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Abstract

Background: The discovery of single-nucleotide polymorphisms (SNPs) has important implications in a variety of
genetic studies on human diseases and biological functions. One valuable approach proposed for SNP discovery is
based on base-specific cleavage and mass spectrometry. However, it is still very challenging to achieve the full
potential of this SNP discovery approach.

Results: In this study, we formulate two new combinatorial optimization problems. While both problems are
aimed at reconstructing the sample sequence that would attain the minimum number of SNPs, they search over
different candidate sequence spaces. The first problem, denoted as SNP−MSP , limits its search to sequences
whose in silico predicted mass spectra have all their signals contained in the measured mass spectra. In contrast,
the second problem, denoted as SNP - MSQ , limits its search to sequences whose in silico predicted mass spectra
instead contain all the signals of the measured mass spectra. We present an exact dynamic programming
algorithm for solving the SNP−MSP problem and also show that the SNP - MSQ problem is NP-hard by a
reduction from a restricted variation of the 3-partition problem.

Conclusions: We believe that an efficient solution to either problem above could offer a seamless integration of
information in four complementary base-specific cleavage reactions, thereby improving the capability of the
underlying biotechnology for sensitive and accurate SNP discovery.

Background
Single nucleotide polymorphisms (SNPs) is a common
type of DNA sequence variations that occur when a single
nucleotide base is altered at a specific locus. They are
among the most important genetic factors that contribute
to human disease and biological functions. However, dis-
covering novel SNPs is a scientifically challenging task.
Among others, one valuable approach proposed for SNP
discovery is based on base-specific cleavage and mass
spectrometry [1-3].
The SNP discovery approach based on base-specific

cleavage and mass spectrometry usually adopts a data-

acquisition procedure as summarized below. First, a
target sample DNA sequence is PCR-amplified using pri-
mers that incorporate the T7 promoter sequences. Then,
the PCR products are in-vitro transcribed and subse-
quently digested with the endonuclease RNase A in four
base-specific cleavage reactions. Each reaction can cleave
the sample sequence to completion at all loci wherever a
specific base is found. Finally, the matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS) is applied to the cleavage products,
resulting in four measured mass spectra, each corre-
sponding to one base-specific cleavage reaction.
Since each cleavage product is expected to be made of

three non-cleavage bases, it is fairly straightforward to
calculate the base composition from its measured mass
signal. With all these base compositions in hand, the task

* Correspondence: chenxin@ntu.edu.sg
1School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore
Full list of author information is available at the end of the article

Chen et al. BMC Systems Biology 2012, 6(Suppl 2):S5
http://www.biomedcentral.com/1752-0509/6/S2/S5

© 2012 Chen et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:chenxin@ntu.edu.sg
http://creativecommons.org/licenses/by/2.0


of discovering SNPs in the sample sequence is now left to
a computational solution. In principle, this computational
solution shall find a way to integrate the four comple-
mentary base-specific mass spectra, and then identify
those SNPs that necessarily account for the unanticipated
base compositions (i.e., corresponding to the measured
mass signal changes as compared with an in-silico
predicted mass spectra from a reference sequence).
See Figure 1 for schematic outline of the SNP discovery
approach using base-specific cleavage and mass
spectrometry.
The early proof-of-concept studies on the above SNP

discovery approach using base-specific cleavage and mass
spectrometry were presented in [3-5], where the identifica-
tion of SNPs however was done by visual inspection.
Shortly afterwards, two automated computational solu-
tions were developed [1,2]: one was implemented in the
proprietary MassARRAY™ SNP Discovery software pack-
age from Sequenom, Inc. and the other implemented in
the software package called RNaseCut which is instead
freely available online [6]. In particular, the solution in [1]
mainly comprises of two separate procedures. It first com-
putes all potential SNPs that give rise to each unantici-
pated based composition and then score them by taking
into account the mass spectrometry data from the four
base-specific cleavage reactions. Thus, the integration of
the four base-specific cleavage reactions was done only in
the second step. Apparently, such an integration strategy
is far from being optimal, as at least it assumes that the
occurrences of potential SNPs are independent in the first
step.
In this paper, we study two new combinatorial optimi-

zation problems to exploit the full potential of the above
SNP discovery approach. While both problems are aimed
at reconstructing the sample sequence that would attain
the minimum number of SNPs, they search over different

candidate sequence spaces. The first problem, denoted as
SNP−MSP , limits its search to sequences whose in silico
predicted mass spectra have all their signals contained in
the measured mass spectra. In contrast, the second pro-
blem, denoted as SNP - MSQ , limits its search to
sequences whose in silico predicted mass spectra instead
contain all the signals of the measured mass spectra.
Then, we present an exact dynamic programming algo-
rithm for solving the SNP−MSP problem and also show
that the SNP - MSQ problem is NP-hard by a reduction
from the restricted variation of the 3-partition problem
[7,8].

