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Abstract

Background: Large amounts of data are being generated by high-throughput genome sequencing methods. But
the rate of the experimental functional characterization falls far behind. To fill the gap between the number of
sequences and their annotations, fast and accurate automated annotation methods are required. Many methods,
such as GOblet, GOFigure, and Gotcha, are designed based on the BLAST search. Unfortunately, the sequence
coverage of these methods is low as they cannot detect the remote homologues. Adding to this, the lack of
annotation specificity advocates the need to improve automated protein function prediction.

Results: We designed a novel automated protein functional assignment method based on the neural response
algorithm, which simulates the neuronal behavior of the visual cortex in the human brain. Firstly, we predict the
most similar target protein for a given query protein and thereby assign its GO term to the query sequence. When
assessed on test set, our method ranked the actual leaf GO term among the top 5 probable GO terms with
accuracy of 86.93%.

Conclusions: The proposed algorithm is the first instance of neural response algorithm being used in the
biological domain. The use of HMM profiles along with the secondary structure information to define the neural
response gives our method an edge over other available methods on annotation accuracy. Results of the 5-fold
cross validation and the comparison with PFP and FFPred servers indicate the prominent performance by our
method. The program, the dataset, and help files are available at http://www.jjwanglab.org/NRProF/.

Background
Recent advances in high-throughput sequencing tech-
nologies have enabled the scientific community to
sequence a large number of genomes. Currently there
are 1,390 complete genomes [1] annotated in the KEGG
genome repository and many more are in progress.
However, experimental functional characterization of
these genes cannot match the data production rate.
Adding to this, more than 50% of functional annotations
are enigmatic [2]. Even the well studied genomes, such
as E. coli and C. elegans, have 51.17% and 87.92%
ambiguous annotations (putative, probable and
unknown) respectively [2]. To fill the gap between the

number of sequences and their (quality) annotations, we
need fast, yet accurate automated functional annotation
methods. Such computational annotation methods are
also critical in analyzing, interpreting and characterizing
large complex data sets from high-throughput experi-
mental methods, such as protein-protein interactions
(PPI) [3] and gene expression data by clustering similar
genes and proteins.
The definition of biological function itself is enigmatic

in biology and highly context dependent [4-6]. This is
part of the reason why more than 50% of functional
annotations are ambiguous. The functional scope of a
protein in an organism differs depending on the aspects
under consideration. Proteins can be annotated based
on their mode of action, i.e. Enzyme Commission (EC)
number [7] (physiological aspect) or their association
with a disease (phenotypic aspect). The lack of

* Correspondence: junwen@hku.hk
1Department of Biochemistry, LKS Faculty of Medicine, The University of
Hong Kong, Hong Kong SAR, China
Full list of author information is available at the end of the article

Yalamanchili et al. BMC Systems Biology 2012, 6(Suppl 1):S19
http://www.biomedcentral.com/1752-0509/6/S1/S19

© 2012 Yalamanchili et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.jjwanglab.org/NRProF/
mailto:junwen@hku.hk 
http://creativecommons.org/licenses/by/2.0


functional coherence increases the complexity of auto-
mated functional annotation. Another major barrier is
the use of different vocabulary by different annotations.
A function can be described differently in different
organisms [8]. This problem can be solved by using
ontologies, which serve as universal functional defini-
tions. Enzyme Commission (E.C) [9], MIPS Functional
Catalogue (FunCat) [10] and Gene Ontology (GO) [11]
are such ontologies. With GO being the most recently
and widely used, many automated annotation methods
use GO for functional annotation.
Protein function assignment methods can be divided

into two main categories - structure-based methods and
sequence-based methods. A protein’s function is highly
related to its structure. Protein structure tends to be
more conserved than the amino acid sequence in the
course of evolution [12,13]. Thus a variety of structure-
based function prediction methods [14,15] rely on struc-
ture similarities. These methods start with a predicted
structure of the query protein and search for similar
structural motifs in various structural classification data-
bases such as CATH [16] and SCOP [17] for function
prediction. Structural alignments can reveal the remote
homology for 80-90% of the entries in Protein Data
Bank [18] even if no significant sequence similarity was
found for the two proteins [19]. However, these meth-
ods are limited by the accuracy of the initial query
structure prediction and the availability of the homolo-
gous structures in the structural databases. Despite of
being highly accurate, the big gap between the number
of sequences and their solved structures restricts the use
of structure-based methods. Therefore, sequence-based
methods are needed.
The main idea behind sequence-based methods is to

