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Abstract

out of this dilemma.

specific transcriptional networks.

Background: Transcriptional networks of higher eukaryotes are difficult to obtain. Available experimental data from
conventional approaches are sporadic, while those generated with modern high-throughput technologies are
biased. Computational predictions are generally perceived as being flooded with high rates of false positives. New
concepts about the structure of regulatory regions and the function of master regulator sites may provide a way

Methods: We combined promoter scanning with positional weight matrices with a 4-genome conservativity
analysis to predict high-affinity, highly conserved transcription factor (TF) binding sites and to infer TF-target gene
relations. They were expanded to paralogous TFs and filtered for tissue-specific expression patterns to obtain a
reference transcriptional network (RTN) as well as tissue-specific transcriptional networks (TTNs).

Results: When validated with experimental data sets, the predictions done showed the expected trends of true
positive and true negative predictions, resulting in satisfying sensitivity and specificity characteristics. This also
proved that confining the network reconstruction to the 1% top-ranking TF-target predictions gives rise to
networks with expected degree distributions. Their expansion to paralogous TFs enriches them by tissue-specific
regulators, providing a reasonable basis to reconstruct tissue-specific transcriptional networks.

Conclusions: The concept of master regulator or seed sites provides a reasonable starting point to select
predicted TF-target relations, which, together with a paralogous expansion, allow for reconstruction of tissue-

Background

Regulation of transcription is mediated through complex
arrays of transcription factor binding sites (TFBSs),
which constitute promoter and enhancer regions. In spite
of the advent of high-throughput approaches to identify
TEBSs in a given cellular context, the available informa-
tion, most comprehensively collected in the TRANS-
FAC® database [1], is still fragmented and biased with
regard to the systems selected. Consequently, any tran-
scriptional network reconstructed from the available
experimental data is highly incomplete. This situation
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deteriorates further when filtering such a transcriptional
“reference” network for gene expression data in order to
generate tissue-specific networks. Therefore, constructing
comprehensive gene regulatory networks still depends on
reliable algorithms for predicting individual TFBSs as a
basis for inferring TF-target gene relations. These predic-
tions, however, depend on the availability of information
about the DNA-binding specificity of ideally all TFs
encoded by a genome. Unfortunately, we are far from
this ideal situation, so that we can do such predictions
only for a subset of, e.g., human TFs. Although promising
methods have been reported for inferring DNA-binding
specificities by homology modeling [2,3], the required 3D
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structures of TE-DNA complexes are known for only a
minority of factors.

Recent studies have applied high-throughput approaches
to map active promoters and enhancers in a particular cel-
lular context by capturing epigenetic characteristics such
as specific histone methylation patterns [4]. However, it
still has to be revealed what the exact regulation of a given
gene is, i.e. which functional TEBSs are there in its regula-
tory regions, and which is the original signal that flags a
promoter region as such. Conceivably, the recently pub-
lished concepts about master transcription factors [5] or
pioneer transcription factors [6] may provide a clue to this
problem.

In this study, we started from the following related
working model as hypothesis: In the genome of a given
higher eukaryotic cell, promoter sequences have to be
“flagged” in order to be recognizable by the transcrip-
tion machinery. Each of these flags is realized by a high-
affinity TFBS, which, due to its functional importance, is
generally conserved among genomes that are phylogen-
etically not too distant. These high-affinity and con-
served sites serve as nucleation centers, or “seeds”, to
govern the proper assembly of TFs at one promoter,
which also involves a set of additional transcription fac-
tors with binding sites of decreasing affinity and acting
in a concomitantly optional manner.

