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Abstract

One important application of microarray in clinical settings is for constructing a diagnosis or prognosis model.
Batch effects are a well-known obstacle in this type of applications. Recently, a prominent study was published on
how batch effects removal techniques could potentially improve microarray prediction performance. However, the
results were not very encouraging, as prediction performance did not always improve. In fact, in up to 20% of the
cases, prediction accuracy was reduced. Furthermore, it was stated in the paper that the techniques studied
require sufficiently large sample sizes in both batches (train and test) to be effective, which is not a realistic
situation especially in clinical settings. In this paper, we propose a different approach, which is able to overcome
limitations faced by conventional methods. Our approach uses ranking value of microarray data and a bagging
ensemble classifier with sequential hypothesis testing to dynamically determine the number of classifiers required
in the ensemble. Using similar datasets to those in the original study, we showed that in only one case (<2%) is
our performance reduced (by more than -0.05 AUC) and, in >60% of cases, it is improved (by more than 0.05 AUC).
In addition, our approach works even on much smaller training data sets and is independent of the sample size of
the test data, making it feasible to be applied on clinical studies.

Introduction
Noise has a negative connotation in the classical view of
biology. Therefore, one often attempts to remove “noise”
from data using various statistical methods before any
downstream analysis. However, there are two different
types of noise in biological data, experimental noise and
inherent cell variation. Distinguishing experimental noise
from natural fluctuation due to inherent cell variation is a
daunting task, and attempts to de-noise data often remove
meaningful cell variation as well. Therefore, in this work,
we take a different approach of embracing noise instead.
Inherent cell variations could arise from intrinsic and

extrinsic sources [1]. Intrinsic noise sources would affect
two equivalent and independent gene reporters placed in
the same cell differently, whereas extrinsic noise sources
would affect two reporters in any given cell equally but
affect reporters in another cell differently. Examples of

intrinsic noise sources are stochastic events during the
process of gene expression, such as transcription regula-
tion, translation regulation and protein degradation.
Sources of extrinsic noise include local environmental
differences or ongoing genetic mutations. These inherent
cell variations have been gaining recognition in their con-
tribution to cell robustness, which enables organisms to
survive in the ever-changing environment [1-4].
Experimental noise in gene expression measurement

data mainly contains two forms of experimental errors:
measurement errors and batch effects. Measurements
errors in gene expression microarrays are studied by the
MicroArray Quality Control (MAQC) project, a large-
scale study led by FDA scientists involving 137 partici-
pants from 51 organizations, where they showed that the
median coefficient of variation of replicates is between 5%
and 15% [5]. The batch effects problem is a non-biological
systematic bias that exists in various batches of samples
due to experimental handling. If not appropriately
handled, incorrect conclusions might be drawn, especially
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when batch effects are correlated with an outcome of
interest [6].
An important application of microarrays in clinical set-

tings is to construct a predictive model for diagnosis or
prognosis purposes. To do so, we need to overcome the
various types of noises mentioned above, especially batch
effects [7]. Recently, a prominent study on how batch
effect removal techniques could improve microarray pre-
diction performance was published [8]. However, the
results were not very encouraging, as the techniques stu-
died did not always improve prediction. In fact, in up to
20% of the cases, prediction accuracy was reduced.
Furthermore, it was stated in the paper that the techni-
ques studied required sufficiently large sample sizes in
both batches (train and test) to be effective, which is not
a realistic situation in clinical settings.
Most batch effects removal algorithms try to accurately

estimate the batch effects before removing them, which
is why large sample sizes are required for each batch and
a balanced class ratio is often desired. In this paper, we
attack the problem from a different angle. Specifically, we
propose a computational approach that increases cross-
batch microarray prediction accuracy that mitigates
batch effects without explicitly estimating and removing
them. Our proposed approach uses the following two
main ideas. Firstly, it is well known that while batch
effects affect the absolute values of the gene expression
measured, they often do not affect the relative ranking of
the gene ordered by their expression values [5]. Thus,
instead of attempting to estimate noise due to batch
effects, we embrace it by using rank values rather than
absolute values. Secondly, assuming the number of ser-
iously noisy samples is far fewer than the number of rela-
tively clean samples, we show that stochastic sampling
with replacement can generate many new diverse training
sets that are enriched with clean samples. Thus, instead
of identifying and removing noise explicitly, we employ
stochastic sampling with replacement to generate many
diverse training sets that are enriched with clean samples,
to suppress unwanted noise while allowing diversification
to emerge.