compare the query protein to the proteins that are well
characterized, and the function of the best hit is directly
assigned to the query sequence. GO annotations are
assigned to the BLAST search results [20] for the first
time by GOblet [21] which maps the sequence hits to
their GO terms. Later on the GO terms are given
weights based on the E-value of the BLAST search by
Ontoblast [22]. This was further refined in GOfigure
[23] and GOtcha [24] by communicating the scores
from one level to the other in the GO hierarchy tree.
All these methods are based on the BLAST search
results; thus they fail to identify the remote homologues
with a higher E-value. This problem is tackled by the
Protein Function Prediction (PFP) server [25], which
replaces the BLAST with PSI-BLAST [26] and thus can
detect remote homologues. The PFP server can predict
the generalized function of protein sequences with
remote homology, but with a trade-off of low specificity.
FFPred [27] is the most recent protein function predic-
tion server that builds Support Vector Machine (SVM)

classifiers based on the extracted sequence features of
the query sequence and thus it does not require prior
identification of protein sequence homologues. However
the server needs one SVM classifier for each GO term,
which makes it computationally expensive. Furthermore,
the server only provides classifiers for 111 Molecular
function and 86 Biological Process categories that repre-
sent more general annotations, which limits its usage in
deciphering specific annotations. The lack of annotation
specificity and high complexity of the existing methods
advocate the need of improvement in the automated
protein function prediction.
Here we present a novel automated protein functional

assignment method based on the neural response algo-
rithm [28]. The algorithm simulates the neuronal beha-
vior of human’s image recognition, and has been
successfully applied for image classification. The main
idea of this algorithm is to define a distance metric that
corresponds to the similarity of small patches of the
images and reflects how the human brain can distin-
guish different images. This algorithm uses a multi-layer
framework with spatial scale, and size increasing as we
move from the one layer to the other in a bottom-up
fashion. The bottom layer consists of templates (sub-
patches) of the images and the intermediate layers con-
sist of secondary templates formed by the assembly of
the templates in the lower layers. The whole image is in
the topmost layer. For example consider a three layered
architecture of templates (patches) p, q and r (whole
image), with p ⊂ q ⊂ r as shown in Figure 1. Let Im(p),
Im(q) and Im(r) be the function spaces corresponding to
the similarity of the templates in the layers p, q and r
respectively. Im(x) gives the similarity between any two
patches in the layer x and a mapping set m: that maps
the templates from the bottom most layer to the tem-
plates in the next layer i.e. mp: p ® q, and similarly mq:
q ® r. Having defined the layers (p, q and r) and the
initial layers similarity function Im(p), the algorithm
builds a derived kernel on the top of layer r in a bot-
tom-up fashion. The process starts with the calculation
of initial reproducing kernel kp on the bottom most
layer p as the inner product of its functional space Im
(p)×Im(p). Based on the this initial kernel kp, intermedi-
ate derived kernel kq is computed on top of the layer q
and this in turn is used to compute the final derived
kernel kr on the top most layer r, which can help us in
the classification of the whole images in layer r. Refer to
[28], for the detailed mathematical formulation of the
initial and the derived kernels. The computation of ker-
nels forms the unsupervised preprocessing component
and is key for the superior performance of the neural
response algorithm as it can minimize the complexity of
the corresponding image classification problem (super-
vised task)[28].

Yalamanchili et al. BMC Systems Biology 2012, 6(Suppl 1):S19
http://www.biomedcentral.com/1752-0509/6/S1/S19

Page 2 of 13



In the current context of protein functional characteri-
zation, the top layer represents the whole protein
sequences and the subsequent layers are constituted of
sequence motifs. At each layer similarity is computed
between the templates of two successive layers, which
are referred to as derived kernels by taking the maxi-
mum of the previously computed local kernels in a
recursive fashion. Finally a mapping engine is built on
the kernels derived from the neural response algorithm
to map the query protein to its most probable GO term.
A detailed description of the whole methodology is
given in the Methods section.

Results
We used the GO terms with no further children (leaf
nodes of the GO tree) and their corresponding proteins
for the assessment of our method. The rationale for
using leaf nodes is that these GO terms are functionally
more specific than the GO terms at the higher levels, i.
e. no two GO terms should share a common protein
and thus can demonstrate the specific function predic-
tion strength of our method. This also addresses the
issue of redundancy in the training set. To further for-
tify our argument we had also addressed the redundancy
problem at sequence level by eliminating the redundant
sequences that are more than 80% similar in the training

