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Abstract

Background: As protein domains are functional and structural units of proteins, a large proportion of protein-
protein interactions (PPIs) are achieved by domain-domain interactions (DDIs), many computational efforts have
been made to identify DDIs from experimental PPIs since high throughput technologies have produced a large
number of PPIs for different species. These methods can be separated into two categories: deterministic and
probabilistic. In deterministic methods, parsimony assumption has been utilized. Parsimony principle has been
widely used in computational biology as the evolution of the nature is considered as a continuous optimization
process. In the context of identifying DDIs, parsimony methods try to find a minimal set of DDIs that can explain
the observed PPIs. This category of methods are promising since they can be formulated and solved easily. Besides,
researches have shown that they can detect specific DDIs, which is often hard for many probabilistic methods. We
notice that existing methods just view PPI networks as simply assembled by single interactions, but there is now
ample evidence that PPI networks should be considered in a global (systematic) point of view for it exhibits
general properties of complex networks, such as ‘scale-free’ and ‘small-world’.

Results: In this work, we integrate this global point of view into the parsimony-based model. Particularly, prior
knowledge is extracted from these global properties by plausible reasoning and then taken as input. We
investigate the role of the added information extensively through numerical experiments. Results show that the
proposed method has improved performance, which confirms the biological meanings of the extracted prior
knowledge.

Conclusions: This work provides us some clues for using these properties of complex networks in computational
models and to some extent reveals the biological meanings underlying these general network properties.

Background
Recently, researchers have confirmed that most proteins
perform their functions through physically binding to
other proteins, permanently or transiently. These inter-
actions can be represented as a protein-protein interac-
tion (PPI) network with each node corresponding to a
protein and each edge an interaction. The development
of high-throughput technologies, such as yeast two-

hybrid screening methods [1,2] and affinity purification
with mass spectroscopy [3,4], has produced numerous
data of protein-protein interactions for different species,
which provides us an opportunity to investigate cellular
processes in a systematic view.
In general, proteins consist of one or more structural

domains. A PPI is usually carried out through domain-
domain interactions (DDIs). While PPIs are not so con-
served among species, the recognition patterns of
domain pairs are often shared within organisms [5].
Knowledge about domain-domain recognition patterns
can provide us a deeper understanding of the interaction
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network of proteins. Since interactions between domains
are difficult to be determined experimentally, many
computational approaches have been proposed to dis-
cover DDI patterns from experimental PPIs.
From a computational perspective, these methods fall

into two categories. In the first category, they try to find
pairs of domains that co-occur significantly more often
in interacting protein pairs than in non-interacting pairs.
The association method [6] computes a score for every
domain pair according to the ratio of its occurrences in
interacting protein pairs to non-interacting pairs. Deng
and colleagues [7] extended this idea to a more sophisti-
cated probabilistic model in which they applied an expec-
tation maximization algorithm to predict interacting
domains consistent with observed PPIs. Riley and collea-
gues [8] found that previous probabilistic models cannot
detect specific interactions very well. A specific DDI
means that domain i and domain j may interact in a con-
text-depended way, so observed interactions and non-
interactions including i and j are not always exclusive. In
order to detect specific interactions, they introduced an
E-value, which measures to what extent a given domain
pair cannot be replaced by another pair.
The second category, different from the probabilistic

framework, often models the issue as a combinatorial
optimization problem. The idea is that an observed PPI
can be explained by at least one pair of interacting
domains involved, then they try to explain observed
interacting protein pairs using a minimal number of
domain pairs (the minimal spanning set), namely, the
parsimony based approaches [9-11]. These methods do
not treat unobserved PPIs as evidence of non-interaction
of domain pairs involved, and therefore specific interac-
tions can be detected easily. Furthermore, parsimony-
based models can be formulated as an integer linear
programming and then relaxed to a linear programming
problem, which has efficient algorithms to solve.
Although the problem is thoroughly studied these