Materials and methods
Data sets
Four data sets from the MAQC project are used in this
paper (Table 1). Three are chosen due to their varying
amount of batch effects as visually quantified using PCA
(Figure 1); and the fourth one is simply a negative con-
trol where class labels were randomly assigned. We
name the data sets in the same way as in the MAQC
project [9].
The Hamner Institutes for Health Sciences (Research

Triangle Park, NC, USA) provided data set A. The objec-
tive of the study was to apply gene expression data from

the lungs of mice exposed to a 13-week treatment of
chemicals to predict increased lung tumor incidence in
the two-year rodent cancer bioassays of the National Toxi-
cology Program. Results of this study may be used to cre-
ate a more efficient and economical approach for
evaluating the carcinogenic activity of chemicals. A total
of 70 mice were analyzed in the first phase and used as the
training set. An additional 88 mice were later collected
and analyzed, and subsequently used as the validation set.
The University of Texas M. D. Anderson Cancer Center

(MDACC, Houston, TX, USA) generated data set D. 230
stages I-III breast cancers gene expression samples were
collected from newly diagnosed breast cancers before any
therapy. Specimens were collected sequentially between
2000 and 2008 during a prospective pharmacogenomics
marker discovery study. Patients received 6 months of pre-
operative chemotherapy followed by surgical resection of
the cancer. Response to preoperative chemotherapy was
categorized either as a pathological complete response
(pCR), which indicates no residual invasive cancer in the
breast or lymph nodes, or residual invasive cancer (RD).
Gene expression profiling was performed in multiple
batches using Affymetrix U133A microarrays. The first
130 collected samples were assigned as the training set,
whereas the next 100 samples were used as the validation
set.
The Myeloma Institute for Research and Therapy at the

University of Arkansas for Medical Sciences (UAMS, Little
Rock, AR, USA) contributed data sets F and I. Highly puri-
fied bone marrow plasma cells were collected from
patients with newly diagnosed multiple myeloma followed
by gene expression profiling of these cells. The training set
consisted of 340 cases enrolled on total therapy 2 (TT2)
and the validation set comprised 214 patients enrolled in
total therapy 3 (TT3). Dichotomized overall survival (OS)
and event-free survival (EFS) were determined based on a
two-year milestone cutoff.
As all the data sets above from the MAQC project are

cancer-related, we have therefore gathered an additional
non-cancer-related data set from a different source [10] to
show that our methodology is not limited only to cancer-
related data sets. This data set is a Duchenne Muscular
Dystrophy (DMD) data set that compares patients suffer-
ing from DMD to normal patients. Not only does this
DMD data set contains batch effects, it is also a cross-plat-
form data set. The training set with 12 DMD patients and
12 controls comes from Affymetrix HG-U95Av2 Gene-
Chip [11] whereas the validation set with 22 DMD
pateints and 14 controls uses HG-U133A GeneChip [12].
Due to the cross-platform nature of this data set, addi-
tional pre-processing is required. Firstly, probe IDs of both
chips needs to be converted into Entrez IDs and only
Entrez IDs that appear on both chips are retained.
Furthermore, as multiple probes could be mapped into a
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single Entrez ID, the maximum value of the probes are
chosen to be the representative value for the Entrez ID,
and this approach of collapsing is also recommended by
GSEA [13].

Proposed algorithm
As previously mentioned, we are proposing an entirely dif-
ferent approach towards overcoming batch effects. This
computational approach is inspired by two articles in the
field of biology, and is further enhanced with idea from
our previous work on sequential hypothesis testing [14].

First, we propose using rank values instead of absolute
values of gene expression microarray data. This is inspired
by the FDA-led Microarray Quality Control (MAQC)
Consortium project [5], where one of its findings is that
while noise is inevitable in microarray experiments, the
rank correlation between different experimental groups
and microarray platforms remains high. It was found that
gene expression data had a median coefficient of variation
between 5-15% for sample replicates. In contrast, the
ranks correlations (Spearman) of log ratios were highly
correlated (minimum R = 0.69) even across different

Table 1 Data sets from MAQC project used in this work.