Methods
Preliminaries
Let s Î Σ* denote a string over the four-base alphabet∑

= {A,C,G, T}. The length of s is denoted by |s|, the
i-th base of s by s[i], and the substring of s from the i-th
base to the j-th base by s[i, j], for 1 ≤ i ≤ j ≤ |s|. We use Î
to denote the empty string so that |Î| = 0. The concate-
nation of two strings s and t is denoted by s · t, and the
concatenation of l copies of a string s is denoted by sl.
Given a string s and a cut base x ∈ ∑

, a cleavage frag-
ment refers to a substring of s that does not contain x
and that cannot be extended in either side without
crossing a base x. Formally, the substring s[i, j] is a clea-
vage fragment with respect to the cut base x if the fol-
lowing three conditions are satisfied: (i) s[i − 1] = x if
i ≠ 1, (ii) s[j + 1] = x if j ≠ |s|, and (iii) s[k] ≠ x, ∀k Î [i, j].
In addition, the empty string ε is a cleavage fragment if
there exits i Î [1,|s| − 1] such that s[i] = s[i + 1] = x.
Given a cleavage fragment, we use AiCjGkTl to denote its
base composition of i As, j Cs, k Gs, and l Ts. In [1], this
base composition is termed as a compomer of the string s
with respect to the cut base x. The whole set of compo-
mers is hence called the compomer spectrum of the string

Figure 1 Schematic outline. The SNP discovery approach using base-specific cleavage and mass spectrometry.

Chen et al. BMC Systems Biology 2012, 6(Suppl 2):S5
http://www.biomedcentral.com/1752-0509/6/S2/S5

Page 2 of 8



s with respect to the cut base x, and denoted by Finally,

let C∑(s) = {Cx(s) : x ∈
∑

} = {CA(s),CC(s),CG(s),CT(s)},
a collection of four compomer spectra of the string s
where each is generated with one cut base.
Example 1 Let s := ACATGCTACATTA. Then, the

string s contains four cleavage fragments with respect to
the cut base A: C, TGCT, C, and TT. With respect to the
cut base T, it instead contains five cleavage fragments:
ACA, GC, ACA, Î, and A. Their respective compomer
spectra are CA (s) = {A0C1G0T0, A0C1G1T2, A0C0G0T2} and
CT (s) = {A2C1G0T0, A0C1G1T0, A0C0G0T0, A1C0G0T0}. Note that
each compomer appears in a compomer spectrum at most
once.

Problem formulation
Let dH (s, s′) denote the Hamming distance between two
strings s and s′ of equal length. It measures the mini-
mum number of substitutions required to transform one
string into the other. Given a collection of compomer
spectra C� = {Cx : x ∈ �} of an unknown string s′ (i.e.,
the sample DNA sequence experimented) which can in
principle be generated from a mass spectrometry experi-
ment, and a string s (i.e., the reference DNA sequence)
which is believed to differ from the unknown string s′
by a number of substitutions only, we formulate below
two combinatorial optimization problems for SNP
discovery.
Definition 2 (The SNP − MSP problem) Given a

string s and a collection of compomer spectra
C� = {Cx : x ∈ �}, find a string s′ such that Cx(s′) ⊆ Cx,
for all x ∈ ∑

and dH (s, s′) is minimized.
Definition 3 (The SNP − MSQ problem) Given a

string s and a collection of compomer spectra
C� = {Cx : x ∈ �}, find a string s′ such that Cx ⊆ Cx(s′),
for all x ∈ ∑

and dH (s, s′) is minimized.
The only difference between the above two problem

formulations is that one requires Cx(s′) ⊆ Cx and the
other requires Cx ⊆ Cx(s′), for all the cut bases. Once
the string s′ is found, it is easy to identify the SNPs in s′,
i.e., those base substitutions that transform s′ into s.
Example 4 In this example, we let

∑
:= {A, T} for sim-

plicity. Given the string s:= ATAAT and the set
C = {CA,CT} of compomer spectra (of an unknown string)
where

CA = {A0T1, A0T2} and CT = {A0T0, A1T0}.
The feasible solutions to the SNP−MSP problem for

the above instance include the strings such as ATATA,
TATAT, TTATT, ATATT, and ATTAT. Their respec-
tive Hamming distances to the input string s are 2, 3, 2,
1, and 1. The string s′ = TTAAT is not a feasible solu-
tion because the compomer A2T0 ∈ CT(s′) but A2T0 /∈ CT
so that CT(s′) �⊆ CT.