years, we realize that existing models only make use of
the local information of PPI networks (assembled single
interactions). There is now ample evidence that PPI net-
works should be considered in a global (systematic)
point of view for it exhibits some general properties of
complex networks. ‘Complex Networks’ is an emerging
concept that unifies networks appearing in different dis-
ciplines, such as social networks, information networks,
and biological networks [12]. Though these networks
are irrelevant at first sight, empirical studies have shown
that they share some common properties, such as
‘small-world’, ‘scale-free’ and relatively larger clustering
coefficient. A ‘small-world’ network is a network with
short characteristic path lengths, like random networks,
but still being highly clustered, like regular lattice

networks [13]. A ‘scale-free’ network is a network with
power-law degree distribution [14]. The clustering coef-
ficient measures the density of triangles in a network,
and it tends to be a non-zero constant when the size of
the network grows [12]. Besides, there are some more
detailed hidden features of complex networks which
have been revealed recently, such as rich-club structure
and mixing patterns (assortative mixing or disassortative
mixing) [15]. In a network, nodes with large numbers of
links are called rich nodes. It is found that rich nodes
are connected to each other as a close community,
called as rich club, in many social and computer net-
works. But in PPI networks, rich nodes are loosely con-
nected, i.e., there is no rich club phenomenon [16,17].
Oppositely, rich nodes in PPI networks tend to connect
nodes with small degree, a structure called disassortative
mixing by node degree. With these clues, we extract
prior information by plausible reasoning and integrate
them into a parsimony-based model [9]. The modified
model shows improved accuracy and we validate the
performance difference carefully to confirm that it is a
consequence of integrated prior information. This pro-
vides us some clues for using these global and common
properties of complex networks in computational mod-
els and to some extent reveals the biological meanings
underlying these network properties.
Besides, although the parsimony principle is widely

used in computational biology, few work has been done
to verify its rationality quantitatively. Here, we investi-
gate the parsimony nature of the organization of DDIs
in mediating PPIs through randomization-based testings,
which justifies the parsimony assumption from a com-
putational perspective.

Methods
Parsimony based methods
Zhang et al. [9] developed a protein interaction predic-
tion method based on the parsimony principle. In the
first step of the method, an integer linear programming
model is used to infer domain-domain interactions from
given protein interaction data. Guimarães et al. used a
parsimony explanation (PE) approach to predict
domain-domain interactions from protein interactions
[10], in which the model is exactly the same as the basic
parsimony model in [9], although two models were car-
ried out independently and implemented differently. We
describe the details of the models here.
We denote the observed protein-protein interaction

network as I = (P, E), where P = {P1, P2,..., PN} is the set
of proteins in the network and E is the set of PPIs. D =
{(Di, Dj)| Di∊ Pm, Dj∊ Pn, (Pm, Pn) ∊ E} is the set of all
possible domain pairs. Zhang et al. gave a formulation
as follows to determine a parsimonious core of DDIs:
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Min :
∑
(i,j)∈D

dij (1)

st :
∑

(i,j)∈(Pm,Pn)
dij + emn ≥ 1, (Pm,Pn) ∈ E (2)

∑
(Pm ,Pn)∈E

emn ≤ (1 − sd) |E| (3)

dij, emn ∈ {0, 1} (4)

Here, we use (i, j) ∊ (Pm, Pn) to represent domain
pairs involved in the corresponding protein-protein
interaction. This is a flexible version of parsimony
assumption. The objective function guarantees that as
few as domain pairs should be used. The following con-
straints enables every observed PPI must be explained
by at least one involved DDI or by a virtual variable emn.
When emnis set to 1, it is equivalent to deleting the cor-
responding PPI (Pm, Pn) from the constraints. Then a
tuning parameter sd is employed to control the propor-
tion of protein interactions that must be explained by
DDIs. This model is named as ILP (Integer Linear Pro-
gramming) model for later quotation.
Guimaraes et al. proposed a model with the same idea

as [9], but there is some difference in implementing:

Min :
∑
(i,j)∈D

dij (5)

st :
∑

(i,j)∈(PmPn)
dij ≥ 1, (PmPn) ∈ E (6)

dij ∈ {0, 1} (7)

