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Abstract

Background: Alternative splicing is a ubiquitous gene regulatory mechanism that dramatically increases the
complexity of the proteome. However, the mechanism for regulating alternative splicing is poorly understood, and
study of coordinated splicing regulation has been limited to individual cases. To study genome-wide splicing
regulation, we integrate many human RNA-seq datasets to identify splicing module, which we define as a set of
cassette exons co-regulated by the same splicing factors.

Results: We have designed a tensor-based approach to identify co-splicing clusters that appear frequently across
multiple conditions, thus very likely to represent splicing modules - a unit in the splicing regulatory network. In
particular, we model each RNA-seq dataset as a co-splicing network, where the nodes represent exons and the
edges are weighted by the correlations between exon inclusion rate profiles. We apply our tensor-based method
to the 38 co-splicing networks derived from human RNA-seq datasets and indentify an atlas of frequent co-splicing
clusters. We demonstrate that these identified clusters represent potential splicing modules by validating against
four biological knowledge databases. The likelihood that a frequent co-splicing cluster is biologically meaningful
increases with its recurrence across multiple datasets, highlighting the importance of the integrative approach.

Conclusions: Co-splicing clusters reveal novel functional groups which cannot be identified by co-expression
clusters, particularly they can grant new insights into functions associated with post-transcriptional regulation, and
the same exons can dynamically participate in different pathways depending on different conditions and different
other exons that are co-spliced. We propose that by identifying splicing module, a unit in the splicing regulatory
network can serve as an important step to decipher the splicing code.

Background

Alternative splicing provides an important means for
generating proteomic diversity. Recent estimates indicate
that nearly 95% of human multi-exon genes are alterna-
tively spliced [1]. The mechanism for regulating alterna-
tive splicing is still poorly understood, and its
complexity attributes to the combinatorial regulation of
many factors, e.g. splicing factors, cis-regulatory ele-
ments, and RNA secondary structure [2,3]. A fundamen-
tal task of alternative splicing research is to decipher
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splicing code and understand the mechanism of how an
exon is alternatively spliced in tissue-specific manner.

A central concept in transcription regulation is the
transcription module, defined as a set of genes that are
co-regulated by the same transcription factor(s). Analo-
gously, such coordinated regulation also occurs at the
splicing level [4-6]. For example, the splicing factor
Nova regulates exon splicing of a set of genes that shape
the synapse [6]. However, the study of such coordinated
splicing regulation has thus far been limited to indivi-
dual cases [5-9]. In this paper, we define a splicing mod-
ule as a set of exons that are regulated by the same
splicing factors. The exons in a splicing module can
belong to different genes, but they exhibit correlated
splicing patterns (in terms of being included or excluded
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in their respective transcripts) across different condi-
tions, thus form an exon co-splicing cluster.

The recent development of RNA-seq technology pro-
vides a revolutionary tool to study alternative splicing.
From each RNA-seq dataset, we can derive not only the
expression levels of genes, but also those of exons and
transcripts (i.e., splicing isoforms). Given an RNA-seq
dataset containing a set of samples, we can calculate the
inclusion rate of each exon (In this study we only con-
sider cassette exons, which are common in alternative
splicing events. Henceforth, the term “exon” always
means “cassette exons”.) In every sample, as the ratio
between its expression level and that of the host gene. A
recent study provided a nice example of studying spli-
cing regulatory relationships using a network of exon-
exon, exon-gene, and gene-gene links [10]. Here, we
construct from each RNA-seq dataset a weighted co-spli-
cing network where the nodes represent exons and the
edge weights are correlations between the inclusion
rates of two exons across all samples in the dataset.
While directly comparing the inclusion rates for the
same exon in different datasets could be biased by plat-
forms and protocols, the correlations between inclusion
rates for a given exon pair are comparable across data-
sets. From a series of RNA-seq datasets, we can there-
fore derive a series of co-splicing networks, which can
be subjected to comparative network analysis and pro-
vide an effective way to integrate a large number of
RNA-seq experiments conducted in different labora-
tories and using different technology platforms.