The feasible solutions to the SNP − MSQ problem for
the above instance include the strings such as TTATA,
TATTA, ATATT, and ATTAT. Their respective Ham-
ming distances to the input string s are 3, 5, 1, and 1.
The string s′ = TTAAT is not a feasible solution because
the compomer A2T0 ∈ CT but A1T0 /∈ CT(s′) so that
CT �⊆ CT(s′).
The measured mass spectra of a sample sequence are

rarely perfect in practice. Some peaks may actually
represent noises, while some true signal peaks are miss-
ing. The problem SNP−MSP is so formulated that its
computational solution would be robust against noisy
peaks but susceptible to missing peaks (i.e., there is a
good chance to recover the sample sequence even if
some noisy peaks are present in the measured mass
spectra, but the chance would become much less if
there are some true signal peaks missing). In contrast,
the problem SNP - MSQ is so formulated that its com-
putational solution would be robust against missing
peaks but susceptible to noisy peaks.
We noticed that several computational problems in

the literature that are more or less related to our pro-
blems introduced above. In [9], a so-called sequencing
from compomers problem was studied which, like the
SNP−MSP problem, also aimed to reconstruct the sam-
ple sequence from a given collection of compomer spec-
tra, but without help of a reference sequence. In [10],
the spectral alignment problem differs from the
SNP−MSP problem mainly by its exploration on short
read sequencing data rather than the mass/compomer
spectra data, which may lead to wide implications in the
subsequent algorithm design and complexity analysis.
Moreover, in [1], a so-called SNP discovery from mass
spectrometry problem was defined in a similar way to
the SNP - MSQ problem. However, it has only a single
compomer as input, as opposed to a collection of
four complementary compomer spectra used in the
SNP - MSQ problem.

Results
An exact dynamic programming algorithm for
SNP−MSP
In this subsection, we shall describe an exact dynamic
programming algorithm for solving the SNP−MSP pro-
blem. Without loss of generality, we may assume in the
remaining of this section that every base of Σ will even-
tually occur in the optimal solution to a given instance
of the SNP−MSP problem. Consequently, only those
feasible solutions that contains all the bases of Σ need to
be considered when we search for the optimal solution.
In case some base x would not occur in the optimal
solution s′ note that it becomes relatively easy to find s′
since we would have s′ ∈ Lx ∩ Rx and |s’| = |s|. See
below for definitions of Lx and Rx.
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Let us start with some preliminary definitions and nota-
tions. For a string s, a cleavage fragment s[i, j] is called
internal if neither i = 1 nor j = |s|, left-ended if i = 1, or
right-ended if j = |s|. In addition, a cleavage fragment Î is
always considered internal. Given a collection of compo-
mer spectra C∑ , we call a string is I-compatible if the
compomers of its internal cleavage fragments are all con-
tained in C∑ (under the respective cut base). A string is
called L-compatible (resp. R-compatible) if it is I-compati-
ble and if the compomers of its left-ended (resp. right-
ended) cleavage fragments are all contained in C∑ as well.
Example 5 Consider the string s given in Example 1.

The four cleavage fragments of s with respect to the cut
base A are all internal. Among the five cleavage frag-
ments of s with respect to the base T, the first cleavage
fragment ACA is left-ended, the last cleavage fragment
A is right-ended, and the other three cleavage fragments
in the middle are all internal.
Example 6 Let C∑ = {CA,CC,CG,CT} be a collection of

compomer spectra where

CA = {A0C1G0T0, A0C1G1T2, A0C0G0T2},
CC = {A1C0G0T0, A1C0G1T1, A1C0G0T1, A2C0G0T2},
CG = {A2C1G0T1, A3C2G0T3}, and

CT = {A2C1G0T0, A0C1G1T0, A0C0G0T0, A1C0G0T0}.
We show in Table 1 whether each of the given strings

