a chosen con-
founding pattern. Thereby drastically reduced experi-
mental designs are obtained, yet maintaining reasonable
coverage of the parameter space. The OMBR design
has been compared to central composite designs and
semi-random designs, and has been shown to give good
predictive ability [7].
For each parameter combination the resulting differ-

ential equation model was solved from the original ini-
tial conditions (see [24]) until convergence to a stable

http://models.cellml.org
http://pysundials.sourceforge.net
http://pysundials.sourceforge.net
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limit cycle. The test for convergence was done as fol-
lows: First the system was solved with rootfinding for
variable MB to extract two complete cycles. Convergence
of the cycle period was tested by requiring that the
period difference relative to the mean of the periods for
the two cycles should be less than 0.001. Convergence to
synchronous oscillations was tested by (i) interpolating
all 16 state variables at 200 equally spaced time points
for each cycle, (ii) linearly transforming each state vari-
able such that the minimum and maximum values of
each cycle was 0 and 1, respectively, and (iii) requiring
that the sum of absolute difference between the two
cycles across all the 3200 interpolated time points
should be less than 0.0001.
The data set resulting from the simulations of the

mammalian circadian clock consisted of sampled values
for one period (here 200 timesteps) of 16 state variables
(corresponding to the 16 differential equations in the
model), for the set of 8192 combinations of values for
the nine varied input parameters. This gave a 3-way
array of 8192x16x200 data points. A description of the
mammalian circadian clock model state variables is
given in Table 2. Due to the wide parameter ranges used,
57 (0.7%) of the 8192 simulations did not result in a
stable limit cycle. These simulations were omitted in the
following analysis. The parameters and state variables
were mean-centred and standardised globally in the cali-
bration set prior to the metamodelling.
A separate test set based on 8192 parameter combina-

tions found by random Monte Carlo sampling [27,28]
within the same parameter levels as used in the calibra-
tion set was used. This resulted in 8125 converging
test set simulations. In the test set, the variables were pre-
processed in the same way as for the calibration set, using
the global calibration set means and standard deviations.
N-way HC-PLSR
Our previously published method for nonlinear meta-
modelling, HC-PLSR [8], has here been extended to
enable use of N-way data by using NPLSR [19,34], giving
N-way HC-PLSR. HC-PLSR [8] includes regional ana-
lysis using subsets of the original data set generated by
fuzzy C-means (FCM) clustering [35-38] (see Additional
file 1: Section S1).
In N-way HC-PLSR, a global NPLSR model compris-

ing all observations is first generated, and FCM cluster-
ing (using Euclidian distance) on a chosen number of
first mode (see Figure 1) factors (scores) of the global
NPLSR X-factors (or alternatively, Y-factors) is used to
separate the observations into groups within which re-
gional NPLSR models are made. The FCM fuzzifier par-
ameter was here chosen equal to 2. To prevent possibly
unstable regression models due to a small number of
calibration observations, we post-processed the cluster-
ing with the requirement that each cluster should
contain at least ten observations. Smaller clusters (and
their associated observations) were regarded as outliers,
and not included in the subsequent regional regres-
sion analysis (but were still included in the global regres-
sion analysis).
The optimal number of factors to use in the global

and regional NPLSR models, respectively, was here
chosen according to the minimum cross-validated mean
squared error (MSE) of prediction of the response array
Y, with the extra requirement that each included compo-
nent accounts for at least 1% of the total cross-validated
Y-variance, in the same way as in [8]. Here, 10-fold
cross-validation where the ten segments were randomly
chosen was used both in the global and the regional
NPLS regressions. These ten segments were successively
kept out of the NPLSR calibration, and predicted using
an NPLSR model based on the remaining observations.
NPLSR is described in Additional file 1: Section S1, and
the MATLABW N-way Toolbox v.3.11 [34] was used
here.
In our N-way HC-PLSR implementation, Linear Dis-