They modeled the noise in the protein-protein inter-
action data by selecting the constraints randomly
according to a reliability probability r. For each reliabil-
ity level, the procedure was performed 1000 times, then
the values obtained were averaged to generate the
reported LP-score [10]. Besides the LP-score, they intro-
duced a statistical measure for each domain pair, specifi-
cally pw-score(i, j) = min{p-value(i, j), (1 - r)w(i, j)}. P-
value is a measure for evaluating the significance of the
LP-score of dij, which is computed through a randomi-
zation experiment with a set of 1000 random networks
as reference. w(i, j) denotes the number of witnesses
(interacting pairs of single-domain proteins supporting
it) for dij. (1 - r)w(i, j) denotes the probability that all
PPIs corresponding to witnesses are false positives. This
term is useful for removing promiscuous domain-

domain interactions that are scored high only because
of their appearance frequency.
The aforementioned methods utilize a common com-

putational assumption, namely, parsimony principle. In
fact, the parsimony principle has been widely used in
computational biology due to its biological/evolutional
implication and intuitive simplicity. For example, parsi-
mony strategy has been used in haplotype inference
[18,19] and in phylogenetic tree construction [20] as
one of the main modeling methodologies. While the
intuition behind the parsimony principle is clear
enough, few work has been done to show to what extent
the biology data are organized in a parsimonious way. In
this paper, we will verify it in the context of predicting
DDIs through a computational approach.

The parsimony essential of PPIs
To verify the parsimony assumption in the context of
predicting DDIs, we design two randomization testings.
The parsimony principle here is to use a minimal num-
ber of DDIs to explain the observed PPIs. We define a
null model in which there is no evolutional optimization
process in organizing the protein domain composition
and protein-protein interactions and compute the mini-
mal number of such DDIs through (Eq. 5-7). To achieve
this, the original data set is shuffled randomly. In order
to simplify the argument, we define a random variable T
denoting the minimal number of DDIs computed from
the shuffled data set, and T0 is the corresponding value
computed from the original data. So, under the null
model, we expect to see a significant larger T compared
with T0. Particularly, the original data set is shuffled
with two different rules. The first rule shuffles the pro-
tein domain composition while the PPIs are conserved
(For each protein, the number of constituent domains is
conserved), and conversely, the second rule shuffles the
PPIs while maintaining the composition (the degree dis-
tribution of the PPI network is conserved). The PPIs of
Saccharomyces cerevisiae are employed here (described
in detail below), and we have T0 = 12663 on this data
set. The distribution of T is shown as ‘violin plots’ (Fig-
ure 1), p-values are computed using the Gaussian distri-
bution. There is a significant difference between T
(under null model) and T0 (In both cases, p-values are
smaller than 1.00e-100), which confirms the parsimony
principle in the context of predicting DDIs. In the fol-
lowing, we modify the model proposed in [9] to inte-
grate the global information of PPI networks, and
investigate the performance changes carefully to extract
its role.

Motivation
Considering that it is intractable to directly integrate
‘small-world’ or ‘scale-free’ properties into the model as
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they are both statistical descriptions, we turn to consider
the clustering coefficient C. Empirical studies have
shown that many complex networks possess relatively
large clustering coefficient, which we will use as prior
information. We describe the definition of C proposed
by Watts and Strogatz [13] here. For each vertex, a local
value of the clustering coefficient is defined as follows:

Ci =
number of trianngles connected to vertex i

number of triples centered on vertex i
(8)

For vertices with degree 0 or 1, both the numerator
and denominator are zero, so define Ci= 0. Then the
clustering coefficient for the whole network is the aver-
age:

C =
1
n

∑
i

Ci (9)

In terms of social networks, a large clustering coeffi-
cient implies the friend of your friend is likely also to be
your friend. In many real complex networks, the

clustering coefficient tends to be a non-zero number
when the size of the network grows, while in random
networks, it tends to be zero.
In the definition above, nodes with small degree con-

tribute larger values to the global clustering coefficient
because they own smaller denominators (Eq. 8), so we
can deduce that the existence of triangle structures con-
nected to poor nodes (nodes with few neighbors) plays a
crucial role in maintaining relatively large C. We can
express the idea in another way: if we are allowed to
add finite edges into an existing network, in order to
maintain or increase the clustering coefficient, it is bet-
ter to connect nodes adjacent to a same poor node. In
the context of protein-protein interaction networks, it
means that proteins which share a common neighbor
with small degree are expected to be interacting.
We can also think it in a biological way. It is known

that most proteins carry out their functions through
physically binding to other proteins, rather than in an
individual way. So proteins with few neighbors are more
likely to form a tight complex with its neighbors, that is