A heavy subgraph in a weighted co-splicing network
represents a set of exons that are highly correlated in
their inclusion rate profiles; i.e., they are co-spliced. A
set of exons which frequently form a heavy subgraph in
multiple datasets are likely to be regulated by the same
splicing factors, and thus form a splicing module. We
call such patterns frequent co-splicing clusters. Due to
the enhanced signal to noise separation, frequent clus-
ters are more robust and are more likely to be regulated
by the same splicing factors (thus more likely to repre-
sent splicing modules) than those heavy subgraphs
derived from a single dataset. In our previous research
[11], we showed that the likelihood for a gene co-
expression cluster to be a transcription module increases
significantly with the recurrence of clusters in multiple
datasets. A similar principle applies to splicing modules.

In this paper, we adopt our recently developed tensor-
based approach to find the heavy subgraph that fre-
quently occur in multiple weighted networks [12]. Our
goal here is to identify co-spliced exon clusters that fre-
quently occur across multiple weighted co-splicing net-
works. A co-splicing network of n nodes (exons) can be
represented as an 7 x n adjacency matrix A, where ele-
ment a; is the weight of the edge between nodes i and
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j. This weight represents the correlation between the
two exons’ inclusion rate profiles. Given m co-splicing
networks with the same # nodes but different edge
weights, we can represent the whole system as a 3"-
order tensor (or 3-dimensional array) of size n x n x m.
An element a;j of the tensor is the weight of the edge
between nodes i and j in the k™ network (Figure 1). A
co-splicing cluster appears as a heavy subgraph in the
co-splicing network, which in turn corresponds to a
heavy region in the adjacency matrix. A frequent co-spli-
cing cluster is one that appears in multiple datasets, and
appears as a heavy region of the tensor (Figure 1). Thus,
the problem of identifying frequent co-splicing clusters
can intuitively be formulated as the problem of identify-
ing heavy subtensors in a tensor. By representing net-
works and formulating the problem in this tensor form,
we gain access to a wealth of established optimization
methods for multidimensional arrays. Reformulating a
discrete graph discovery problem as a continuous opti-
mization problem is a longstanding tradition in graph
theory. There are many successful examples, such as
using a Hopfield neural network to solve the traveling
salesman problem [13] and applying the Motzkin-Straus
theorem to the clique-finding problem [14]. Moreover,
when a graph-based pattern mining problem is trans-
formed into a continuous optimization problem, it
becomes easy to incorporate constraints representing
prior knowledge. Finally, advanced continuous optimiza-
tion techniques require very few ad hoc parameters, in
contrast with most heuristic graph combinatorial
algorithms.

We applied our tensor algorithm to 38 weighted
exon co-splicing networks derived from human RNA-
seq datasets. We identified an atlas of frequent co-
splicing clusters and validated them against four biolo-
gical knowledge bases: Gene Ontology annotations,
RNA-binding motif database, 191 ENCODE genome-
wide ChIP-seq profiles, and protein complex database.
We demonstrate that the likelihood for an exon clus-
ter to be biologically meaningful increases with its
recurrence across multiple datasets, highlighting the
benefit of the integrative approach. Moreover, we
show that co-splicing clusters can reveal novel func-
tional groups that cannot be identified by co-expres-
sion clusters. Finally, we show that the same exons
can dynamically participate in different pathways,
depending on different conditions and different other
exons that are co-spliced.