Methods

TFBS prediction

We started from 35,750 RefSeq-annotated human promo-
ter regions (UCSC track refGene, Apr. 14, 2010, hg19)
which are linked to 21,532 unique genes. We selected the
1-kb upstream regions based on the RefSeq annotation to
cover the corresponding human promoter regions. We
retrieved ortholog promoter regions from mouse, dog, and
cow genomes from the 46_WAY_MULTIZ_hg19 whole
genome alignments provided by UCSC for 46 vertebrates
using UCSC/Galaxy [7]. The corresponding sequence
builds are hg19, mm9, canFan2, and bosTau4. Gaps result-
ing from the multiple genome alignment were removed
from the promoter sequences. Potential transcription fac-
tor binding sites (TFBS) were then identified using all
available vertebrate matrices (854 PWM) of the TRANS-
FAC matrix library (release 2009.4) and the program
Match™ [8]. We applied all vertebrate matrices using
default minFN ("minimize false negatives”) thresholds in
order to retrieve almost all potential transcription factor
binding sites that have at least the quality of the used
TFBS which are given in the corresponding matrix [8].
The predictions were then mapped back to the whole gen-
ome alignments. We next filtered for conserved TEBS
predictions: a conserved TFBS has to start or end at a
non-gap symbol in the corresponding promoter alignment.
Finally we ranked all conserved TFBSs according to their
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Match score and selected the top-ranking 1%, 2%, 3%, 5%,
etc for evaluations. The 100% profile comprises all con-
served TFBSs that were identified with minFN thresholds.
For further analyses of the network characteristics, the
top-ranking 1% predicted binding sites for each matrix
were used.

From predictions to gene regulatory network

Using the TRANSFAC library we ended up with a list of
predicted transcription factor binding sites related to the
TRANSFAC matrix identifiers. To build gene regulatory
networks we translated these matrix identifiers, which
are linked to lists of related species-specific proteins, to
official human gene symbols.

For “paralogous expansion”, we used our new Human
Transcription Factor Classification to construct gene regu-
latory networks (http://www.bioinf.med.uni-goettingen.de/
projects/tfclassification/). This collection classifies human
transcription factors into families and subfamilies mainly
based on the sequence similarities of their DNA-binding
domains (DBDs). Since at the lowest classification level,
the DBDs are usually extremely similar, the DNA-binding
specificities can be assumed to be nearly identical as well.
We therefore expanded all TF-target links to all members
of the corresponding TF (sub-)family, for which no matrix
is as yet available.

Evaluation of conserved binding site prediction

The verification of the predicted binding sites was done
using experimentally identified regulatory regions from
the Encode project [9]. ENCODE provides a regulatory
super-track as a downloadable file. This archive is sum-
marizing all transcription factor ChIPseq experiments
which have been done within the ENCODE project based
on the human genome build 37 (hg19). Altogether whole
genome binding sites and their genomic coordinates are
available for more than 140 different human transcription
factors. They were used to evaluate our TFBS and the
inferred TF-target predictions by computing the True
Positive (TP), False Positive (FP), False Negative (FN), and
True Negative (TN) rates for some human transcription
factors. If a predicted TFBS is found in a ChIP-seq region
as well, we count it as a TP. If a TFBS prediction is not
detected by a ChIPseq experiment this is an FP result. An
EN result is obtained when a ChIPseq region is overlap-
ping with a potential promoter region (including the frag-
ment of overlapping the promoter regions at least with
500 nucleotides), but we don’t predict a TFBS for this
situation. A TN result is related to a situation, where we
neither predicted a TFBS nor a ChIPseq region was found.
Using these statistical measurements we determine the
Positive Predictive Value (or precision; PPV = TP/
(TP+FP)), Specificity (Spec = TN/(TN+FP)), and the True-
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Positive-Rate (TPR = TP/(TP+FEN); also: sensitivity or
recall) to detect the accuracy of a ChIP-seq evaluation.

Tissue-specificity of transcription factors

Based on UniGene [10] we have downloaded the gene
expression profiles for 8 different tissues: brain, heart,
kidney, liver, ovary, prostate, spleen, testis.

Results

Reconstruction of the transcriptional network through
predicted TFBSs

Previous studies have shown that sequence conservation
can improve transcription factor binding site predictions
[11,12]. Therefore, we combined standard PWM scanning
with a four species conservation filtering to identify poten-
tial TFBSs and, on this basis, to infer TF-target gene rela-
tions for a comprehensive reference transcriptional
network (RTN). With this strategy (see Methods for
details), we predicted 4,3*10e7 TFBS which are conserved
among these four species (hgl9, mm9, canFam2, bosTau4).
These predictions are linked to 16,900 unique human gene
symbols. 47.3% of all human promoters (35,750 RefSeq-
annotated human promoter regions) share at least one
conserved predicted binding site with the mouse, dog, and
cow species. When selecting only the best 1% predictions
of each TRANSFAC matrix we found that 15,619 genes
(43.7%) share a conserved, high-scoring binding site. Alto-
gether, we ended up with 490,277 TFBS predictions.