Figure 1 PPIs and protein domain compositions are parsimoniously organized in nature. Under each null model, 200 data sets are
simulated. The distribution of T is shown as ‘violin plot’ and p-value is computed based on Gaussian distribution.
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to say, its neighbors interact with each other. On the
other hand, rich nodes are more likely to execute multi-
ple functions under different cell types/conditions, and
experimentally detected interactions associated to rich
nodes are the union of these cell type/condition specific
interactions, we can not deduce any interaction potential
of those proteins connected to a rich node.
Among experimental PPIs, a large proportion are

false positives, which hinders many computational
models. As discussed above, from a network view and
biological intuition, we reason that detected interac-
tions centering on a poor node are more likely to be
true positives.

Weighted integer linear programming model
Based on the discussion above, we give preferences to
observed PPIs. Interactions between proteins sharing a
poor neighbor have priorities of being explained by
DDIs. For such interactions, smaller weights are given
to domain pairs involved. The mathematical description
is as follows: Suppose dmin(dmax) is the minimum (maxi-
mum) degree of the nodes in the protein-protein inter-
action network. The interval [dmin, dmax] is divided into
K subintervals Ik(k = 1,..., K) and every node falls into
one subinterval. I1 contains proteins with small degree
while IKcontains most of the hubs. Then for a protein
contained in I1 and an interaction centering on the pro-
tein, smaller weights are given to domain pairs involved
in the interaction. We define a set of domain pairs as
follows: S = {dij|dij∊ (Pm, Pn), Pm, Pn∊ NP, P ∊ I1, Pm∊ Is,
Pn∊ It}, where NPcontains all the neighbors of protein P
in the PPI network.

wij =

⎧⎨
⎩

1
1 + |s − t| If dij ∈ S;

1 Otherwise.
(10)

If dijspans more than one interaction (Pm, Pn), then
wijtakes the smallest value. A larger |s - t| in the
denominator generates a smaller weight, which pro-
mote the priority of the corresponding domain pair,
consistent with that rich nodes in the PPI network
tend to connect nodes with small degree (disassortative
mixing).
Then, we get a weighted integer linear programming

model (WILP):

Min :
∑

{i,j}∈D
wijdij (11)

st :
∑

(i,j)∈(Pm ,Pn)
dij + emn ≥ 1, (Pm,Pn) ∈ E (12)

∑
(Pm,Pn)∈E

emn ≤ (1 − sd) |E| (13)

dij, emn ∈ {0, 1} (14)

This model is named as WILP (Weighted Integer Lin-
ear Programming) model for later quotation. In practical
computation, the linear integer programming is relaxed
to a linear programming by allowing dij, emnto take con-
tinuous values between 0 and 1. It is interesting to
notice that when we solve the problem using simplex
method, the optimal solutions are almost always with
integer components.

Results and discussion
Data sets
PPIs of S.cerevisiae are downloaded from the DIP data-
base (Scere20101010) [21], in which there are 25180
interactions underlying 5173 proteins. The protein
domain compositions are extracted from the Pfam data-
base (Pfam 25.0) [22], where 4125 of DIP proteins are
defined with Pfam-A domains. Finally there are 20709
PPIs that both proteins are defined in the Pfam data-
base. To evaluate the performance of the model, DDIs
in the iPfam [23] and 3did [24] databases are collected
to form a golden standard data set.