set. This was done by using CD-HIT [29], a program
that removes redundant sequences and generates a data-
base of only the representatives. From the extracted GO
terms we enumerated all the protein pairs belonging to
the same GO term and labeled them as positive dataset
i.e. we assigned a label Y(i, j) as 1 and the protein pairs
belonging to different GO terms were labeled as nega-
tive, Y(i, j) = 0. Among such labeled pairs, we randomly
selected 3000 positive pairs and 3000 negative pairs and
used these labeled protein pairs to train and validate our
method. After training the final mapping function, f(N(i,

j)) produced a value between 0 and 1 corresponding to
the similarity between the proteins i and j in the valida-
tion set. Upon applying the threshold of 0.5, we pre-
dicted the labels Y(i, j) to 1 (share a GO term) if f(N(i, j))
≥ 0.5, and predict Y(i, j) to 0 (do not share a GO term)
if f(N(i, j)) < 0.5.

Cross validation
To evaluate our method we performed 5-fold cross vali-
dation i.e. we randomly divided the pool of 6000 labeled
protein pairs into five partitions with an equal number
of positive and negative labeled pairs. Out of the five
partitions, four were used to train the neural response
algorithm, and the remaining one partition was used to
test the algorithm. This process was repeated for five

Figure 1 Three layer mode for image classification.
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time (the folds), with each of the five partitions used
exactly once as the validation data. The idea was to
check whether our method can correctly classify the
pairs, which were not used for training. The values of
average accuracy, area under the curve (AUC) and train-
ing time of the 5-fold cross validation are reported in
Table 1, with respect to the template library and the
mapping engine used (See Methods). The difference in
the accuracies using the PROSITE and PFAM template
libraries is due to the differences in the respective
sequence coverage. Thus we combined the PFAM and
PROSITE templates for a better sequence coverage, and
indeed, the accuracy increased (Table 1). Out of the two
mapping engines Least Squares classifier is almost 3
folds faster than the SVM classifier with almost the
same accuracy (Table 1). Therefore we report the accu-
racy values using the Least Squares mapping engine.

Classification specificity with respect to the GO term
distance
As described in methods, the derived kernel classifies
two proteins to be similar, if the pair is equivalent (simi-
lar) to a pair with two known similar proteins. To test
the classification specificity of our method, we have
selected 800 proteins (400 pairs) with the first 100 pairs
sharing an immediate parent GO term (level 1); second
100 pairs sharing a common parent separated by an
edge distance of 2 in the GO tree (level 2). Similarly we
have level 3 and 4 datasets with an edge distance of 3
and 4 respectively. As the positive pairs in the training
set share a common GO term, we expect our method to
classify the protein pairs as positive whose GO terms
are the same or the next one in the GO hierarchy and
as negative if their respective GO terms are far away.
The number of positively classified (similar) pairs in
respective subsets is given the Figure 2. We observed
that the proportion of positively classified (similar) pairs
is 88% in the level 1 dataset as they are much closer in
the GO tree and it gradually dropped to 9% in the level
4 dataset as the GO distance between them is increased.
This suggests that our method is highly specific in clas-
sifying the similar proteins with respect to the relative
distance between the respective GO terms.

Comparison of classification accuracy
Having shown the predominant classification specificity
and the 5 fold cross validation results, we further compare
the classification accuracy of our method with the PFP
and FFPred servers, which are the most sensitive protein
function prediction server using GO vocabulary [3] to
date. We had compiled a test set of 400 proteins constitut-
ing of 200 protein pairs, with 100 pairs sharing the same
GO term (positive test set) i.e. the edge distance between
the GO terms of a protein pair is zero and other 100 pairs
sharing a distant root GO term (negative test set) i.e. the
edge distance between the GO terms of a protein pair is ≥
1. Each of the 200 protein pairs were classified as either
positive (similar) or negative (non similar) by NRProF.
Since PFP or FFPred server does not have a standalone
software version, we had to submit our query directly to
the online server manually for each of the 400 proteins.
The PFP and FFPred servers list the probable GO terms
for a query protein sequence with a confidence score asso-
ciated with each of the GO terms. A classification is con-
sidered to be accurate if the servers predict the same GO
term (rank 1) for both the proteins of a pair in the positive
test set and different for the negative test set. On the other
hand NRProF classification is considered to be accurate if
it can classify the positive set as similar and negative set as
dissimilar pairs. Out of 200 predictions, NRProF per-
formed better than PFP and FFPred servers in 8 and 5
instances respectively. The accuracies are tabulated in
Table 2. We therefore conclude that NRProF has a better
classification accuracy.