Training set Validation set

Data set
code

Data set description Number of
samples

Positives Negatives Number of
Samples

Positives Negatives

A Lung tumorigen vs. nontumorigen (Mouse) 70 26 44 88 28 60

D Breast cancer pre-operative treatment response
(pathologic complete response)

130 33 97 100 15 85

F Multiple myeloma overall survival milestone outcome 340 51 289 214 27 187

I Same as data set F but class labels are randomly
assigned

340 200 140 214 122 92

Figure 1 PCA plots of data sets used. PCA plots are typically used to visualize batch effects. These data sets are chosen from the FDA-led
Microarray Quality Control (MAQC) Consortium project. See [9] for details on data sets. Based on the PCA plots, data set A contains the most
batch effects (points are separated by batches instead of class labels) while data set F contains the least. Note that data set I is a negative
control where class labels are randomly assigned.
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platforms. Therefore, by using rank values, we were able to
withstand a considerable amount of experimental noise
and showed improvement in performance (Figure 2).
In another article [15], a team of biologists successfully

used repeated stochastic sampling to suppress experimen-
tal noise while allowing meaningful heterogeneity in a cell
population to emerge. Interestingly, this approach is very
similar to the bootstrapping approach in computer
science. Therefore, our second idea in this algorithm is to
use bootstrapping to generate numerous diverse sets of
training clones from the original training data. We argue
below that these training clones are likely to be enriched
with more clean samples than the original training data.
Suppose a set S of m samples is given. Suppose x of

the samples are “bad” (i.e., incorrect or very noisy) and
y = (m - x) of the samples are “good” (i.e., correct or lit-
tle noise). Let q = x/m and p = (1 - q) = (m - x)/m. Let
B be a bag of m samples randomly drawn with

repetitions from S. The probability of B having k “bad”
samples is given by the binomial distribution PB(k) =
(mCk)(p

m-k)(qk), where mCk means “m choose k“. Then
the probability of B having fewer “bad” samples than S

is given by PB(< x) =
∑

k<x
PB(k), while the probability

of B having more “bad” samples than S is given by

PB(> x) =
∑

k>x
PB(k). The skewness of a binomial dis-

tribution is given by the formula (1 − 2q)/
√
mqp. When

p >q, and thus 1 > 2q, the skew is positive. This means
that, in general, the bulk of the distribution falls to the
left of the mean x = mq. Thus, PB(<x) > PB(>x), as
shown in Figure 3.
Therefore, we have shown that training clones produced

using bootstrapping technique are likely to be enriched
with more clean samples than the original training data.
We further show that an ensemble classifier built

using these training clones has better performance. Let

Figure 2 Percentage of cases of AUC changes under various settings. The number of scenarios explored in each setting is 108. “A. Rank
Values” is using rank values instead of absolute values of microarray data. “B. Bagging (10)” and “C. Bagging (100)” are using bagging of 10 and
100 bootstrap replicates respectively with rank values. “D. Dynamic Bagging” is using bagging with non-fixed number of bootstrap replicates
where the number of bootstrap replicates is determined by the sequential hypothesis testing algorithm proposed in [14] and error rates set to
be 10-4. AUC Change = AUCafter - AUCbefore. The base AUC (i.e., AUCbefore) is where absolute gene expression values and no bagging are
used. “Increased” and “Decreased” refers to cases where the change of AUC is >0.05 and <-0.05 respectively before (using absolute values) and
after (using given algorithm). “Increased Slightly” is when AUC change ≥0 but ≤0.05 whereas “Decreased Slightly” indicates that AUC change <0
but ≥-0.05.
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B1, B2, ...,Bn be n bags of m samples randomly drawn
with repetitions from S. Let H be the collection of bags
among B1, B2, ...,Bn containing more “good” samples
than S. Let C(B1) and C(B2) be the classifiers trained on
B1 and B2 respectively. It is reasonable to postulate (*)
that C(B1) would have a better accuracy than C(B2) if B1