is I-compatible, L-compatible, or R-compatible with C∑ .
For each compomer AiCjGkTl ∈ Cx in a given collection

of compomer spectra C∑ , we use Ix(AiCjGkTl) to denote
the set of strings that (i) consist of i As, j Cs, k Gs, l Ts, (ii)
contain exactly three distinct bases (i.e., three bases in the
set Σ \ {x}), and (iii) are I-compatible with C∑ . It is easy

to check that |Ix(AiCjGkTl)| ≤ (i+j+k+l)!
i!j!k!l! . In particular, if

there exists in AiCj GkTl a non-cut base whose composi-
tion value is zero, then we have |Ix(AiCjGkTl)| = ∅ so that
|Ix(AiCjGkTl)| = 0. Furthermore, we may define the fol-
lowing set

Ix = ⋃
AiCjGkTl∈Cx

Ix(AiCjGkTl), ∀x ∈ �.

Then, let I� = {IA, IC, IG, IT}. Analogously, we may
define Lx(AiCjGkTl), Rx(AiCjGkTl), L� = {LA, LC, LG, LT}
and R� = {RA, RC, RG, RT}for the L-compatible strings
and the R-compatible strings, respectively. Clearly, Lx ⊆ Ix
andRx ⊆ Ix, for all x Î Σ.
Example 7 Consider the collection of compomer spectra

C∑ given in Example 6. For the compomer A0C1G1T2 ∈ CA,
we have IA(A0C1G1T2) = {CGTT,CTTG,GCTT,GTTC, TCGT, TGCT, TTCG, TTGC},
and LA(A0C1G1T2) = RA(A0C1G1T2) = ∅. For the compomer
A0C1G1T0 ∈ CT, we have IT(A0C1G1T0) = LT(A0C1G1T0) = RT(A0C1G1T0) = ∅.
Given a string t which could be a potential cleavage

fragment with respect to the cut base x (i.e., the string t
does not contain any base x), we say a string s begins
with the string t if t · x is a prefix of s · x, or say a string
s ends with the string t if x · t is the suffix of x · s. The
following lemma is useful to design a dynamic program-
ming algorithm for solving the SNP−MSP problem. Its
easy proof is omitted. Recall that our discussions in this
section are limited only to the feasible solutions contain-
ing all the bases of Σ.
Lemma 8 A string s’ of length |s| is a feasible solution

to the SNP−MSP problem if and only if

- all the substrings of s′ are I-compatible with C∑ ,
- s′ begins with a string in Lx for some x ∈ ∑

, and
- s′ ends with a string in Rx for somex ∈ ∑

.

Suppose we have an input instance
〈
s,C∑〉

of the
SNP−MSP problem. Given a string t ∈ Ix where x ∈ ∑

,
we define H (i, t) to be the minimum Hamming dis-
tance between the prefix of s of length i and a string
which is such that

- all its substrings are I-compatible with C∑ ,
- it begins with a string from Ly for some y Î Σ, and
- it ends with the given string t.

To compute H (i, t), we first find in the string x · t the
rightmost position k at which the base (x · t)[k] is its
first occurrence. Formally, we may write

k = max {j : ∀i, 1 ≤ i < j ≤ |x · t|, (x · t)[i] �= (x · t)[j]}.
Then, let x’:= (x · t)[k], p := (x · t)[1, k - 1], and q := (x · t)

[k,| x · t|]. Note that x’ ≠ x and the string p contains all the
bases of Σ except x’.
Example 9 Let t := CGTT Î IA. Then, x · t = ACGTT,

k = 4, x′ = T, p = ACG, and q = TT.
To compute H(i, t), we now use the following recur-

rence relation

H(i, t) = min
t′∈Ix′

{H(i − |q|, t′) + dH(s[i − |q| + 1, i], q)}.

∃t′′, t′ = t′′ · p

Table 1 Examples.

strings I-compatible L-compatible R-compatible

ATGATAC

ATGCTAC

ACATGCT

TACATTA

CTACATTA

This table shows whether each of the given strings is I-compatible,

L-compatible, or R-compatible with C∑ .
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Note that the minimization in the above is taken over
all those strings t′ ′ in Ix′ which have p as the suffix. If
there is no such a string in Ix′, then we let H(i, t) = ∞.
The initial conditions for the recurrence relation are
given as follows:

H(i, t) =

⎧⎨
⎩

∞ if i < |t| and t ∈ Ix
dH(s[1, i], t) if i = |t| and t ∈ Lx

∞ if i = |t| and t ∈ Ix\Lx.