Table 1 5 Fold cross validation results with respect to the
template library

|S| Template Library in layer 2 SVM LS

Accuracy AUC Accuracy AUC

1 PROSITE 77.1% 0.851 76.4% 0.863

2 PFAM 80.5% 0.875 80.2% 0.881

3 PROSITE + PFAM 82.0% 0.882 81.70% 0.892

Training Time 151.9 Sec.* 54.9 Sec.*

Figure 2 Classification specificity plot.

Table 2 Classification Accuracy of the NRProF, FFPred
and PFP server with respect to the compiled test set.

|S| Method Accuracy

1 NRProF 83.8%

2 FFPred 81.5%

3 PFP Server 80.5%

Yalamanchili et al. BMC Systems Biology 2012, 6(Suppl 1):S19
http://www.biomedcentral.com/1752-0509/6/S1/S19

Page 4 of 13



GO term predictability
Next we demonstrate the GO term predictability of our
method. Our method labels a protein pair pi (query pro-
tein) and pj (protein in the base dataset) as 1 if they are
similar and thereby assigns the GO term of the protein
pj to the protein pi based on the threshold applied on
the function f(N(i, j)). To overcome the threshold depen-
dency and to make the results comparable with the PFP
and FFPred servers, we had sorted the proteins in the
base dataset in descending order based on their similar-
ity (f(N(i, j))) to the query protein, and assigned the GO
term of the corresponding most similar (rank 1) protein
to the query protein. For a better understanding of the
methods, we present the stepwise workout of the algo-
rithm for a human protein Chromodomain Helicase
DNA binding protein 1 (Figure 3). Firstly the query
sequence CHD1 was scanned for the potential template
hits. We got 7 hits in the template library, with no hit
occurring more than once thus a neural response vector
can be computed with equation 4 (see Methods). The
neural response vector computed was < CHD1 |
PS50013, 15.363 | PS50079, 4 | PS50313, 9.155 |
PS50322, 9.138 | PS50324, 24.763 | PS51192, 25.932 |
PS51194, 19.905 | >. The first element in the vector is
the query protein followed by the template ID (Prosite/
Pfam) and its score respectively. However if the query

sequence have repeats or if a template t has more than
one hit in the query sequence we consider the hit with
the maximum score (equation 3, Methods). We then
calculated the pair wise neural response N(p, qj) (equa-
tion 5, Methods) where p is the query (CHD1) and qi is
the pre-computed neural response of the ith protein
sequence from the initial base set. For illustration here
we show the calculation of 3 pair wise neural response
vectors (CHD1-AAAS), (CHD1-CHD2) and (CHD1-
CDV3) in the Figure 3. Next these pair wise neural
response vectors together with the another pair wise
neural response vector (which is known to be similar)
were fed to the mapping function using a Gaussian ker-
nel (equation 7, Methods) to generate a value ranging
from 0 to 1 corresponding to the similarity between the
proteins in the pair wise neural response. Then we
sorted the proteins in the base dataset in a descending
order based on their similarity (f(N(i, j))) to the query
protein. Since the f(N(CHD1-CHD2) is higher than the
other two, we assigned the GO term of CHD2 to
CHD1. In the GO tree, CHD2 has 22 associated GO
terms. Since we considered only leaf GO terms for the
higher annotation specificity, we assigned the GO term
GO:0005524 (leaf GO term associated with CHD2) to
CHD1. However, in addition to the current state of the
algorithm if users wish to consider other non-leaf GO

Figure 3 Detailed workout of CHD1. (a) Query sequence CHD1 is scanned for the potential template hits. (b) Computation of the
corresponding neural response. (c) Calculation of pair wise neural response N(p, qj) viz. (CHD1-AAAS), (CHD1-CHD2) and (CHD1-CDV3). (d)
Database of pre-computed neural response for the base dataset. (e) The pair wise pair wise neural response vectors are fed to the mapping
function using a Gaussian kernel to generate a value ranging from 0 to 1. (f) Proteins in the base dataset ate sorted in descending order based
on their similarity (f(N(i, j))) to the query protein. (g) GO term GO:0005524 of CHD2, with high mapping score is assigned to CHD1.
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terms, we suggest the users to use the sequence diversity
(simply the number of representative sequences after the
CD-HIT filtration) in the GO terms associated with the
most similar protein to the query protein, as a criteria
for assigning the GO term i.e., the GO term with the
least sequence diversity is assigned to the query protein.
This can be advocated by the fact that the sequence
diversity is inversely proportional to the specificity of
the GO terms. In the current example by either ways
our method had assigned the term GO:0005524 to the
CHD1.