has more “good” samples than B2. Let H’ be the collec-
tion of bags among B1,B2, ...,Bn containing more “bad”
samples than S. Let H” be the collection of bags among
B1,B2, ...,Bn containing the same number of “good” and
“bad” samples as S. Based on the postulate (*), h = |H|
bags give rise to better-performing classifiers than C(S),
while h’ = |H’ | bags give rise to poorer-performing clas-
sifiers, and the remaining h” = |H” | bags give rise to
equal-performing classifiers. We know that as n tends to
infinity, h/n tends to PB(<x), h’/n tends to PB(>x), and
h"/n tends to PB(x). It follows that h >h’, when p >q.
This shows that an ensemble classifier built from this

collection of bags–which is called a bagging classifier–
improves prediction accuracy by embracing (i.e., reducing
the influence of) noisy samples, as long as there are many
more “good” samples than “bad” samples in the original

training set S, which is a reasonable assumption for any
decent training datasets.
However, in the original flavor of bagging, while n

needs to be sufficiently large to ensure h ≥ h’, n is typi-
cally determined a priori and arbitrarily [16]. Here, we
propose integrating bagging with a sequential hypothesis
testing procedure [17], which then allows us to dynami-
cally determine the optimal n required for each test
instance. In our previous work [14], we developed a
sequential hypothesis testing procedure called OSM
(Optimized Statistical Model Checking Algorithm). OSM
is able to determine the number of simulation runs
required to prove whether a stochastic model satisfies a
probabilistic formula, P≥θ{ψ} where θ represents the
threshold probability and ψ represents the property. For
instance, P≥0.8{X1>5} checks whether the given stochastic
model would have variable X1 >5 in ≥ 80% of the cases.
Essentially, this procedure draws samples until it can
assert or reject a probabilistic formula with statistical
guarantees on the error rates.
Let Ti be the ith test instance and P(C(Bn), Ti) be the

Boolean prediction on Ti of the classifier trained using

Figure 3 Theoretical values of PB(< x) - PB(> x). Theoretical values of PB(< x) - PB(> x) for different sample size (i.e., m) at varying percentage
of “good” samples (i.e, p).
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Bn, which will return True if Ti is predicted to be of the
positive class label and False if Ti is predicted to be of the
negative class label. We can then formulate the probabil-
istic formula as P≥0.5{P(C(Bn), Ti) = True}. That is, given
a test instance Ti and a training set S, and a large number
of classifiers trained from bags of m samples randomly
drawn with repetitions from S. Would more than 50% of
these classifiers predict Ti to be of the positive class
label? By stating the problem in this format, n is dynami-
cally determined by the sequential hypothesis testing pro-
cedure and is minimum for each test instance with
statistical guarantees on the error rates. This improves
computational efficiency and maintains prediction accu-
racy over standard bagging. Furthermore, this removes
the need to a priori and arbitrarily fixing n. For the pur-
pose of comparison with standard bagging (with 10 and
100 bootstrap replicates), we set the parameters for the
OSM sequential hypothesis algorithm as follows. The
maximum value of n is set to 100 and the guaranteed
false positive and false negative error rates are both set
to 10-4.
In summary, we propose using ranking value of

microarray data and bagging with sequential hypothesis
testing to dynamically determine the number of classi-
fiers required. Finally, the average of these classifiers
scores is taken as the final prediction score for a parti-
cular test instance.

Evaluation of effectiveness
In this work, our main objective is to improve cross-
batch prediction accuracy. Therefore, we will be using it
as our performance measurement. The primary perfor-
mance metric used will be area under the ROC curve
(AUC) as it has the advantage of evaluating performance
across the full range of sensitivity and specificity. A pre-
diction model will be built using the training set and
evaluated using the validation set (forward prediction)
and vice versa (backward prediction).
To demonstrate the applicability of our proposed algo-

rithm in small-sample-size scenarios, we create two addi-
tional data sets by randomly selecting 25% or 50% of the
samples while maintaining the class ratio from each of
the original data sets given in Table 1. In total, we have
12 training sets and 12 validation sets. Next, in order to
show that our approach is independent of the feature
selection algorithm and classification methods, we have
chosen several different approaches representing various
categories. For feature selection, we have picked t-test
and Wilcoxon Rank Sum test as they represent para-
metric and nonparametric approaches respectively. As
for classification methods, we have chosen support vector
machine (SMO with buildLogisticsModel set to True), K
nearest neighbors (K = 5) and the popular tree algorithm,
C4.5 (named as J48 in Weka [18]). All classification