Paralogous expansion of the transcription network

We used a fundamentally revised version of an earlier
transcription factor classification, based on their DNA-
binding domains [13], to identify groups of TFs that
share DNA-binding specificity to the largest extent possi-
ble. They may be regarded as paralogs, resulting from
early gene duplication events (Wingender, manuscript in
preparation). This classification scheme comprises four
abstraction levels: superclass, class, family, and (option-
ally) subfamily. Whenever one member of a bottommost
clade (family or subfamily) has a TRANSFAC matrix
associated, all potential binding sites and, thus, target
genes predicted for this TF were copied to all other clade
members. This expansion of the transcriptional reference
network led to an increase of the TF genes from 442 to
742 (by 67.9%), and increased the number of directed
edges in the network from 277,661 to 728,667 (by
162.4%) (Additional file 1, first line of the table). The
expansion approach was also cross-validated for those
cases where distinct (sub)family members had different
TRANSFAC matrices associated (data not shown).

Validation of the reconstructed network
For 22 different transcription factors we investigated the
performance of our predictions for 20 different quality
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levels by gradually increasing the percentile of highest
scoring potential TFBSs accepted, ranking from the 1%
best sites down to 100%, which are all conserved sites
that could be predicted with the minFN threshold. For a
number of TFs, for which experimental ChIPseq data
were available at ENCODE, we determined the Positive
Predicted Value (PPV), the True Positive Rate (TPR) and
the Specificity for the whole range of quality levels (from
the 1% best predictions to 100% of all conserved TFBSs;
see Methods section for details). Figure 1 is demonstrat-
ing these three values for transcription factor NF-xB
(NFKB; see Additional File 2 for all plots). For all 22 TFs
studied so far, we observed a very high specificity for the
1% selection. For E2F1, E2F4, and E2F6, the specificity
was about 80%, whereas it was clearly above 90% for all
other 19 TFs (BRCA1, CTCF, ELF1, ETS1, FOXAIL,
GATA1, GATA2, GATA3, HEY], IRF1, IRF3, NANOG,
NFKB, PAX5, POU5F1, RXRA, SP1, TFAP2A, YY1). For
less stringent predictions, i.e. when proceeding towards
the 100% level, the specificity decreases continuously. In
contrast, the TPR (sensitivity) is increasing from 1% to
100% selection. We observed heterogeneous profiles for
the PPV, with usually the highest value for the 1% profile
(up to ~82% in the case of CTCF or ~65% for YY1). In
some cases, reducing the stringency of filtering led to a
disproportionate increase of the TP and, thus, to an
increase of the PPV. This indicates that a very high num-
ber of “real” sites are “suboptimal”, i.e. match with the
matrix/matrices used only at relatively low scores. In the
respective contexts, these sites may have evolved to exhi-
bit only moderate affinity instead of strongest conceivable
binding. Some TFBS predictions show relatively low
PPVs, which may be regarded as high numbers of false
positives. However, this perception will be challenged by
further investigations (see next paragraph).

Altogether, we decided to work furtheron with the 1%
profiles and the resulting networks.

Revisiting false positives

The PPVs obtained (see above and Additional File 2)
seem to indicate that there is still a considerable number
of FP even under the most stringent conditions (1% high-
est scoring conserved TFBSs). To explore this a bit
further, we determined again the TP, FP, TN and FN
rates of our 1% top-ranked predictions for five TFs
(GATA3, MYC, JUN, MAX, FOS), but using now two
independent ENCODE ChlIPseq data sets for each of
these TFs. These ChIPseq data indicate for each of these
factors the binding sites that are used in different cell
lines, representing different tissues in all these cases.
Figure 2 shows for GATA-3 (see Additional file 3 for the
remaining TFs), that two independent ChIP data sets
yield quite different TP and FP numbers, with relatively
little overlap: they have only 176 targets in common and
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Figure 1 Validation of NF-xB sites. Validation of predicted NF-xB sites with ChiPseq data sets from ENCODE. Given are the positive predictive
value (PPV = TP/(TP+FP)), the true positive rate (TPR = TP/(TP+FN)), and the specificity (SPC = TN/(TN+FP)) for all profiles ranging from the 1%
top-ranking down to 100% of the predictions made (see Methods for details).

predicted by our approach, and even the overlap between
the two experimental data sets comprises only a minority
of the proven sites. We obtained the same picture for
four further TFs for which we could retrieve new, inde-
pendent data sets. Altogether, these results clearly show
that whatever experimental data set is used for validating
the predictions, a considerable number of alleged “false
positive” predictions turns into TPs when the experimental

basis broadens. In other words, determining the FP rate
with only a limited set of experimental data highly over-
rates this error type.