The clustering coefficient of the PPI network
The clustering coefficient of the PPI network we used is
0.0970. To make it comparable, two network generation
models are employed as null models: the scale-free
model [14] and the ER random graph model [25].
‘Scale-free’ networks exhibit power-law degree distribu-
tions. The ER random graph model Gn, mis a collection

of graphs with n nodes and m edges

(
m ≤ n (n − 1)

2

)

exactly, and all possible edges in the graphs are distribu-
ted uniformly, which is equivalent to connecting the

nodes with identical probability

(
2m

n (n − 1)

)
. Particu-

larly, we generate networks under two null models and
estimate the distribution of their clustering coefficient
separately. For the ‘scale-free’ model, the degree distri-
bution of the original network is kept while rewiring the
edges. For the ER random graph model, only the num-
ber of edges is conserved, and edges are selected ran-
domly. For each model, 500 sample networks are
generated, and the distribution of their clustering coeffi-
cient is shown as boxplots (Figure 2). The median clus-
tering coefficients are 0.02277 and 0.001867 respectively
for the scale-free model and the ER random graph
model, from which we can assert that the clustering
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coefficient of the observed PPI network is significantly
large. This validates the start point of our consideration.

Predicted DDIs are differently enriched in the golden data
set
We first evaluate the performance difference between
the modified model and the original one through count-
ing the number of domain pairs confirmed by the
golden data set. The linear programming problem after
relaxation has 30394 variables and 20709 constraints,
but there are only 756 variables (DDIs) in the golden
data set, due to the difficulties in detecting DDIs experi-
mentally. So we face a problem of lacking ‘positives’,
and thus the rate of false positives may be excessive. But
considering that our main purpose here is to investigate
the role of the weights, we still expect to see a
difference.
Specifically, ‘sensitivity’ and ‘fold change’ defined

below are used to evaluate the performances of the
models.

sensitivity =
True Positives

True Positives + False Negative
(15)

=
True Positives

756
(16)

Fold Change =
True Positives

Total Predictions × 756
30394

(17)

The results of WILP model and the ILP model are
shown in Figure 3A and Table 1. When the parameter
sd varies from 0.8 to 1, there’s no significant difference
in ‘sensitivity’, but when sd varies from 0.05 to 0.7, it
can be clearly seen that WILP outperforms ILP, which
matches our expectation. For why there is no clear posi-
tive signal when sd falls in [0.8, 1], we give two possible
reasons from a computational point of view. First, as
mentioned above, a large proportion of false positives in
PPIs may hinder the performance of computational

Figure 2 S.cerevisiae’s PPI network shows a relatively larger clustering coefficient. To make the observed clustering coefficient of the PPI
network (0.0970) comparable, two network generation procedures are employed as null models. The clustering coefficients of the null models
are shown as boxplots.
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models. Here, when sd decreases, the model removes a
prescribed proportion of constraints to achieve a most
parsimonious subset of PPIs. This process may clean the
original observed PPIs because we have proved that the
organization of PPIs and protein domain compositions
follows a parsimonious way. Second, lacking ‘positives’
leads to an under-estimation in ‘True Positives’ (TP).
These two reasons can also explain that why the
improvement we obtain is slightly weak even when sd
falls in [0.05,0.75].
There is a parameter K in the WILP model, which is

actually a threshold defining ‘poor nodes’ and controls
the size of I1. According to the preceding reasoning, a
larger K results in a smaller I1 and the extracted prior
information is more precise but less. In the numerical
experiments, a broad range of K are used and the per-
formance is quite robust (Figure 3B).

Statistical significance of the weights
The performance difference between WILP and ILP has
been shown above. In this section, we confirm that the
observed accuracy improvement is not obtained by
chance. That is to say, the weights derived from network
properties are indeed meaningful. Particularly, random
weights are given to WILP (the null model) and the dis-
tribution of TP is estimated and compared with real
values (Table 1). Specifically, the random weights are
generated from a uniform distribution between 0 and
0.5 and the number of weighted domain pairs is the
same as the true model. TP is selected as the test statis-
tic because we find that ‘Total Predictions’ and the
weights added are almost independent. The distribution
of TP is shown as ‘violin plots’ (Figure 4), p-values are
computed using the Gaussian distribution (500 runs for
each sd setting). There is a significant performance dif-
ference between true weights and randomly generated

weights (In both cases, p-values are smaller than 1.00e-
5), so we can reasonably assert that the accuracy
improvement observed in WILP is a consequence of
adding meaningful weights to domain pairs.