Theorem 10 Let s’ be the string that leads to

dH(s, s′) = min
∀t∈Rx,x∈�

H(|s|, t),

then s’ would be an optimal solution to the input
instance

〈
s,C∑〉

of the SNP - MSP problem.
Proof: For the correctness of the above dynamic pro-

gramming algorithm, we need to show that (i) every fea-
sible solution of the SNP−MSP problem would be
essentially evaluated by the dynamic programming algo-
rithm, and (ii) every string evaluated by the dynamic
programming algorithm must be a feasible solution of
the SNP−MSP problem.
Let the string s’ be a feasible solution. Consider a clea-

vage fragment t of s’ that contains all the bases of Σ except
its corresponding cut base x. Clearly, t ∈ Ix and t is the
suffix of a substring s’[1, i] for some integer i. Without loss
of generality, we can further suppose that t ≠ s’[1, i]. To
show (i), what we mainly need to show is that there exists
a string t′ ∈ Ix′ such that p is the suffix of t’ and t’ is the
suffix of the substring s’[1, i - |q|], where x’, p, and q are
computed for the string t as described earlier. Indeed, we
can find the string t′ as follows. First, let (i’ − 1) be the
position of the last occurrence of the base x’ in the sub-
string s’[1, i − |t|]; if there is no such occurrence, we let
i’ = 1. Then, we assign t′ := s′[i′, i − |q|]. Obviously, t′ is the
suffix of s’[1, i |q|]. Because s’[i - |t|] = x and x ≠ x , we
have i’ ≤ i - |t|. It then follows from p = s’[i − |t|, i − |q|]
that p shall be the suffix of t’. Since p contains all the
bases of

∑
except x’ so, does t’. Moreover, t’ is a cleavage

fragment of s’ with respect to the cut base x’ because we
have either s’[i’ − 1] = x’ or i’ = 1 on the left end of t’ and
s’[i − |q| + 1] = x’ on the right end of t′. By Lemma 8, we
can see that t′ ∈ IA. For the reader’s convenience, we
demonstrate in the following example how to find t′ from
t. Let s’ = ACATGCTACATTA, t = s’ [4,7] = TGCT, i = 7,
x = A, and C∑ be the one as given in Example 6. Note
thatt ∈ IA. Further, for the given string t = TGCT, we
have x’ = C, p = ATG, and q = CT. Then, we obtain that
i’ = 3 and then t’ = s’ [3, 7 − 2] = s’ [3,5] = ATG. It is easy
to check that p is the suffix of t’, t’ is the suffix of the sub-
string s′[1, i − |q|], and t′ ∈ Ix′.
On the other hand, let s’ be a string evaluated by the

dynamic programming algorithm. So, the string s’ must

begin with a string in Lx for some x ∈ ∑
and end with

a string in Ry for some y ∈ ∑
. Consider a cleavage frag-

ment t of s’ that was used to construct the string s’ dur-
ing the backtracking procedure of the algorithm.
Clearly, the string t contains all the bases of

∑
except

its corresponding cut base x. Moreover, t ∈ Ix and t is
the suffix of a substring s’[1, i] for some integer i. With-
out loss of generality, we can further suppose t ≠ s’[1, i]
and i �= |s′|, so that s’[i − |t|] = s’[i + 1] = x. Let t’ be the
string considered next to the string t during the back-
tracking procedure of the algorithm. Thus, we have
t′ ∈ Ix′ such that p is the suffix of t’ and t′ is the suffix
of the substring s’[1, i − |q|], where x’, p, and q are com-
puted for the string t as described earlier. More specifi-
cally, there exists i’ such that t’ = s’[i’, i −|q|] and s′[i’
−1] = s’ [i −|q| + 1] = x’ if i’ ≠ 1. To show (ii), by
Lemma 8 and also by backward induction, what we
mainly need to show is that the extended substring s’[i’,|
s’|] is I-compatible with C∑ , given that the substring
s’[i − |t| + 1, |s’|] is already I-compatible with C∑ . To
this end, we consider any internal cleavage fragment s’[j, k]
of s’ [i’, |s’|] with respect to the cut base x″ = s’[j − 1] =
s’[k + 1]. By definition of the internal cleavage fragment,
we have j ≥ i’ + 1 and k ≤ |s’| − 1. In the following we dis-
tinguish four cases:

- If j ≥ i − |t| + 2, then s’[j, k] is an internal cleavage
fragment of s’[i − |t| +1, |s’|]. Since s’[i − |t| +1, |s’|]
is already assumed to be I-compatible with C∑ , the
base composition of s’[ j, k] shall be also contained
in Cx′′.
- If j = i − |t| + 1, then x″ = x, which further implies
that k = i and s’ [j, k] = t. Since t ∈ Ix, the base com-
position of s’[j, k] shall be contained in Cx′′.
- If j ≤ i − |t| and k ≥ i − |q|, then s’[i − |t|, i − |q|]
is a substring of s’[j, k]. Since s′[i − |t|, i − |q|] con-
tains all the bases of Σ, the string s’[j, k] can not be
a cleavage fragment (as a cleavage fragment must
not contain its corresponding cut base). Therefore,
there shall not have the case where j ≤ i − |t| and
k ≥ i − |q|.
- If k ≤ i − |q| − 1, then s’[j, k] is an internal cleavage
fragment of t’ = s’[i’, i − |q|]. Since t ∈ Ix′, the base
composition of s’[j, k] shall be contained in Cx′′.

In conclusion, for every internal cleavage fragment of
s’[i′, |s′|], its base composition is contained in C∑ under
the respective cut base. Therefore, the extended sub-
string s’[i’, |s’|] is still I-compatible with C∑ .
Note that computing each entry H(i, t) of the dynamic

programming table may take time O
(|s| · |I∑|), where

|I∑| = |IA| + |IC| + |IG| + |IT|. Hence, the above

Chen et al. BMC Systems Biology 2012, 6(Suppl 2):S5
http://www.biomedcentral.com/1752-0509/6/S2/S5

Page 5 of 8



dynamic programming algorithm can be done in time
O(|s|2 · |I∑|2). In the worst case, we may have
|I∑| = O (|s|!), that is, |I∑| is in the factorial order of
the input problem size. In practice, however, we would
expect |I∑| not too large to be manageable, because
cleavage fragments are usually of small size. Therefore,
the above dynamic programming algorithm could be a
practically feasible solution to the problem SNP−MSP ,
especially when compared to the brute-force algorithm
which needs to examine all the possible strings s’. For
the special case where |∑ | = 2, SNP−MSP is actually
an easy problem, as we can see from the above that
|I∑| = O (|s|) .
Corollary 11 The above dynamic programming algo-

rithm can solve the SNP − MSP problem in polynomial
time when |∑ | = 2.

The NP-hardness of SNP - MSQ
This subsection is dedicated to prove that the
SNP - MSQ problem is NP-hard. We begin with a brief
introduction of the 3-partition problem.
Definition 12 (The general form of the 3-partition

problem) Given a multiset of positive integers

A = {a1, a2, · · · , an} where n = 3m and
∑n

i=1
ai = mB,

can we partition the multiset A into m multisets
A1,A2, · · · ,Am, such that the sum of each multiset is
equal to B?
The 3-partition problem is strongly NP-complete [7].

Therefore, it remains NP-complete even when the inte-
gers in A and the integer B are encoded in unary. In
this case, the size of a problem instance is Θ(nB). In
contrast, it becomes O(n log B) when using the binary
encoding of integers.
Definition 13 (The restricted variation of the 3-par-

tition problem) Given a set of positive integers

A = {a1, a2, · · · , an} where n = 3m,
∑n

i=1
ai = mB, and

B
4 < ai < B

2 ,∀1 ≤ i ≤ n, can we partition the set A into
m subsets A1,A2, · · · ,Am, such that the sum of each
subset is equal to B?
There are two constraints imposed in the above

restricted variation of the 3-partition problem. The first
one limits A to be a set so that all the integers in A are
distinct. The second one limits all the integers in A
strictly between B

4 and B
2, which subsequently enforces

every subset Ai to consist of exactly three elements.
Interestingly, this restricted variation of the 3-partition
problem remains strongly NP-complete [8], just like the
general form of the 3-partition problem. Note that the
second constraint B

4 < ai < B
2 was actually not imposed

in [8]. But, it can be easily done by adding B to each ai
and then multiplying B by 4.