criminant Analysis (LDA) [39], Quadratic Discriminant
Analysis (QDA) [40] (the MATLABW function "classify"
from the Statistics Toolbox™ v7.6) or Naive Bayes classi-
fication (the MATLABW function "NaiveBayes" from the
Statistics Toolbox™ v7.6) can be used for classification of
new observations to be predicted (based on predicted
NPLSR factors for new observations). The implementa-
tion contains two options for prediction: 1) Prediction
using the local regression model calibrated in the most
probable cluster, and 2) Prediction using a weighted sum
of the local regression models, using the estimated clus-
ter membership values as weights. The N-way HC-PLSR
was carried out in MATLABW [41] Version 7.13
(R2011b), using in-house code which can be obtained
from the authors upon request.
Classical and inverse metamodelling of the mammalian
circadian clock model
The 3-way array of state variable data (observations x
outputs x time points) was first used as regressor in a
test set validated N-way HC-PLSR using the parameter
combinations as response-variables (inverse metamodel-
ling). To complement this analysis, analogous classical
metamodelling with N-way HC-PLSR was carried out,
where the parameter combinations were used as regres-
sor variables to predict the 3-way state trajectory array.
The calibration- and test sets calculated with the mam-
malian circadian clock model described above were used.
The methodology is illustrated in Figure 2. The most
probable local regression model was chosen for
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prediction, since this gave higher prediction accuracy
than using a weighted sum of the local models. No clus-
ters containing less than ten observations were identi-
fied, so all calibration set observations were included in
the regional regression analysis.

In the inverse metamodelling, the clustering (and clas-
sification in the prediction stage) of the observations
was based on the global predicted first mode X-factors,
the X-scores (TQutput;A;Inverse ¼ TXA;NWay in Additional file
1: Section S1), representing the state variable trajectory
data. All factors found to explain a significant amount of
the cross-validated calibration set Y-variation were
included. The number of clusters to use was chosen by
evaluating the ability to constrain (i.e. correctly predict)
the input parameters from the model output in the in-
verse metamodelling, using from 1 to 20 clusters within
the calibration set. The calibration set observations were
treated as "new observations" (see Figure 2) here, that is,
the same procedure as for the test set observations was
used in the prediction stage. Using cross-validation to
find the optimal number of clusters, as was done to find
the optimal number of factors for the NPLSR models,
would be too time consuming given the size of the data-
sets used here. The mean correlation coefficient (R2)-
values for the prediction of the parameters were used as
selection criterion, and using 6 clusters was considered
optimal in order to balance metamodel complexity
against predictive ability.

The same clusters were also used for the classical
metamodelling, since the X-factors in the inverse meta-
modelling are more directly related to the model output
state variables than the Y-factors from the classical
metamodelling (a PLSR model is asymmetric). How-
ever, for the classification in the prediction stage of the

classical metamodelling to be relevant, T̂Qutput;A;Inverse

was predicted from the first mode predicted Y-factors,

the Y-scores T̂YA;NWay (calculated using equation S12c
in Additional file 1), since in this case the Y-factors
represent the state variable trajectories. This was
done using second order polynomial Ordinary Least
Squares (OLS) regression (including square terms and

cross-terms), calibrated using calibration set T̂YA;NWay

from the classical metamodelling (¼ TInput;A;Classical * CA

(see Additional file 1, eq. S12c)) as regressors and
calibration set TXA,NWay from the inverse metamodel-
ling ( ¼ TQutput;A;Inverse ) as response variables. Hence,

T̂Qutput;A;Inverse ¼ F̂ T̂YA;NWay
� � ¼ F̂

�
TInput;A;Classical
� �

, where

F̂ is calibrated using polynomial OLS regression, and F̂
�

includes the calculation of T̂YA;NWay from TInput;A;Classical .
The test set observations were then classified based on

T̂Qutput;A;Inverse , according to the clusters found in the in-
verse metamodelling. See Additional file 1, sections S1.6
and S1.7 for a more comprehensive description of this
methodology, including all predicting equations for test
set observations.
QDA was chosen instead of LDA and Naive Bayes

classification in this study, since LDA assumes the
covariance matrix to be equal for all classes and Naive
Bayes classification assumes that the presence of a par-
ticular feature of a class is unrelated to the presence
of any other feature. In QDA, these assumptions are
not made.
In the classical metamodelling, the sensitivity of each

state variable to variations in the different parameters
was estimated as the product of the second mode X-
factors and the transpose of the second mode Y-factors
(also called X- and Y- loadings), using the optimal num-
ber of NPLSR factors for the corresponding NPLSR
model. The NPLSR loadings calculated here were not or-
thogonal. Work is currently in progress to assess the
effects of using non-orthogonal loadings to estimate the
model sensitivities.