Results

We identified 38 human RNA-seq datasets from the
NCBI Sequence Read Archive (http://www.ncbi.nlm.
nih.gov/sra) (see additional file 1: Section S6 to get
details of these datasets), each with at least 6 samples
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Figure 1 lllustration of the 3"-order tensor representation of a collection of networks. A collection of co-splicing networks can be
“stacked” into a third-order tensor such that each slice represents the adjacency matrix of one network. The weights of edges in the co-splicing
networks and their corresponding entries in the tensor are color-coded according to the scale to the right of the figure. After reordering the
tensor by the exon and network membership vectors, a frequent co-splicing cluster (colored in red) emerges in the top-left corner. It is
composed of exons A, B, C, D which are heavily interconnected in networks 1, 2, 3.
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providing transcriptome profiling under multiple
experimental conditions, such as diverse tissues or var-
ious diseases. For each dataset, we used Tophat [15]
tool to map short reads to the /gl9 reference genome
and applied the transcript assembly tool Cufflinks [16]
to estimate expressions for all transcripts with known
UCSC transcript annotations [17]. We calculated the
inclusion rate of each exon, as the ratio between its
expression (the sum of FPKM (FPKM stands for “Frag-
ments Per Kilobase of exon per Million fragments
mapped”, as defined in [16].) over all transcripts that
cover the exon) and the host gene’s expression (the
sum of FPKM over all transcripts of the gene). It is
worth noting that in RNA-seq experiments, a gene
expression with low FPKM is usually not precisely esti-
mated because the number of reads mapped to the
gene is quite small. In order to work with reasonably
accurate estimates of exon inclusion rates, as pointed
out by [18], we calculated inclusion rates only for
those genes whose expressions are above 80™ percen-
tile across at least 6 samples. This criterion resulted in
inclusion rate profiles for 16,024 exons covering 9,532
genes. Based on these profiles, we constructed an exon
co-splicing network from each RNA-seq dataset by
using Pearson’s correlation between exons’ inclusion
rate profiles. Details of data processing refer to addi-
tional file 1 (Section S5).

We applied our method to 38 RNA-seq datasets gen-
erated under various experimental conditions. Adopting
the empirical criteria of “heaviness” > 0.4 and cluster
size >5 exons, we identified 7,194/3,104/1,422/594 co-
splicing clusters with recurrences >3/4/5/6.

Frequent co-splicing clusters are likely to represent
functional modules, splicing modules, transcriptional
modules, and protein complexes

To assess the biological significance of the identified
patterns, we evaluate the extent to which these exon
clusters represent functional modules, splicing modules,
transcriptional regulatory modules, and protein com-
plexes. Due to the difference of background “gene”
numbers, we set different p-value thresholds for signifi-
cance test.

Functional analysis

We evaluated the functional homogeneity of the host
genes in an exon cluster using Gene Ontology (GO)
annotations. To ensure the specificity of GO terms, we
filtered out general GO terms associated with >300
genes. If the host genes of exons in a cluster are statisti-
cally enriched in a GO term with p-value < 1E-4 (based
on the hypergeometric test), we declare the exon cluster
to be functionally homogeneous. We found that 23.3%
of clusters appearing in 23 datasets are functionally
homogenous, compared to only 6.0% of randomly gener-
ated clusters with the same sizes. This enrichment fold
ratio of 3.9 between real and random patterns demon-
strates the strong biological relevance of the identified
patterns. Furthermore, the enrichment fold ratio
increases with its recurrence of FSCs (shown in Figure
2A). For example, when the FSCs are required to recur
in at least 5 datasets, their enrichment fold ratio com-
pared to random patterns increases to 4.4, confirming
the benefits of the integrative analysis of multiple RNA-
seq datasets in improving the quality of detected pat-
terns. Functionally homogenous clusters cover a wide
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range of post-transcriptional associated GO terms, such
as “RNA splicing”, “ribonucleoprotein binding”, “hetero-
geneous nuclear ribonucleoprotein complex”, “negative
regulation of transcription from RNA polymerase II pro-
moter”, and “cellular protein localization”.