Functional similarity analysis of predicted DDIs
WILP outperforms ILP in terms of the number of the
predicted DDIs confirmed by the golden data set. In this
section, these two models are compared in a functional
view. In gene expression analysis, co-expression genes
are deemed to be functionally similar for they may be
involved in a same biological process. It is natural to
hypothesize that physical interacting domains have simi-
lar biological functions. This impels us to compare
WILP and ILP by examining the functional similarity of
predicted DDIs. GO terms have been mapped to Pfam
entries [26] and domain-domain functional similarity
measure is based on similarities of corresponding GO
terms. Particularly, GOSim [27] is used to compute

Figure 3 WILP outperforms ILP in terms of the number of the predicted DDIs confirmed by the golden data set. (A) Sensitivities of WILP
and ILP are compared as sd varies from 0.05 to 1. In WILP, K is set to 50. (B) Performances of WILP are shown in different K settings. There is a
broad interval in which WILP outperforms ILP robustly.

Table 1 Performance comparison between WILP and ILP

sd Total Predictions True Positives Sensitivity(%) Fold Change

1 12663 (12663) 382 (375) 50.53 (49.60) 1.21 (1.19)

0.9 10592 (10592) 361 (351) 47.75 (46.43) 1.37 (1.33)

0.8 8521 (8521) 341 (342) 45.11 (45.24) 1.61 (1.61)

0.7 6450 (7102) 306 (306) 40.48 (40.48) 1.91 (1.73)

0.6 4379 (5162) 276 (223) 36.51 (29.50) 2.53 (1.74)

0.5 2648 (3091) 190 (176) 25.13 (23.28) 2.88 (2.29)

0.4 1613 (1620) 145 (143) 19.18 (18.92) 3.61 (3.55)

0.3 875 (779) 104 (89) 13.76 (11.77) 4.78 (4.59)

0.2 430 (279) 69 (37) 9.13 (4.89) 6.45 (5.33)

0.1 131 (63) 29 (16) 3.84 (2.12) 8.90 (10.21)

Comparison of WILP and ILP in terms of the number of the predicted DDIs
confirmed by the golden data set. Predicted DDIs verified according to the
golden data set are denoted as true positives. ‘Sensitivity’ and ‘Fold Change’
are defined in the main text. Numbers marked in red means that WILP
outperforms ILP
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Figure 4 Statistical significance of the weights. Random weights are given to WILP and the distributions of ‘TP’ are shown as ‘violin plots’.

Figure 5 Similarity analysis of the predicted DDIs. Comparison of functional similarities of the predicted DDIs obtained by ILP and WILP (sd
varies from 0.5 to 1).
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similarities between GO terms and for a pair of
domains, their similarity is defined as the maximum
similarity of involved GO terms. For a set of predicted
DDIs, the similarity profile is the average. Because not
all domains have mapped GO terms, DDIs which
include domains without annotation are dropped. DDIs
predicted from WILP show higher functional similarities
in general than those predicted by ILP as sd varies from
0.5 to 1 (Figure 5). This further validates the biological
meanings of the weights extracted from the general
properties of the PPI complex network conformation.

Conclusions
Knowledge about domain-domain recognition patterns
provide insights of the organization of PPIs and protein
function. While DDIs are difficult to be determined
experimentally, many computational approaches have
been proposed aiming at discovering the patterns from
DDIs, among which parsimony-based models show their
advantages in easy implementation and power in detect-
ing specific DDIs. We notice that existing methods only
make use of PPIs in a local way. As PPI networks are an
important case of complex networks and exhibit global
properties such as ‘small-world’, ‘scale-free’ and rela-
tively larger clustering coefficient, in this paper, we try
to integrate the clustering coefficient feature as prior
known knowledge into the computational model.
Results show that WILP outperforms ILP to some

extent, which confirms us that those properties are bio-
logically meaningful. This may shed light on a new per-
spective in studying DDI and PPI networks. Currently,
studies of complex networks mainly focus on those
common features but few work has been done to inves-
tigate what is behind them. We point out that those fea-
tures can be connected with a specific problem in
computational biology. Then we can study the role of
the features in a context-depended way, where plenty of
tools have been developed.
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