Comparison with the existing methods
We compared the GO term predictions of our method
with PFP and FFPred servers, which are the most sensi-
tive function prediction servers to date. PFP and FFPred
servers predict the most probable GO terms for a query
protein with a confidence score associated with each of
the GO terms. A prediction is considered to be accurate
if actual (most specific) GO term of the query protein is
ranked among the top 5 probable GO terms by the
respective methods. Lack of standalone versions of PFP
and FFPred is a serious limitation on the dataset used
for comparison. We compiled a dataset of 300 proteins
each belonging to the leaf nodes of the GO tree. The
prediction results from PFP and FFpred were obtained
by manual submissions to the respective servers. Table
3 compares the GO terms predicted for the Human pro-
tein WDR55. PFP could not report the actual leaf GO
term in its top 5 predictions. This is due to trade-off of
annotation specificity to weak hits with High e value.
FFPred could not predict any GO term because it is lim-
ited to only 111 Molecular function and 86 Biological
Process categories. Whereas NRProF predicted top 3
similar proteins with the same GO term. The Overall
accuracy on the set of 300 proteins is reported in the
Table 4.
From Table 4, we can infer that our method NRProF

performs reasonably better than the PFP server. We
have not reported the accuracy of the FFPred, as it is
limited to only 111 Molecular function categories, which
makes it suitable for general rather than specific func-
tion annotations. There are other methods that use GO
vocabulary for protein function prediction methods
including GOblet, GOfigure and GOtcha. But the PFP

server has already been proved to be superior to all the
above mentioned methods [25]. Thus we have compared
our method (NRProF) only with the PFP server.

Discussion
Mapping function threshold
The mapping function, f(N(i, j)) produces a value
between 0 and 1 corresponding to the similarity
between the proteins i and j. Upon applying the thresh-
old of 0.5, we assign the labels Y(i, j) to 1 (share a GO
term) if f(N(i, j)) ≥ x, and to 0 (do not share a GO term)
if f(N(i, j)) < x. We tried different values of x to decide
on the best threshold. Different threshold values and
their corresponding accuracies are plotted in Figure 4. It
can be observed that the accuracy is high for the thresh-
old values ranging from 0.5 to 0.6. Thus we selected 0.5
as the optimal cut-off.

CD-HIT threshold
Here all our validation and test data sets constitute of
Human GO terms (same species) thus we need to take
care of the redundancy. This was implicitly addressed by
using GO nodes with no children; however we even
address this issue at the protein sequence level by using
CD-HIT with optimal cut-off, to ensure proper training.
An optimal threshold should not be too high or too
low, if so the predictions will be biased towards highly
similar/dissimilar proteins respectively. In order to
observe the influence of this cut-off on the accuracy, we
compared the accuracy values on a test set of 2000 pro-
tein pairs, with 1000 positive and 1000 negative pairs
with respect to five different cut-offs and the results are
shown in the Table 5. We can observe that the accura-
cies at 60% and 100% cut-offs are less when compared
to others. This may be due to the biased training on
negative and positive protein pairs respectively. The
accuracies at 70% and 80% are almost as good as or
higher than the other cut-offs. This supports the use of

Table 3 GO terms predicted for the protein Q9H6Y2 by PFP, FFPred and NRProF.

Protein Name/ID WDR55/Q9H6Y2

Actual Leaf
GO term

GO:0002039

Top 5 GO terms by PFP GO:0005488, GO:0043169, GO:0003676, GO:0004977, GO:0046026

Top 5 GO terms by FFPred No GO terms predicted for this sequence

Top 5 GO terms by NRProF P51532, Q96S44, Q9HCK8 (GO:0002039), Q01638 (GO:0002114), Q13822 (GO:0047391)

Table 4 GO term prediction Accuracy of the NRProF and
PFP server with respect to the test set.

|S| Method Accuracy AUC

1 NRProF 86.93% 0.9453

2 PFP Server 83.33% 0.8892
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80% as the cut-off to eliminate the redundancy. How-
ever this cut-off should be changed with the addition of
sequences from the other species. Thus we advise to
choose the cut-off based on the diversity of the dataset.

Similarity based on protein pairs
We can simply calculate the similarity between a query
protein and a known one to assign the corresponding
GO term. However with this similarity, we can only use
some naive algorithms like k-nearest neighborhood,
whose accuracy is not quite satisfactory especially for
biological data (proteins), which is essentially multi
dimensional. In addition to this, we should artificially
enforce a similarity cut-off between the query and the
known protein to assign the query protein to its asso-
ciated GO category. Considering the fact that the intra
GO term similarity varies from GO term to GO term it
is difficult to set such cut-offs. To conquer this, it is
necessary to design a machine learning algorithm that
can learn and chose the cut-off based on the similarity
between the proteins sharing the same GO term i.e. the
similarity cut-off should be high if the intra GO term

similarity is high and vice versa. Here, our model assigns
the query protein to its associated GO category (1st pair)
based on the respective Intra GO term similarity, given
by the similarity between the proteins constituting the
2nd pair, i.e. the 1st pair will be labeled as similar if its
similarity is equivalent to the similarity of the 2nd pair
(labeled as similar) and vice versa. By this we can bypass
the cut-off that needs to be enforced on the simple
similarity score for assigning GO terms.