Splicing regulatory analysis

By construction, the exons in our identified co-splicing
clusters have highly correlated inclusion rate profiles
across different experimental conditions. Clusters meet-
ing this criterion are likely to consist of exons co-regu-
lated by the same splicing factors. It has been shown
that splicing factors can affect alternative splicing by
interacting with cis-regulatory elements in a position-
dependent manner [19]. We collected the experimental
RNA target motifs (2220 RNA binding sites) of 62 spli-
cing factors from the SpliceAid2 database [20]. To iden-
tify possible splicing factors associated with a co-splicing
cluster, for each exon of a co-splicing cluster, we
retrieved the internal exon region and its 50bp flanking
intron region which are enriched in the motifs of those
62 splicing factors by performing BLAST search (E-
score < 0.001). If the exons of a cluster are highly
enriched in the targets of a splicing factor, we consider
the cluster to be “splicing homogeneous”. Although the
collection of known splicing motifs is very limited, at
the p-value < 0.05 level (based on hypergeometric test),
we still observed that 4.9% clusters with >5 exons and
>6 recurrences are splicing homogenous, compared to
1.6% of randomly generated patterns with the same size
distribution. Its enrichment fold ratio is 3.0. Performing
the same analysis for less frequent clusters, we found
that as the recurrence increases, so does the enrichment
fold ratio (Figure 2B). The five most frequently enriched
splicing factors are inRNP E2, 9G8, hnRNP U, SRp75
and SRp30c. hnRNP E2 and hnRNP U both belong to
heterogeneous nuclear ribonu-cleoprotein family, which
generally suppress splicing through binding to exonic
splicing silencer [2]. Studies show that snRNP E2 can
repress exon usage when present at high levels in vitro
[21], and AnRNP U bind pre-mRNA as well as nuclear
mRNA and play an important role in processing and
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transport of mRNA [22]. 9G8, SRp75 and SRp30c all
belong to the SR family of splicing regulators. 9G8 pro-
tein excluding other SR factors can rescue the splicing
activity of a 9G8-depleted nuclear extract, indicating
9G8 plays a crucial role in splicing [23]. SRp75 is pre-
sent in messenger ribonucleoproteins in both cycling
and differentiated cells, and shuttles between nucleus
and cytoplasm, implicating its widespread roles in spli-
cing regulation [24]. SRp30c can function as a repressor
of 3’ splice site utilization and SRp30c-CE9 interaction
may contribute to the control of inRNP Al alternative
splicing [25].

We found that some splicing factors tend to co-bind
to the cis-regulatory regions of exons in a co-splicing
cluster, suggesting the combinatorial regulation of those
splicing factors. Trans-acting SR proteins Tra2a and
SRp30c are simultaneously enriched in 18 clusters (with
recurrence >3), whose major functions (by GO term
enrichment) are related to post-transcriptional regula-
tion, such as “ribonucleoprotein binding” (p-value =
2.11E-5), “nuclear mRNA splicing, via spliceosome” (p-
value = 7.66E-5), “RNA export from nucleus” (p-value =
4.81E-5), and “translational initiation” (p-value = 2.48E-
5). Current study indeed shows that there is a coopera-
tive interaction between Tra2a and SRp30c in exonic
splicing enhancer dependent GnRG pre-mRNA splicing
[26]. Splicing regulators SRp20, SRp30c and SRp75 are
simultaneously enriched in 2 clusters (with recurrence
>3), which are also associated with post-transcriptional
regulation. For example, “RNA splicing” (p-value =
3.25E-6), “translation initiation factor activity” (p-value =
7.42E-5), and “eukaryotic translation initiation factor 3
complex” (p-value = 2.17E-4). Our results suggest that
combinatorial splicing regulation can occur in post-tran-
scriptional processes.