In the Venn diagram of Figure 2, the overlap between
the predictions and any experimental data set may never-
theless appear small when compared with the overlap
between the two ChIPseq data sets. It should be noticed,
however, that we explicitly accepted a high number of
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Figure 2 Different ChIPseq data sets show little overlap. Predicted high-affinity (1% top-ranking), highly conserved binding sites for GATA-3
(purple circle, bottom), and GATA-3 ChlIPseq fragments from SH-SY5Y cells (blue circle, top-left) or from MCF7 cells (brown circle, top-right),
overlapping with Tkb upstream sequences, were checked for the respective intersections.
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False Negatives, as an unavoidable trade-off of the
approach chosen here aiming at high-affinity and highly
conserved sites only, regarded as potential master regula-
tor or seed sites.

Architecture of the reconstructed network

For an initial analysis of the reference transcriptional net-
work (RTN) obtained by predicting high-affinity, highly
conserved sites and subsequent paralogous expansion, we
investigated the distribution of in- and out-degrees. Since
especially the out-degrees can adopt very large values,
but each degree class is extremely sparsely populated, we
computed the inverse cumulative distribution function
for the degree frequencies [14]. It was observed that both
the RTN as well as the eRTN (expanded reference tran-
scriptional network), when confining to the 1% highest
scoring TFBS, show a clear exponential degree distribu-
tion. This is particularly obvious from the corresponding
semi-logarithmic plots (Figure 3), where the correlation
coefficients for a linear fitting of 1% profiles are -0.9985
and -0.9982 for the in-degrees and -0.9803 and -0.9846
for the out-degrees (RTN and eRTN, resp.).

Relaxing the prediction constraints, i.e. proceeding from
the 1% to the 100% profile, reveals the emergence of a
shoulder around a degree of 100-200, possible indicating a
superposition with a peaked distribution (in-degree) or
very heterogeneous distribution until nearly the theoretical
maximum (out-degree). This becomes even more visible
when relaxing the constraint of conservativity (not
shown). More important is that the expanded network
(eRTN) in principle shows the same degree distributions,
i. e. an exponential degree distribution in the 1% network
(Figure 4). In the out-degree distribution, however, a num-
ber of peaks seem to be emerging in the less stringent
networks.

Reconstruction of tissue-specific transcription networks

Previously, we constructed eight tissue-specific transcrip-
tion networks (TTNs for brain, heart, kidney, liver, ovary,
prostate, spleen and testis) by reducing the RTN to those
genes that are known to be expressed in the respective
tissue [15]. Thus, regulatory edges survive this filtering
only if both the regulator and the target gene are found
to be expressed in the respective tissue. Here, we recon-
structed the transcription networks for the eight tissues
based on eRTN where the number of “active” TFs (i.e.
those which have an out-degree >0) has nearly doubled
(1.7-fold), and the number of directed edges has nearly
tripled (2.6-fold; see above). Compared to the TFs in
RTN, which are generally of low tissue-specificity (see
Methods), the extra TFs in eRTN are mostly of high tis-
sue-specificity (Figure 5). This indicates that the tissue
networks extracted from eRTN are more comprehensive.
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Analysis of tissue-specific transcription networks

In general, the number of TFs in the expanded tissue tran-
scription networks (€TTN) increased on average 1.5 times
compared to those in the TTNs, whereas the number of
nonTFs is almost constant (Additional file 1). This
increase of TF numbers results in an even larger increase
in the number of regulations (directed edges), which is on
average 2.5 times higher than before the expansion, sug-
gesting that the eTTNs are much more densely connected
than the TTNs. It is noted that the increasing ratios of
genes and regulations are generally consistent with the
reference network and across the different tissues (Addi-
tional file 1). This indicates that the extra TFs in the
eRTN, which are highly tissue specific (Figure 5), are a
characteristic of all tissues studied so far.