Theorem 14 The SNP − MSQ problem is NP-hard,
even when |∑ | = 2.
Proof: We prove it by a reduction from the above

restricted variation of the 3-partition problem. As an
input for 3-partition, we are given a set of distinct posi-
tive integers A = {a1, a2, · · · , an} where n = 3m,∑n

i=1
ai = mB, and B

4 < ai < B
2 ,∀1 ≤ i ≤ n. Then, we

construct an instance 〈s,C∑〉 of the SNP - MSQ problem
as follows:

- Let Σ = {G, T}.
- Let s be the string such that s · T = (GB+2T)m. That
is, let s · T be the concatenation of m copies of the
fragment GG · · · GT, where each fragment consists
of (B + 2) consecutive base Gs followed by one base
T. Note that |s| = m(B + 3) − 1 = mB + 3m − 1.
- Let CG = {G0T0,G0T1} and CT = {GaiT0 : 1 ≤ i ≤ n}
so that C∑ = {CG,CT}.

First, we check whether this construction can be done
in polynomial time in the size of the input instance of
the 3-partition problem. Since the restricted variation of
the 3-partition problem is strongly NP-complete, we
may encode the integers in unary so that the size of the
input instance is Θ(nB). In the above reduction, we can
easily see that the first step can be done in constant
time, the second step in time O(mB), and the third step
in time O(n log B). Therefore, the total time needed for
construction is O(nB), no more than time polynomial in
the size of the input instance of the 3-partition problem.
Next, we show that every feasible solution s″ to the

reduced instance
〈
s,C∑〉

of the SNP - MSQ problem is
such that (i) CT(s′′) = CT, (ii) s″ contains exactly 3m − 1
base Ts, and (iii) dH (s, s″) ≥ 2m. For each compomer
GaiT0 ∈ CT ⊆ CT(s′′), there exists at least one cleavage
fragment Gai in s″ that is obtained with respect to the
cut base T. Since all the integers ai are distinct, all such
cleavage fragments shall be pairwise non-overlapping.

Thus, the string s′′ contains at least
∑n

i=1
ai = mB base

Gs and at least n − 1 = 3m - 1 base Ts. On the other
hand, since |s| = mB + 3m - 1, the string s″ hence con-
sists of exactly mB + 3m− 1 bases. Therefore, we can
deduce that s″ contains exactly 3m − 1 base Ts and
further that CT(s′′) cannot have any other compomer
than those in CT. By construction, we also know that
the string s contains exactly m − 1 base Ts, which
hence implies that dH (s, s″) ≥ 2m.
Now, we are going to show that there exists a valid

partition for the input instance of the 3-partition pro-
blem if and only if there exists an optimal solution s′ for
the reduced instance of the SNP - MSQ problem such
that dH (s, s’) = 2m.

Chen et al. BMC Systems Biology 2012, 6(Suppl 2):S5
http://www.biomedcentral.com/1752-0509/6/S2/S5

Page 6 of 8



Suppose that A can be partitioned into m sub-
setsA1,A2, · · · ,Am such that, for each subset
Ai = {ai1 , ai2 , ai3}, its size is three and its integer ele-
ments adds up to exactly B, that is, |Ai = 3|and∑3

j=1
aij = B,∀1 ≤ i ≤ m. Then, we use the following

procedure to find the string s’:
1. s′ := ∅;
2. for i = 1 to m
3. for j = 1 to 3
4. s′+ = GaijT; // append the string GaijT to s’
5. end
6. end
7. s’:= s’[1, |s’| − 1]; // remove the last base T
As one can easily check, the resulting string s’ is such

that |s’| = mB + 3m − 1, CG ⊆ CG(s′), and CT ⊆ CT(s′).
Therefore, s’ is a feasible solution to the reduced
instance

〈
s,C∑〉

of the SNP - MSQ problem. On the

other hand, since
∑3

j=1
aij = B,∀1 ≤ i ≤ m, we can

deduce that s’[k] = s[k] if s’[k] = G or s[k] = T; other-
wise, s′[k] ≠ s[k], ∀k Î [1, mB + 3m - 1]. Therefore, dH
(s, s’) =|[k : s’[k] ≠ s[k]}| = |s| − |{k : s’[k] = s[k]}| = mB +
3m − 1 − |{k : s’[k] = G}| − |{k : s[k] = T}| = mB + 3m −
1 − mB − m + 1 = 2m. It hence follows that s′ is indeed an
optimal solution to the reduced instance