Transcriptional and epigenomic analysis

To evaluate how co-splicing is affected by transcrip-
tional regulation, we used 191 ChIP-seq profiles gener-
ated by the Encyclopedia of DNA Elements (ENCODE)
consortium [27]. This dataset includes the genome-wide
bindings of 40 transcription factors (TF), 9 histone
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Figure 2 Evaluation of the functional, splicing, transcriptional, and protein complex homogeneity of co-splicing clusters with different
recurrences. Four types of databases are used: (A) Gene Ontology for functional enrichment, (B) SpliceAid2 database for splicing enrichment,
(C) ENCODE database for transcriptional and epigenetic enrichment, and (D) CORUM database for protein complex enrichment. The x-axis is
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modification marks, and 3 other markers (DNase,
FAIRE, and DNA methylation) on 25 different cell lines.
For a detailed description of the signal extraction proce-
dure, see the additional file 1 (Section S7). If the host
genes of an exon cluster are highly enriched in the tar-
gets of any regulatory factor, we consider the cluster to
be “transcription homogenous”. At the significance level
p-value <0.01, 74.9% clusters with recurrences >3 are
transcription homogenous, compared to only 21.2% of
randomly generated clusters with the same sizes. As
expected, the enrichment fold ratio increases with recur-
rence (Figure 2C). This result suggests a strong associa-
tion between transcription and splicing. The four most
frequently enriched regulatory factors are TAFS, GABP,
FOS and NFYB. TAFS8 is a subunit of transcription
initiation factor TFIID, which is required for accurate
and regulated initiation by RNA polymerase II [28]. As
an ETS transcription factor, GABP plays a key role in
regulating genes which are intimately involved in cell
cycle control, protein synthesis and cellular metabolism
[29]. FOS can dimerise with ¢-Jun to form AP-1 tran-
scription factor, which upregulates transcription of a
wide range of genes involved in proliferation and differ-
entiation to defense against invasion and cell damage
[30]. NFYB is a subunit of an ubiquitous heteromeric
transcription factor NF-Y, which regulates 30% of mam-
malian promoters [31].

Protein complex analysis

We evaluate the extent to which host genes of our iden-
tified exon clusters are protein complexes by using the
Comprehensive Resource of Mammalian protein com-
plexes database (CORUM, September 2009 version)
[32]. At the significance level p-value <0.05, 18.1% of
co-splicing clusters with recurrences >3 are enriched in
genes belonging to a protein complex, versus only 0.7%
of randomly generated clusters with the same sizes. The
enrichment fold ratio for protein complexes increases
with the cluster recurrence (Figure 2D). The five most
frequently enriched protein complexes are “Spliceo-
some”, “CCT micro-complex”, “large Drosha complex”,
“Nop56p-associated pre-rRNA complex”, and “C com-
plex spliceosome”. At least 1/3 of subunits in the
enriched complex “large Drosha complex” contain pro-
teins associated with splicing function, especially hetero-
geneous nuclear ribonucleoproteins such as HNRNPH]I,
HNRNPM, HNRNPU, HNRNPULI and HNRNPDL [32].

Co-splicing clusters reveal novel functions that are not
identified by co-expression clusters

Studies have shown that genes that are co-regulated
transcriptionally do not necessarily overlap with those
that are co-spliced [33]. Therefore, the identification of
co-splicing clusters can reveal functionally related genes
that could not be discovered from transcription analysis.
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In order to identify novel functions associated with co-
splicing but not co-expression, we complement the
above analysis by constructing a gene co-expression net-
work from each RNA-seq dataset. The nodes of these
networks represent genes, and the edges are weighted
by Pearson’s correlation between two gene expression
profiles. We then apply our tensor-based pattern mining
algorithm to identify frequent co-expression clusters in
the 38 co-expression networks with the same criteria as
those of identifying co-splicing clusters. The same func-
tional enrichment analysis described above for co-spli-
cing clusters was performed on the resulting co-
expression clusters. We found that 98.8% of co-splicing
clusters with recurrences > 3 have low expression corre-
lations (average correlations < 0.2). Therefore, many of
the functions associated with post-transcriptional regula-
tion are enriched in co-splicing clusters but not in co-
expression clusters. These functions include “mainte-
nance of protein location”, “regulation of protein cata-
bolic process”, “cytoplasmic sequestering of protein”,
“regulation of intracellular protein transport”, “regula-
tion of ubiquitin-protein ligase activity”, “ribonucleopro-
tein complex assembly”, “RNA splicing, via
transesterification reactions”, and “RNA export from
nucleus”.