The individual eTTN differ considerably in their sizes.
By far the largest is the brain network, comprising 75% of
the TF genes, 78% of the nonTF genes and 61% of the
edges of the eRTN. At the other end of the scale, the
spleen network shares with the eRTN only 31% of the TF
genes, 38% of the nonTF genes, and 11% of the edges.
On average, 41% of the regulations represented in the
eRTN survive the tissue-specific filtering.

As to be expected, the average in-degrees of TFs and
nonTFs increase much more than the average out-degrees
of TFs in the eTTNs compared with the TTNs. On aver-
age, the in-degree rises around 2.3 times, but the out-
degree increases only about 1.6 times (Figure 6; see also
Additional file 4 for detailed numbers). This is under-
standable since many TFs are added in the eT'TNs, which
consequently results in a larger number of regulations that
each target gene receives. The moderate increase of the
out-degree is due to the fact that most of the newly added
TFs had an out-degree well above the average.

Interestingly, the in-degree of TF genes is consistently
about 50% larger than that of nonTF genes. This is true
for the (¢)RTN as well as for all (e)TTNs. This difference
is only slightly diminished by the paralogous expansion
(see Additional file 4).

However, such global increase of in- and out-degrees
does not change the features of degree distributions of the
eTTNs, which all show an exponential distribution of both
in- and out-degree (Additional file 5).

Case study on the heart-specific transcription network
It has been reported that during heart development, T-box
transcription factors play a particularly important role
[16]. Mutations in human 7BX genes may result in cardio-
vascular malformations. Their gene products, the TBX fac-
tors, form a complex spatio-temporal pattern defining the
identity of the different heart structures [17].

Human TBX factors are spread over five families, one
of them comprising TBX2, TBX3, TBX4 and TBX5
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Figure 3 Degree distributions in the reference transcriptional networks (RTNs) Inverse cumulative distribution of in- (left) and out-
degree (right), in linear (top) and semi-logarithmic plot (bottom). The distributions are shown for the reference transcriptional networks
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(family 6.5.4 in our TF classification). Out of them, only
TBX5 is associated with a positional weight matrix in
TRANSFAC. However, it has been reported that for
instance TBX3 can assist pluripotent reprogramming of
embryonal fibroblasts, and is required to specify the
atrioventricular system (AV) [18]. It prevents genes that
are markers for other parts of the organ (e.g., for the
chamber myocardium) to be expressed in AV, one of
them is the gene of the atrial natriuretic factor (NPPA)
[19]. It is noteworthy that after paralogous expansion,

our heart network reveals NPPA as one of the more
than 2000 target genes of TBX3, a relation that would
have been lost otherwise.

Discussion

With the efforts described in this paper, we made an
attempt to reconstruct a realistic transcriptional network
that (1) is void of false positive TF-target relations to the
utmost extent possible, (2) includes as many regulator
nodes (TFs) as possible, and (3) therefore provides a
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reasonable basis to reconstruct tissue-specific transcrip-
tional networks. In order to minimize the number of
false positive predictions, which is a well-known pro-
blem in computationally identifying TFBSs, we focused
on highly conserved and high-affinity (by virtue of
Match score) binding sites only to identify TF-target
relations represented by the arcs in our reference net-
work. Since we obtained relatively high PPV for most
TFs, we are confident that the network we obtained is
reliable. This is supported further by the observation

that the FP rates we determined by comparing our pre-
dictions with experimental data sets, which always
represent one (or very few) specific cellular situation(s),
are highly overrated. Comparing experimental data sets
for one and the same TF, but obtained from different
cell types generally revealed minimal overlaps, confirm-
ing that many alleged FPs in fact may turn into true
positives in a different cellular context, so that FP num-
bers are usually overrated. Rather, we suppose that
most, if not all, high-affinity and conserved predicted
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one or few tissues (yellow bars).
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Figure 5 Tissue distribution of the TFs in the tissue-specific transcriptional networks (TTNs) and the corresponding expanded
networks (eTTNs). Shown are the portions of TF genes that appear in the indicated numbers of tissue-specific networks. The majority of TFs in
the tissue-specific transcriptional networks (TTFs) that were derived from the RTN are expressed in many, if not all tissues studied (blue bars). In

contrast, the newly added TF paralogs in the expanded TTNs (eTTNs) show a much more tissue-specific behaviour in being expressed in only

TFEBSs provide a regulatory potential that might be used
in a certain cellular situation.