methods uses the default settings in Weka 3.6.4 with the
stated changes. They represent linear classifier, instance-
based classifier and tree classifier respectively.
Using the above-mentioned data sets, feature selection

algorithms and classification methods, we measure the dif-
ference in AUC before and after our proposed algorithms
in each of the possible permutations. There are a total of 9
different data sets, 3 from each data set A, D and F. Data
set I is not used to measure performance improvement
since it is a negative control; it is used instead to ensure
arbitrary improvement is not seen. Together with two dif-
ferent prediction directions (forward and backward), two
different feature selection algorithm (t-test and Wilcoxon
Rank Sum test) and three different classification methods
(SVM, k-NN and C4.5), there are a total of 108 (9x2x2x3)
different possible scenarios.

Results
The main objective of this work is to improve cross-batch
prediction performance. In Figure 2, we looked at the
AUC change in all 108 possible permutations for various
algorithms. Figure 2 shows that our proposed algorithm
is able to improve AUC by >0.05 in >60% of the cases
with only one case (<2%) having reduced AUC of exceed-
ing -0.05. Combining the observations of Figure 2 and 4,
one can easily infer that having more classifiers in the
ensemble for majority voting would increase perfor-
mance, but having more classifiers would also require
additional computational resources. The number of boot-
strap replicates to use is typically decided arbitrarily. This
is where dynamic bagging has an edge; it would use just
enough classifiers to make the prediction. In Figures 2
and 4, it is demonstrated that dynamic bagging is able to
achieve a comparable performance using only about 60%
of the number of bootstrap replicates on average as com-
pared to bagging with 100 bootstrap replicates.
Another important consideration in building predic-

tion models for clinical usage is the required sample
size of training and test sets to properly deploy it. As
the MAQC project is a large-scale study, its data sets
are larger than usual. We did random subset sampling
to reduce the number of samples available to us to as
low as 25% of the original data, during the training
phase, to mimic the low sample size in clinical settings.
Despite the reduction in training samples, our algorithm
still maintained its improvements with median AUC
improvements well above 0.05 (Figure 5). It is worth
noting that the number of samples in the test data set
has no influence on prediction performance for our
algorithm since we use them individually and solely for
the purpose of classifying it unlike conventional batch
removal methods.
As the PCA plots of Figure 1 suggested that the differ-

ent data sets are likely to have a varying amount of
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Figure 4 Classifiers used by various settings. “A. Rank Values” is using rank values instead of absolute values of microarray data. “B. Bagging (10)”
and “C. Bagging (100)” are using bagging of 10 and 100 bootstrap replicates respectively with rank values. “D. Dynamic Bagging” is using bagging
with non-fixed number of bootstrap replicates where the number of bootstrap replicates is determined by the sequential hypothesis testing algorithm
proposed in [14] and error rates set to be 10-4. “MIN” is the minimum number of classifiers used in all scenarios. “MAX” is the maximum number of
classifiers used in all scenarios. “AVG” is the average number of classifiers used in all scenarios. The number of scenarios explored in each setting is 108.

Figure 5 Boxplot of AUC change on varying subset sizes under various scenarios (36) for data set A, D and F. AUC Change = AUCafter -
AUCbefore. Subset size here implies using a random subset of the given data during training phase. “Dynamic Bagging.0.25”, “Dynamic
Bagging.0.5” and “Dynamic Bagging.1.0” are the AUC change after applying dynamic bagging and using rank values with 25%, 50% and 100% of
the original given data for training respectively compared with the conventional approach, which is without bagging and using absolute values [9].
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batch effects, it is also interesting to look at how our
algorithm would perform on each data set. Figure 6
shows that our proposed algorithm performs consis-
tently with median AUC improvement well above 0.05
regardless of the data set. This consistent improvement
across various data sets with varying “magnitudes” of
batch effects implies that our algorithm is able to suc-
cessfully overcome batch effects.
Finally, one critical issue highlighted by the MAQC