GO term mapping
Mapping contains entities from external database system
indexed to similar or related GO terms. Currently these
mappings in the Gene Ontology database are made
manually consuming a lot of resources and time. As a
spin-off, our methodology can automate the process of
mapping between the templates (Prosite/Pfam) and the
GO terms, without compromising much on the accu-
racy. The neural response of a protein with respect to
all the templates computed according to the equations 4
(Methods) is nothing but the mapping of a protein (GO
term) to the respective templates (motifs). GO-Motif
association scores for the same is given by:

si = (NM)i × (AS)i (1)

where NMi is the number of proteins (after removing
the redundancy by CD-HIT) having a specific motif i
associated to a GO term (motif frequency) and ASi is
the alignment strength of the respective motif’s. We use
the product of NMi and ASi to achieve a trade-off
between the overrepresentation of a motif to its

Figure 4 Accuracy plot for different threshold values.

Table 5 Impact of CD-Hit cut-off on the accuracy

|S| CD-Hit cut-off Accuracy

1 60% 78.3%

2 70% 83.6%

3 80% 84.2%

4 90% 81.7%

5 100% 80.4%
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alignment strength. The detailed calculation is shown in
Figure 5. The computed GO-Motif association scores
can be used to rank the multiple mappings to a GO
term.

Proteins with multiple leaf GO terms
Our test set is compiled of leaf GO terms and their cor-
responding proteins with no two GO terms sharing a
common protein, to demonstrate the specific function
prediction strength of our method. However, up on per-
usal we found that ~25% of the proteins belong to more
than one leaf GO term under the category of molecular
function. To analyse the effect of “not including such
proteins” on the accuracy, we have compiled a new test
set of the same size (300 proteins including proteins
belonging to more than one leaf GO term). We perceive
that considering proteins belonging to more than one
leaf GO term has no negative effect on the GO term
predictability. In fact the prediction accuracy is slightly
better 89.63% when compared to 86.93% on the actual
test set.

Conclusions
Here we present a novel protein function prediction
method, NRProF, based on the neural response algo-
rithm using the Gene Ontology vocabulary. The neural
response algorithm simulates the neuronal behavior of
the visual cortex in the human brain. It defines a dis-
tance metric corresponding to the similarity by reflect-
ing how the human brain can distinguish different
sequences. It adopts a multi-layer structure, in which

each layer can use one or multiple types of sequence/
structure patterns.
NRProF is the first instance of neural response being

used in the biological domain. It finds the most similar
protein to the query protein based on the neural
response N between the query and the target sequences;
and thereby assigns the GO term(s) of the most similar
protein to the query protein. This is a profound and
composite method with the essence of sequential, struc-
tural and evolutionary based methods for protein func-
tion prediction. The templates from the PRINTS and
PFAM database contribute to the functional profiles or
signatures (sequence). The mismatch and deletion states
in the HMM profiles of the PFAM templates account to
the degeneracy due to evolution and the secondary
structural information of the match states in the HHM
profiles contribute to the structural part. The use of
HMM profiles along with the secondary structure infor-
mation of PROSITE and PFAM sequence motifs to
define the neural response gives our method an edge
over other available methods to identify the remote
homologues, as profile-profile alignments are superior to
PSI-BLAST based methods in detecting the remote
homologues. Thus NRProF can complement most of the
existing methods.
Our method is computationally less complex com-

pared with the other methods, as the initial neural
response of the proteins in the base dataset with respect
to the template library are computed only once and
from there the neural response between the query and
target is computed with the least computational effort

Figure 5 GO tem mapping with respect to the template library.
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unlike other BLAST/PSI-BLAST based methods. The
simple derived kernel adds to the computational simpli-
city of our method. We validated our method in a 5-
fold cross validation fashion and obtained an accuracy
of 82%. Considering the criterion that a prediction is
valid if and only if the actual GO term is top ranked (1st

Rank) GO term by our method, 82% is quite a good
accuracy. The classification accuracy of 83.8% on a test
set of 400 proteins suggests that our method is highly
specific in classifying the similar proteins with respect to
the relative distance between the respective GO terms.
Upon further caparison of our method with the PFP
and FFPred servers which are the most sensitive func-
tion prediction servers to date, the GO term prediction
accuracy of 86.93% evince that our method is more
accurate in predicting the specific functions. Thus we
conclude that our method is computationally simple yet
accurate when compared with the other methods. This
is achieved by simulating the neuronal behavior of the
visual cortex in the human brain in the form of neural
response.