We are aware that our very stringent approach results
in large numbers of false negatives, since many experi-
mentally validated TFBS have a very low Match score
and gain their functionality by the proper context of
other elements. To include this kind of context, or the
proper “syntax” of promoters, will be subject of further
studies and an according updating of our network. Also
the inclusion of enhancers will be a task for future
work. We have observed that inclusion of conservativity
as criterion does not well apply to enhancer regions, so
that new concepts have to be developed for their identi-
fication and characterization.

Altogether, we are confident that the networks we have
reconstructed reflect a relevant part of reality. This is
also supported by the observed kind of degree distribu-
tion of the most stringent network, which follows a clear
exponential law, as was to be expected at least for the in-
degree distribution (see [20] and references cited therein)
and from our own earlier observations for the out-degree
distribution as well [21]. Relaxing the filter criteria leads
to degree distributions with more random characteristics.

We have also shown that on the basis of such restrictive
filtering, the networks can be reliably expanded by

including related TFs and allow them to inherit all target
relations, and with that the full out-degree, of already
characterized (sub)family members. Since these newly
added regulators predominantly provide tissue-specific
regulatory information, this expanded network is a good
basis to construct reliable transcriptional networks for
individual tissues. A first overview revealed for these net-
works that their degree distributions follow the same rules
as the reference network. In addition, first investigations
have shown that also the hub composition of all these net-
works was comparable. Finally, we could show that in the
particular case of heart development, paralogous expan-
sion was able to rescue target genes for a specific tran-
scription factor (TBX3), which otherwise would not have
been amenable in the corresponding tissue-specific
network.

Conclusions

A paralog-expanded transcriptional network has been con-
structed based on the knowledge of master regulator or
seed sites. It has been shown that the paralogous expan-
sion provides as reliable basis to reconstruct tissue-specific
transcription networks. The obtained networks show the
expected statistical and topological characteristics. A first
case study additionally provided biological evidence for
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expanded tissue-specific networks (eTTNs) to those in the TTNs is shown for the individual tissues. The out-degree of TF genes changed
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considerably (about 2.3-fold), again similarly in all eTTNs (yellow dots). In general, the in-degree of non-TF genes increased slightly more, but
with outliers for spleen (below) and testis (above the average; blue dots).
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the reliability and usefulness of these networks in includ-
ing regulatory information which would have been missed
without this expansion. From that we conclude that our
approach to construct transcriptional network is valid and
provides a solid ground for further studies, in particular
with regard to the analysis of regulatory processes, e.g. the
mechanisms governing cell differentiation.

Additional material

Additional file 1: Network statistics. Given are the numbers of vertices
(split by TF and nonTF genes) and edges in the transcriptional networks
without or with expansion, for the reference network as well for the
tissue-specific networks.

Additional file 2: Prediction validations. In this file, plots of positive
predictive value (PPV), true positive rate (TPR) and Specificity are given
for all TFs where sufficient experimental data have been made available
by the ENCODE project. Validation has been made in each case for all
prediction profiles from the 1% top-ranking sites down to 100% of the
predictions for conserved binding sites.

Additional file 3: Revisited false positives. Venn diagrams of
comparing independent experimental datasets for TFBSs within the -1kb
regions with each other and the predictions done in this study.

Additional file 4: Degree statistics. The table indicates the average
out-degree and in-degree of TF genes as well as the average in-degree
of nonTF genes (NTF) for both the reconstructed transcriptional networks
(reference network and tissue-specific networks) as well as the
transcriptional network expanded by related TFs. It also shows the ratios

of the corrresponding values for the expanded and the non-expanded
networks (eTN/TN).

Additional file 5: Degree distributions of tissue-specific
transcriptional networks. Inverse cumulative in- and out-degree
distributions of the tissue-specific transcriptional networks (TTNs) before
and after paralogous expansions.
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transcriptional network; eTTN: expanded tissue-specific transcriptional
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transcription factor; TFBS: transcription factor binding site; TN: true negative;
TP: true positive; TTN: tissue-specific transcriptional network.
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