project [9] is regarding proper validation procedure to
ensure the independence of the validation set, such as
modification of an originally designed algorithm after
being validated on the validation set. This would turn
the validation set into part of the training process. To
ensure that our algorithm is not arbitrarily improving
performance, we test it on a negative control data set
(data set I). Since it is a negative control data set, the
AUC should be close to 0.5 and, as shown by Figure 7,
after applying our algorithm, the median AUC is very
close to 0.5 and the distribution is within a tight range
of 0.45 to 0.55. This conclusively shows that our algo-
rithm does not arbitrarily inflate performance.

Additional validation
In addition to cancer-related data sets from MAQC pro-
jects, we have also obtained a DMD data set from a dif-
ferent source [10] to demonstrate that our methodology
is not limited to a specific group of problems. The con-
clusion that we obtained from running our methodology
on the DMD data set is similar to the MAQC data sets
(Figure 8). By simply using ranking values instead of
absolute values, significant improvements can be seen.
Complimenting that with bagging brings the improve-
ments one notch higher, while dynamic bagging is able
to maintain high performance with a minimum number
of bootstrap replicates. With this DMD data set, we
have shown that our methodology works well also on a
non-cancer-related data set and it further suggests that
our work is able to overcome cross-platform prediction
problems in addition to batch effects.

Discussion
Overcoming batch effect is an important step before the
deployment of diagnostic or prognostic model based on
gene expression data in clinical settings. Numerous

Figure 6 Boxplot of AUC change on different data sets (A, D, F) under various scenarios (36). AUC Change = AUCafter - AUCbefore.
“Dynamic Bagging.A”, “Dynamic Bagging.D” and “Dynamic Bagging.F” are the AUC change after applying dynamic bagging and using rank
values on data sets A, D and F respectively compared with the conventional approach, which is without bagging and using absolute values [9].
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algorithms have been proposed in an attempt to solve
this widespread and critical problem in high-throughput
experiments [19-21]. However, these algorithms typically
focused on accurately estimating batch effects and then
removing them using various methodologies. Often, the
applicability and efficacy of these algorithms rely heavily
on the sample size and class ratio of each individual
batch. This prevents the methods from being applicable
in clinical settings, where batch size is likely to consist of
only a few single samples. While the use of calibration
samples might somehow be able to overcome this, we
also need to consider the other pertinent issues such as
additional costs and proper preservation procedures.
In this work, we approached the batch effects problem

from a different angle. We proposed a computational
algorithm that attempts to embrace noise instead of esti-
mating and removing it. By simply employing the rank-
ing of values instead of using the absolute values of
data, we were already able to show noticeable improve-
ments. Combining this with bagging and a sequential
hypothesis-testing algorithm; we were able to achieve a
significant increase in cross-batch prediction perfor-
mance over a wide range of training data sample size

and severity of batch effects. It is important to note that
our approach does not face the same limitations as con-
ventional batch effects removal methods; thus making it
appealing for use in practical applications.
Feature selection algorithms considered in this work

use only generic statistical tests that look at one gene at
a time. However, more recent feature selection algo-
rithms for gene expression data are increasingly focused
on using prior biological information to group genes
and perform statistical tests on these group of genes
instead of individual genes [10,13]. The impact of such
algorithms is not evaluated in this work and would be
considered for future work. Another interesting possible
future work would be to explore the impact of dynamic
bagging in other fields. Bagging is a widely used ensem-
ble algorithm to improve classification accuracy. How-
ever, deciding the number of bootstrap replicates is
typically done a priori and arbitrarily. It would be inter-
esting to study whether our dynamic bagging technique
would be equally successfully when applied to other
fields, which we believe to be highly possible, as we did
not incorporate any biology-specific assumption in its
derivation.

Figure 7 Boxplot of AUC on varying subset sizes under various scenarios (36) for data set I. Subset size here implies using a random
subset of the given data during training phase. “Dynamic Bagging.0.25”, “Dynamic Bagging.0.5” and “Dynamic Bagging.1.0” are the AUC achieved
by applying dynamic bagging and using rank values with 25%, 50% and 100% of original given data for training.
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