For example, one co-splicing cluster has seven host
genes: HNRNPULI1, HNRNPC, DHX9, BATI1, PSMAS,
RAD23 and RPS9. This cluster cannot be found from
co-expression data, for the expression profiles of the
host genes have low correlations. However, this set of
host genes is enriched with several splicing associated
functions, including “RNA splicing” (p-value = 1.89E-6)
and “RNA helicase activity” (p-value = 4.68E-5). Out of
seven host genes, HNRNPULI and HNRNPC belong to
heterogeneous nuclear ribonucleoprotein family, which
generally suppress splicing through binding to exonic
splicing silencer [2]. DHX9, known as RNA helicase A, is
a highly conserved DEAD-box protein that activates
transcription, modulates RNA splicing, binds the nuclear
pore complex and involves in spliceosome assembly
[34,35]. Previous research illustrated that DHX9 med-
iates association of CBP and RNA polymerase II [36],
and current study further shows that DHX9 interacts
with post-transcriptional control element RNA in the
nucleus and cytoplasm to facilitate efficient translation
[34]. Interestingly, HNRNPC and DHX9 are indeed
tightly functionally associated: silencing of DHX9 ser-
iously disturbed the nuclear distribution of the #7nRNP
C protein [37]. As an essential splicing factor, BATI
also belongs to DEAD-box protein family, and plays an
important role in mRNA export from the nucleus to the
cytoplasm, supported by recent experimental evidence
that knocked down BAT1 induces spliced mRNA, as
well as total polyA RNA accumulating in nuclear
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speckle domains, not exporting to the cytoplasm [38].
Clearly, co-splicing clusters can provide complementary
information on functionally related gene groups in addi-
tion to co-trancriptional clusters. In particular, co-spli-
cing clusters can grant new insights into functions
associated with post-transcriptional regulation.

Exons can dynamically participate in different pathways
upon different co-splicing mechanisms

Alternatively skipping or including a cassette exon can
change the functions of a protein by deleting or insert-
ing a protein domain. In other words, protein isoforms
alternatively spliced from the same gene may participate
in different pathways. In our results, we observed that
70.3%/52.3%/38.3%/27.1% of exons are members of at
least two clusters (recurrence>3/4/5/6) with different
functions. For example, exon8 of the gene Rela appears
in four co-splicing clusters with recurrences =3, which
are enriched with the following distinct functions
respectively: “ER-associated protein catabolic process”
(p-value = 2.20E-5), “response to extracellular stimulus”
(p-value = 3.80E-5), “regulation of gene-specific tran-
scription” (p-value = 8.89E-5), and “positive regulation
of intracellular protein kinase cascade” (p-value = 2.49E-
5). Rela encodes the transcription factor p65, which is
an important subunit of the NF-xB complex that affects
several hundred genes by NF-xB signaling. Recent
research has identified several alternative splice variants
of Rela, e.g. p65A, p65A2 and p65A3. In fact, p65A
arises by the use of an alternative splice site located 30
nucleotides into exon8, and p65A43 was identified as a
splice variant lacking exon7 and exon8 [39]. These facts
are consistent with our finding that exon8 is dynami-
cally included in multiple co-splicing clusters. As
another example, exon2 of the gene EIF5 appears in
three co-splicing clusters with recurrences >3, which are
enriched with following distinct functions respectively:
“RNA splicing” (p-value = 6.27E-5), “mRNA polyadeny-
lation” (p-value = 1.57E-5), and “regulation of transla-
tional initiation” (p-value = 8.18E-5). As a translation
initiation factor, EIFS plays critical roles for the accurate
recognition of correct start codon during translation
initiation [40]. Our result suggests that except for trans-
lation initiation regulation, EIF5 may also involve in
post-transcriptional regulation, such as RNA splicing
and mRNA polyadenylation by dynamically including
exon2 in multiple co-splicing clusters. These examples
demonstrate that exons can contribute to different func-
tionalities of proteins depending on different splicing
regulatory mechanisms.