Additional sensitivity analyses
Some of the input-output relationships were not well
described by the N-way HC-PLSR. Additional separate
sensitivity analyses were therefore carried out for
some of the state variables using 2-way second order
polynomial HC-PLSR with the parameters and their
cross-terms and second order terms as regressors and
the state trajectories as response variables, analogous to
the analysis presented in [8]. The regressors were mean-
centred and standardised prior to the HC-PLSR, while
the state trajectories were only centred. Some of the
state trajectories were logarithmised prior to the regres-
sion analysis.
The same clusters as in the N-way HC-PLSR described

above were used. QDA [40] on predicted PLSR Y-scores
(see Additional file 1, eq. S7d) were used for classifica-
tion, and all PLS components (PCs) explaining a signifi-
cant amount of the cross-validated Y-variance were
included. Both in the global and regional regression ana-
lyses the optimal number of PLS components to use was
found by 10-fold cross-validation. In the regional regres-
sion models, the matrices of cross-terms and second
order terms were deflated with respect to the variation
described by the first order terms (in an OLS regression)
in order to better separate the effects of nonlinear terms
and first order terms. The HC-PLSR was carried out
in MATLABW [41] Version 7.13 (R2011b), using in-
house code that can be obtained from the authors
upon request.

Method benchmarking
For comparison, the inverse metamodelling was carried
out using 2-way HC-PLSR where the 3-way state
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variable array was unfolded by concatenating the time
series for all state variables, as well as by using aggre-
gated outputs representing the state variable trajectories.
The following aggregated outputs were derived from the
state trajectories: period of oscillation, bottom, peak,
time-to-bottom and time-to-peak for each state variable
curve (see Additional file 1: Section S4). This resulted in
65 aggregated outputs. Both parameters, state variables
and aggregated outputs were mean-centred and standar-
dised prior to the HC-PLSR.
The number of PLS components to use in the PLSR

models was chosen based on the percent explained
cross-validated Y-variance as described in [8] and in the
same way as for the N-way HC-PLSR, clustering and
classification were done on the global X-scores of all
PCs explaining a significant amount of the cross-
validation variance. The same settings as described in [8]
were used for the HC-PLSR, except that QDA [40] (the
MATLABW function "classify" from the Statistics Tool-
box™ v7.6) was used for classification as in the N-way
HC-PLSR. The same number of clusters as in the N-way
HC-PLSR (6 clusters) was used also in the 2-way HC-
PLSR analyses.

Additional file

Additional file 1: S1. Description of the multivariate metamodelling
methodology; S2. Statistics of the global classical and inverse
metamodels of the mammalian circadian clock model; S3.
Supplementary sensitivity analyses of the mammalian circadian clock
model; S4. Results from the method benchmarking. Additional file 1
includes references [5,7,8,11,19-23,29,34-38,40-57].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KT contributed to conception, wrote the MATLABW code for the N-way HC-
PLSR pipeline, performed the data analysis and wrote the paper. UGI
participated in debugging of the N-way HC-PLSR code and in writing of the
paper. ABG performed the computational experiments with the mammalian
circadian clock model. SWO participated in writing the paper and HM
contributed to conception and writing of the paper. All authors read and
approved the final manuscript.

Acknowledgements
This study was supported by the National Program for Research in
Functional Genomics in Norway (FUGE) (RCN grant no. NFR151924/S10) and
by the Norwegian eScience program (eVITA) (RCN grant no. NFR178901/V30).
Rasmus Bro is thanked for providing us with the newest version of The N-
way Toolbox for MATLAB.

Author details
1Centre for Integrative Genetics (CIGENE), Dept. of Mathematical Sciences
and Technology, Norwegian University of Life Sciences, P. O. Box 5003,
N-1432 Ås, Norway. 2CIGENE, Dept. of Animal and Aquacultural Sciences,
Norwegian University of Life Sciences, P. O. Box 5003, N-1432 Ås, Norway.
3Nofima, P. O. Box 210, N-1431 Ås, Norway.

Received: 20 December 2011 Accepted: 20 June 2012
Published: 20 July 2012
References
1. Lillacci G, Khammash M: Parameter Estimation and Model Selection in

Computational Biology. PLoS Comput Biol 2010, 6:e1000696.
2. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M,

Tarantola S: Global Sensitivity Analysis: The Primer. Chichester: Wiley-
Interscience; 2008.

3. Saltelli A, Chan K, Scott EM: Sensitivity Analysis. 1st edition. Chichester:
Wiley; 2000.

4. Santner TJ, Williams BJ, Notz W: The design and analysis of computer
experiments. New York, USA: Springer; 2003.

5. Sarkar AX, Sobie EA: Regression Analysis for Constraining Free Parameters
in Electrophysiological Models of Cardiac Cells. PLoS Comput Biol 2010,
6:e1000914.

6. Sobie EA: Parameter sensitivity analysis in electrophysiological models
using multivariable regression. Biophys J 2009, 96:1264–1274.

7. Tøndel K, Gjuvsland AB, Måge I, Martens H: Screening design for computer
experiments: Metamodelling of a deterministic mathematical model of
the mammalian circadian clock. J Chemometr 2010, 24:738–747.