Methods
The neural response algorithm can be viewed as a
multi-layered framework as described in the background
section. Here we built a two layer model as shown in
Figure 6, with the whole protein sequences in the top
most layer and the templates (sequence motifs) in the

subsequent layer. We used Gene Ontology (GO) voca-
bulary for protein functional assignment, i.e. we mapped
the query protein to its corresponding GO term(s) that
represent(s) the properties of the query sequence. GO
terms covers three major domains: cellular component,
molecular function, and biological process. We down-
loaded the ontology file (OBO) v1.2 from the GO
resource.
To demonstrate our approach, we only used the mole-

cular function domain with a total of 8,912 GO terms.
Then we extracted the proteins and their sequences
belonging to each of the GO terms. To address the
issues of redundancy we had used CD-HIT [29], a pro-
gram that removes redundant sequences and generate a
database of only the representatives. These protein
sequences and their respective GO terms were used as
the base dataset for our model. We only used proteins
from humans because we wanted to demonstrate the
ability of our method to predict/characterize the func-
tion of the proteins even if they are remotely homolo-
gous to the pre-characterized proteins (human).
We further trimmed our GO terms by screening out

the terms with less than 5 proteins. The resultant GO
terms form the base set for our method and their asso-
ciated proteins form the top layer in the model. For the
bottom layer (template library), we used the sequence
motifs from PROSITE [30] version-20.68 and Pfam [31]
version-24. The rationale behind choosing PROSITE

Figure 6 Two layers of the model and their respective data sources.
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and Pfam is that Pfam has the largest sequence coverage
[3] and PROSIRE has small sequence motifs that can be
useful in detecting remote homologues in the absence of
a whole conserved domain. We downloaded the PRO-
SITE patterns and Pfam domains as Hidden Markov
Model (HMM) [32] files from the respective reposi-
tories. Here we built two kernels, one on the top of
each layer. First an initial kernel is computed on top of
the template layer, which can be used as a similarity
function between the templates. Then a derived kernel is
computed on top of the top layer by choosing the maxi-
mum neural response between the individual templates
in bottom layer and the sequences in top layer. Compu-
tation of the initial kernel, the neural response and the
derived kernel is explained in detail in the following
subsections and the overall pipeline of the methodology
is shown in Figure 7.

Initial kernel
Let there be m templates (sequence motifs) q1...qm in
the bottom layer. We need to define a non-negative
similarity measure s(qi, qj) between any two motifs qi
and qj. A natural condition for similarity is s(qi , qj) ≤ s
(qi , qi) for any qi ≠ qj, which means a motif is always
more similar to itself than to the others. Besides this, to
ensure the validity of our algorithm, a mathematical
requirement of the similarity is that for a set of motifs

q1...qm, the matrix S should be a positive definite matrix.

S =
[
s
(
qi, qj

)]
n
i,j=1 (2)

Our template library in bottom layer consists of HMM
profiles from the Pfam database, thus we define the
similarity between templates as profile-profile alignment
scores. We had 10,257 profiles in the template library,
making ~106 profile-profile alignments. To align the
template HMM profiles we used HHsearch which is the
most sensitive profile-profile alignment tool to date
[33-35]. As a refinement for better sensitivity and to
capture the remote homology between the templates, we
considered the secondary structure information of the
templates as well, which is considered more conserved
and provides additional information [36]. We have pre-
viously used secondary structure information to improve
protein sequence alignment [37] and remote homologue
identification [38]. Thus we converted the HMM pro-
files to HHM [34] profiles containing the secondary
structure information of all the match states in the
HMM profiles. We employed HHsearch which uses PSI-
PRED [39] to predict the secondary structure and added
them to the HMM profiles. By doing this we were able
to capture the remote homologues templates. Profile-
Profile alignments were proved to be more sensitive
than PSI-BLAST in the identification of remote similar-
ity [40]. Thus our method has the edge over the PFP

Figure 7 Pipeline diagram showing the control flow of the method.
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server which is based on PSI-BLAST in detecting the
remote homologues.