Conclusions
Splicing code is determined by a combination of many
factors, such as cis-regulatory elements and transacting

Page 6 of 9

factors. If some exons share the same splicing code, they
may form a splicing module: a unit in the splicing regu-
latory network. Therefore, identifying co-splicing clus-
ters first and then investigating their cis-regulatory
elements and associated trans-acting factors can serve as
an important step to decipher the splicing code. Our
tensor-based approach can identify co-spliced exon clus-
ters that frequently appear in multiple RNA-seq data-
sets. The exons in a frequent co-splicing cluster can
belong to different genes, but are very likely to be co-
regulated by the same splicing factors, thus forming a
splicing module. We demonstrated that the identified
clusters represent meaningful biological modules, i.e.
functional modules, splicing modules, transcriptional
modules, and protein complexes, by validating against
four biological knowledge databases. In all four types of
enrichment results, the likelihood that a co-splicing
cluster is biologically meaningful increases with its
recurrence. This consistent behavior highlights the
importance of the integrative approach. We also showed
that the co-splicing clusters can reveal novel functional
related genes that cannot be identified by co-expression
clusters, and that the same exons can dynamically parti-
cipate in different pathways depending on different con-
ditions and different other exons that are co-spliced.
The NCBI Sequence Read Archive database currently
stores 8099 RNA-seq profiles, and this number is
expected to dramatically increase in the near future. We
expect to apply our approach to the rapidly accumulat-
ing RNA-seq data of multiple organisms, and to identify
a large number of splicing modules and their associated
phenotype conditions. This analysis can serve as a first
step towards the reconstruction of tissue- and disease-
specific splicing regulatory networks.

Methods

Given an RNA-seq dataset, we construct a co-splicing
network where nodes represent exons and edges are
weighted by the correlation between two exon inclusion
rate profiles. Given m co-splicing networks with the
same 7 nodes but different edge weights, we can repre-
sent the whole system as a 3"-order tensor
A = (@i )nxnxm- A frequent co-splicing cluster (FSC) in
the tensor A4 can be defined by two membership vec-
tors: (i) the exon membership vector X = (X1, ..., %,)°,
where x; = 1 if exon i belongs to the cluster and x; = 0
otherwise; and (ii) the network membership vector'y =
O1 s V)T, where y; = 1 if the exons of the cluster are
heavily interconnected in network j and y; = 0 other-
wise. The summed weight of all edges in the FSC is

1 n n m
Ha(xy) = ) Z Z Z AijeXiXjYk- (1)

i=1 j=1 k=1
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Note that only the weights of edges a;; with x; = x; =
yx = 1 are counted in H4. Thus, H(X y) measures
the “heaviness” of the FSC defined by x and y. The pro-
blem of discovering a frequent co-splicing cluster can be
formulated as a discrete combinatorial optimization pro-
blem: among all patterns of fixed size (K; member exons
and K, member networks), we look for the heaviest. This
is also an integer programming problem: find the binary
membership vectors x and y that jointly maximize H 4
under the constraints ) i, x = K1 and Y[, )5 = K.
However, there are several major drawbacks to this dis-
crete formulation.

The first is parameter dependence, meaning that the
size parameters K; and K, are hard for users to provide
and control. The second is high computational complex-
ity; the task is proved to be NP-hard (see additional file
1: Section S1) and therefore not solvable in a reasonable
time even for small datasets. Therefore, the discrete
optimization problem is infeasible for an integrative ana-
lysis of many massive networks. Instead, we solve a con-
tinuous optimization problem with the same objective
by relaxing integer constraints to continuous con-
straints. That is, we look for non-negative real vectors x
and y that jointly maximize H 4. This optimization pro-
blem is formally expressed as follows:

MmaXxeRrn, yeRm Ha(xy)

. ()
subject to f(x) =1 and g(y) =1

where R, is a non-negative real space, and f{x) and g
(y) are vector norms. After solving Eq. (2), users can
easily identify the top-ranking networks (after sorting
the tensor by y) and top-ranking exons (after sorting
each network by x) contributing to the objective func-
tion. After rearranging the networks in this manner, the
FSC with the largest heaviness occupies a corner of the
3D tensor. We can then mask all edges in the heaviest
FSC with zeros, and optimize Eq. (2) again to search for
the next FSC.