8. Tøndel K, Indahl UG, Gjuvsland AB, Vik JO, Hunter P, Omholt SW, Martens H:
Hierarchical Cluster-based Partial Least Squares Regression is an efficient
tool for metamodelling of nonlinear dynamic models. BMC Syst Biol 2011,
5:90.

9. Tøndel K, Vik JO, Martens H, Indahl UG, Smith N, Omholt SW: Hierarchical
Multivariate Regression-based Sensitivity Analysis Reveals Complex
Parameter Interaction Patterns in Dynamic Models. Submitted, .

10. Vik JO, Gjuvsland AB, Li L, Tøndel K, Niederer SA, Smith N, Hunter PJ,
Omholt SW: Genotype-phenotype map characteristics of an in silico
heart cell. Front Physio 2011, 2:106.

11. Kleijnen JPC: Design and Analysis of Simulation Experiments. 1st edition.
New York, USA: Springer; 2007.

12. Conti S, O’Hagan A: Bayesian emulation of complex multi-output and
dynamic computer models. J Stat Plan Infer 2010, 140:640–651.

13. Campbell K, McKay MD, Williams BJ: Sensitivity analysis when model
outputs are functions. Reliab Eng Syst Safe 2006, 91:1468–1472.

14. Cacuci DG: Sensitivity and Uncertainty Analysis: Theory v.1: Theory Vol 1. 1st
edition. Boca Raton: Chapman and Hall/CRC; 2003.

15. Cacuci DG, Ionescu-Bujor M, Navon IM: Sensitivity and Uncertainty Analysis:
Applications to Large-scale Systems Vol 2. 1st edition. Boca Raton: CRC Press; 2005.

16. Ayyub BM, Klir GJ: Uncertainty modeling and analysis in engineering and the
sciences. Boca Raton: Chapman & Hall/CRC; 2006.

17. Yener B, Acar E, Aguis P, Bennett K, Vandenberg S, Plopper G: Multiway
modeling and analysis in stem cell systems biology. BMC Syst Biol 2008,
2:63.

18. Conesa A, Prats-Montalbán JM, Tarazona S, Nueda MJ, Ferrer A: A multiway
approach to data integration in systems biology based on Tucker3 and
N-PLS. Chemometr Intell Lab, In Press.

19. Bro R: Multiway calibration. Multilinear PLS. J Chemometr 1996, 10:47–61.
20. Krishnaiah PR: Multivariate Analysis. New York: Academic Press Inc; 1967.
21. Wold S, Martens H, Wold H: The multivariate calibration method in

chemistry solved by the PLS method. In Lecture notes in Mathematics,
Matrix Pencils. Heidelberg: Springer; 1983:286–293.

22. Martens H, Næs T: Multivariate calibration. Chichester, UK: John Wiley and
Sons; 1989.

23. Martens H, Martens M: Multivariate Analysis of Quality: An Introduction.
1st edition. Chichester: Wiley; 2001.

24. Leloup J-C, Goldbeter A: Modeling the mammalian circadian clock:
Sensitivity analysis and multiplicity of oscillatory mechanisms. J Theor Biol
2004, 230:541–562.

25. Altinok A, Lévi F, Goldbeter A: Identifying mechanisms of chronotolerance
and chronoefficacy for the anticancer drugs 5-fluorouracil and
oxaliplatin by computational modeling. Eur J Pharm Sci 2009, 36:20–38.

26. Martens H, Måge I, Tøndel K, Isaeva J, Høy M, Sæbø S: Multi-level Binary
Replacement (MBR) design for computer experiments in high-
dimensional nonlinear systems. J Chemometr 2010, 24:748–756.

27. Kalos MH, Whitlock PA: Monte Carlo Methods Volume 1: Basics. 1st edition.
New York, USA: Wiley; 1986.

28. Liu JS: Monte Carlo Strategies in Scientific Computing. New York, USA:
Springer; 2008.

29. Westad F, Martens H: Shift and intensity modeling in spectroscopy–
general concept and applications. Chemometr Intell Lab 1999, 45:361–370.

http://www.biomedcentral.com/content/supplementary/1752-0509-6-88-S1.doc


Tøndel et al. BMC Systems Biology 2012, 6:88 Page 21 of 21
http://www.biomedcentral.com/1752-0509/6/88
30. Lloyd CM, Halstead MDB, Nielsen PF: CellML: its future, present and past.
Prog Biophys Mol Bio 2004, 85:433–450.

31. Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ:
An Overview of CellML 1.1, a Biological Model Description Language.
SIMULATION 2003, 79:740–747.

32. Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF: The CellML Model Repository.
Bioinformatics 2008, 24:2122–2123.

33. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE,
Woodward CS: SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers. ACM Trans Math Softw 2005, 31:363–396.

34. Andersson CA, Bro R: The N-way Toolbox for MATLAB. Chemometr Intell
Lab 2000, 52:1–4.

35. Bezdek JC: Pattern Recognition with Fuzzy Objective Function Algorithms.
Norwell: Kluwer Academic Publishers; 1981.

36. Berget I, Mevik B-H, Næs T: New modifications and applications of fuzzy
C-means methodology. Comput Stat Data Anal 2008, 52:2403–2418.

37. Næs T, Isaksson T: Splitting of calibration data by cluster analysis. J
Chemometr 1991, 5:49–65.

38. Næs T, Kubberød E, Sivertsen H: Identifying and interpreting market
segments using conjoint analysis. Food Qual Prefer 2001, 12:133–143.

39. McLachlan GJ: Discriminant Analysis and Statistical Pattern Recognition.
1st edition. Hoboken: Wiley-Interscience; 1992.

40. Hastie T, Tibshirani R, Friedman JH: The Elements of Statistical Learning.
New York, US: Springer; 2003. Corrected edition.

41. The MathWorks, Inc.: MATLABW, v. 7.13. 2011.
42. Martens H, Veflingstad S, Plahte E, Martens M, Bertrand D, Omholt S: The

genotype-phenotype relationship in multicellular pattern-generating
models - the neglected role of pattern descriptors. BMC Syst Biol 2009,
3:87.

43. Isaeva J, Sæbø S, Wyller JA, Nhek S, Martens H: Fast and comprehensive
fitting of complex mathematical models to massive amounts of
empirical data. Chemometr Intell Lab, . In press.

44. Isaeva J, Martens M, Sæbø S, Wyller JA, Martens H: The modelome of line
curvature: many nonlinear models approximated by a single bi-linear
metamodel with verbal profiling. Physica D 2012, 241:877–889.

45. Tenenhaus M, Vinzi VE, Chatelin Y-M, Lauro C: PLS path modeling. Comput
Stat Data Anal 2005, 48:159–205.

46. Pearson K: On lines and planes of closest fit to systems of points in
space. Philos Mag 1901, 2:559–572.

47. Jolliffe IT: Principal Component Analysis. 2nd edition. New York, US:
Springer; 2002.

48. Jolliffe IT: A note on the use of principal components in regression. J Roy
Stat Soc C-App 1982, 31:300–303.

49. Hoerl AE, Kennard RW: Ridge regression: biased estimation for
nonorthogonal problems. Technometrics 1970, 12:55–67.

50. Tibshirani R: Regression Shrinkage and Selection via the Lasso. J Roy Stat
Soc B Met 1996, 58:267–288.

51. Zou H, Hastie T: Regularization and variable selection via the Elastic Net. J
Roy Stat Soc B 2005, 67:301–320.

52. de Jong S: SIMPLS: an alternative approach to partial least squares
regression. Chemometr Intell Lab 1993, 18:251–263.

53. Martens H: Non-linear multivariate dynamics modelled by PLSR. In
Proceedings of the 6th International Conference on Partial Least Squares
and Related Methods. Beijing: Publishing House of Electronics Industry;
2009:139–144.

54. Berglund A, Wold S: INLR, implicit non-linear latent variable regression.
J Chemometr 1997, 11:141–156.

55. Gath I, Geva AB: Unsupervised optimal fuzzy clustering. IEEE Trans Pattern
Anal Mach Intell 1989, 11:773–780.

56. Frigui H, Krishnapuram R: A robust competitive clustering algorithm with
applications in computer vision. IEEE Trans Pattern Anal Mach Intell 1999,
21:450–465.

57. Bro R: PARAFAC. Tutorial and applications. Chemometr Intell Lab 1997,
38:149–171.

doi:10.1186/1752-0509-6-88
Cite this article as: Tøndel et al.: Multi-way metamodelling facilitates
insight into the complex input-output maps of nonlinear dynamic
models. BMC Systems Biology 2012 6:88.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	In silico data set
	Results from the N-way HC-PLSR metamodelling of the mammalian circadian clock model
	Input-output map characteristics revealed by the global classical and inverse metamodels
	Separately analysed output space regions in the hierarchical cluster-based metamodelling 
	Additional input-output map characteristics revealed by the regional classical and inverse metamodelling


	Discussion
	Conclusions
	Methods
	Generation of the in silico data set
	N-way HC-PLSR
	Classical and inverse metamodelling of the mammalian circadian clock model
	Additional sensitivity analyses
	Method benchmarking

	Additional file
	Acknowledgements
	Author details
	References