Neural response
Consider a protein p in top layer with k template hits
denoted by qp1...qpk in bottom layer. PrositeScan [41]
and HMMER 3.0 [32] are used to scan the protein
sequences in top layer with the templates from PRO-
SITE and Pfam respectively. Both PrositeScan and
HMMER 3.0 were used in the local alignment mode as
here we intended to capture the existence of the locally
conserved patterns. Then the neural response of the
protein p with respect to a motif q is given by:

N
(
p, q

)
= max

{
s
(
qp1, q

)
. . .

(
qpk, q

)}
(3)

Now by considering all the m motifs in the template
layer the information about the protein p given the tem-
plates can be represented by an m-dimensional vector:

N
(
p
)
=

(
N

(
p, q1

)
, . . . .N

(
p, qm

))
(4)

Our goal is to learn the similarity between the query
protein pi and the proteins in the base dataset such that
we can assign the query protein pi to the GO term(s)
associated with the most similar protein pj. To quantize
the similarity between pairs pi and pj, we encoded the
pair (pi, pj) into a vector N(i, j) on which we can formu-
late the mapping engine to map the query protein to its
most probable GO term. There are two ways to achieve
this, by taking the difference between N(pi) and N(pj) or
by simply concatenating them together. As we found
that the former method always gives better performance
in our algorithm, we thus let:

N(i,j) =
∣∣N (

pi
) − N

(
pj

)∣∣ (5)

= (
∣∣N (

pi, q1
) − N

(
pj, q1

)∣∣ , . . . , ∣∣N (
pi, qm

) − N
(
pj, qm

)∣∣)

which is the neural response of the pair (pi, pj) on the
templates set q1...qm.

Derived kernel
We can derive a kernel K, which measures the similarity
of two protein pairs, from the neural responses. This
kernel also gives the similarity of two proteins. Two pro-
teins are similar, if the pair constituted by them is simi-
lar to a pair with two similar proteins and vice visa. In
the original paper of neural response [28], a linear ker-
nel is defined by inner products of neural responses.
Under our setting, the linear kernel for two pairs (pi, pj)
and (pi, pj) can be written as

K
((
pi, pj

)
,
(
pi′′ , pj′′

))
= N

〈
N(i,j),N(i′′ ,j′′)

〉
(6)

=
∑n

k=1 N(pi,qk)N
(
pi′′ , qk

)
+

∑n
k=1 N

(
pj, qk

)
N

(
pj′′ , qk

)

It is well established that the Gaussian kernel usually
performs better than the linear kernel for various classi-
fication tasks. Thus we had derived a Gaussian kernel
with a scale parameter s, given by

K
((
pi, pj

)
,
(
pi′′ , pj′′

))
= exp

⎧⎪⎨
⎪⎩

−

∣∣∣N(i,j) − N(i′′,j′′)

∣∣∣2

σ 2

⎫⎪⎬
⎪⎭

(7)

Mapping engine
Finally, a mapping engine was built, which defines a func-
tion “f” lying in the reproducing kernel Hilbert space [42]
associated with a positive definite kernel K that is derived
from the neural responses by inner products (linear ker-
nel) or Gaussian radial basis functions (Gaussian kernel).
First, we computed the neural response of all the proteins
in the base dataset with respect to the template library in
top layer. Similar neural response was computed for the
query protein sequence as well. Next we computed the
pair wise neural response N(i, j) between the query
sequence i and the sequence j (1..n) in the base dataset.
The mapping function f(N(i, j)) produces a value ranging
between 0 to 1 corresponding to similarity between the
proteins pi and pj. Thus, we can predict the label Y(i, j) to
1 (similar) if f(N(i, j)) ≥ 0.5, and Y(i, j) to 0 (non-similar) if
f(N(i, j)) < 0.5 . Other thresholds besides 0.5 are also
allowed. We then assigned the query protein pi to the
GO term/s associated with the protein/s pj whose label Y

(i, j) was set to 1. In this case the sensitivity of GO term
assignments varies with the threshold used (0.5). To
overcome this dependency on the threshold, we sorted
the proteins in the base dataset into descending order
based on their similarity (f(N(i, j))) to the query protein.
We finally extracted the top 5 GO terms and assign them
to the query protein. By doing so, we are not only over-
coming the threshold dependency problem but also using
the ranking (true value of the f(N(i, j))) as the confidence
scores for multiple GO terms associated with a single
protein.
We used two popular classification engines viz., Sup-

port vector Machines (SVM) [43] and Least-Squares
classifier [44] as the mapping engine. The main differ-
ence between them is, the loss function used for train-
ing. They use hinge loss and leastsquare loss
respectively. The performance of two mapping engines
is evaluated in the Results section.
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