The choice of vector norms in Eq. (2) has a significant
impact on the outcome of the optimization. A vector
norm defined as ||x||, = (3_i, lxi|P)/?, where p > 0, is
also called an “L,-vector norm”. In general, the closer p
is to zero, the sparser the solution favored by the L,-
norm; that is, fewer components of the optimized vec-
tors are significantly different from zero [41]. In con-
trast, as p increases, the solution favored by the L,-
norm grows smoother; in the extreme case p — oo, the
elements of the optimized vector are approximately
equal to each other. For more details on these vector
norms, refer to the additional file 1: Section S2. Our
ideal membership vector selects a small number of
exons ("sparse”) whose values are close to each other in
magnitude ("smooth”), while the rest of exons are close to
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zero. Our past research [12] has shown that this goal
can be achieved using the mixed norm Lg ..(x) = o]x||o
+ (1 - o)]x]l. (0 <x < 1) for fix). The norm L, favors
sparsity while the norm L., encourages smoothness in
the non-zero components of x. In practice, we approxi-
mate Lo ..(x) with another mixed norm: L,»(x) = «|x]|,
+ (1 - &)||x]l, where p < 1. Our criteria for the network
membership vector are similar. We want the exon clus-
ter to appear in as many networks as possible, so the
network membership values should be non-zero and
close to each other. This is the typical outcome of opti-
mization using the L.. norm. In practice, we approxi-
mate L., with L,(y), where g > 1 for g(y). Therefore, the
vector norms f{x) and g(y) are fully specified as follows,

f@) =alixll, + (1 —)lxl, and gy) =y],  ©

We performed simulations to determine suitable
values for the parameters p, o, and ¢, by applying our
tensor method to collections of random weighted net-
works. We randomly placed FSCs of varying size, recur-
rence, and heaviness in a subset of the random
networks. We then tried different combinations of p, ¢,
and ¢, and adopted the combination (p = 0.8, & = 0.2,
and g = 10) that led to the discovery of the most FSCs.
More details on these simulations are provided in the
additional file 1 (Section S4).

Since the vector norm f{(x) is non-convex, our tensor
method requires an optimization protocol that can
deal with non-convex constraints. The quality of the
optimum discovered for a non-convex problem
depends heavily on the numerical procedure. Standard
numerical techniques such as gradient descent con-
verge to a local minimum of the solution space, and
different procedures often find different local minima.
Thus, it is important to find a theoretically justified
numerical procedure. We use an advanced framework
known as multi-stage convex relaxation, which has
good numerical properties for non-convex optimiza-
tion problems [41]. In this framework, concave duality
is used to construct a sequence of convex relaxations
that give increasingly accurate approximations to the
original non-convex problem. We approximate the
sparse constraint function f(x) by the convex function
fu(x) = V' h(x) — f;*(v), where h(x) is a specific convex
function #(x) = x* and f; (V) is the concave dual of
the function f,(v) (defined as f(v) = f,(h(v))). The
vector v contains coefficients that will be automatically
generated during the optimization process. After each
optimization, the new coefficient vector v yields a con-
vex function ]7v(X) that more closely approximates the
original non-convex function f{x). Details of our ten-
sor-based optimization method can be found in the
additional file 1 (Section S3).
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Once the membership vectors (i.e., the solution of Eq.
(2)) have been found by optimization, the frequent co-spli-
cing clusters can be intuitively obtained by including those
exons and networks with large membership values. How-
ever, any given solution can result in multiple overlapping
patterns whose “heaviness” is greater than a specified
threshold. Here, heaviness is defined as the average weight
of all edges in the pattern. To identify the most represen-
tative pattern, we first rank exons and networks in
decreasing order of their membership values in % and ¥.
Then we extract two representative patterns that satisfy
the heaviness threshold: the pattern that occurs in the
most networks while having at least the minimum number
of top-ranking exons (e.g., 5), and the pattern with the lar-
gest number of top-ranking exons while appearing in at
least the minimum number of top-ranking networks (e.g.,
3). Both patterns are included as co-splicing clusters in
our results. After discovering a pattern, we can mask its
edges in those networks where they occur (replacing those
elements of the tensor with zeroes) and optimize Eq. (2)
again to search for the next frequent co-splicing cluster.

Additional material

Additional file 1: Supplementary material. Additional file provides
supplementary material which gives details of data processing and
methods.
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