〈
s,C∑〉

of the
SNP - MSQ problem.
Conversely, suppose that the string s’ is an optimal

solution to the reduced instance
〈
s,C∑〉

of the
SNP - MSQ problem such that dH(s, s’) = 2m. Then, we
use the following procedure to find a partition
A1,A2, · · · ,Am of A:
1. s := s · T; s’:= s’ · T;
2. i := 1; j := 1;
3. Ai := � 0; aij := 0;
4. for k = 1 to mB + 3m
5. if s’[k] = T
6. Ai := Ai ∪ {aij};
7. j + +;
8. if s[k] = T
9. i + +; j := 1;
10. Ai :=� 0;
11. end
12. aij := 0;
13. else
14. aij + +;
15. end
16. end
It follows from the earlier discussions that

CT(s′) = CT = {GaiT0 : 1 ≤ i ≤ n} and also that s’
contains exactly 3m − 1 base Ts. Furthermore, since
dH (s, s’) = 2m, we can deduce that s’[k] = s[k] if s[k] =
T, ∀k Î [1, mB + 3m − 1]. Notice that s[k] = T if and
only if k can be written as a multiple of (B + 3), that

is, k = i(B + 3) Î [1, mB + 3m − 1], ∀i. Therefore,
s’[k] = T if k = i(B + 3) Î [1, mB + 3m − 1], ∀i, which
subsequently implies that CT(s′[(i − 1) (B + 3) + 1, i(B + 3) − 1]) ⊆ CT(s′),
for each i Î [1, m]. Note that s[(i − 1)(B + 3) + 1, i(B + 3)
− 1] is a substring of s that consists of (B + 2) base Gs; it is
located either strictly between two consecutive base Ts or
strictly between one base T and one end of the string s.
Since CT(s

′[(i − 1)(B + 3) + 1, i(B + 3) − 1]) ⊆ CT(s’), we
can let CT(s′[(i − 1)(B + 3) + 1, i(B + 3) − 1]) = {Gai1 T0, Gai2 T0, . . . , Gaij

T0} such that
ai1 + ai2 + · · · + aij + j − 1 = B + 2. Since B

4 < aij < B
2, we

can deduce that j = 3; hence ai1 + ai2 + ai3 = B.
LetAi = {ai1 , ai2 , ai3}, for all i Î [1, m]. Then, we can see
that A1,A2, ...,Am is a partition of A such that the sum
of integers in each subset is equal to B.

Extensions to edit distance
Naturally we may extend our previous problem formula-
tions to the edit distance (i.e., Levenshtein distance).
The resulting two new problems are formally defined as
follows.
Definition 15 (The SNP−MSP problem) Given a

string s and a collection of compomer spectra
C∑ = {Cx : x ∈ �}, find a string s’ such that Cx(s′) ∈ Cx,
for all × Î Σ and dE (s, s’) is minimized.
Definition 16 (The SNP - MSQ problem) Given a

string s and a collection of compomer spectra
C∑ = {Cx : x ∈ �}, find a string s’ such that Cx ⊆ Cx(s′),
for all x ∈ ∑

and dE (s, s’) is minimized.
These extensions make it possible to detect not only

base substitutions but also base insertions and deletions.
Hence, they would permit the mutation discovery in
DNA sequences (see [1]). In the Additional file 1, we
show that both SNP−MSP and SNP - MSQ are theore-
tically NP-hard, together with an exact dynamic pro-
gramming algorithm for solving the SNP−MSP
problem.

Conclusions
To exploit the full potential of the SNP discovery
approach using base-specific cleavage and mass spectro-
metry, in this paper we have studied two new combina-
torial optimization problems, called SNP−MSP and
SNP - MSQ , respectively. We believe that any efficient
solution to either problem could offer a more seamless
integration of information in four complementary base-
specific reactions than previously done in [1,2], thereby
improving the capability of the underlying biotechnology
(i.e., base-specific cleavage and mass spectrometry) for
sensitive and accurate SNP discovery.
Although we cannot change the inherent complexity

of our proposed dynamic programming algorithm for
the SNP−MSP problem, we believe that by improving
and optimizing its implementation, the compute
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runtime can be significantly reduced to the extent suita-
ble for practical use. On the other hand, the NP-hard-
ness result indicates that in the most general situation,
solving the SNP - MSQ problem exactly in polynomial
time is impossible unless P = NP. In more realistic
situations where only a very few SNPs (e.g., two or three
SNPs) occur in a target sample sequence, however, the
problem can be quite easily tackled, e.g., using an
exhaustive search approach. In the future work, we shall
try to prove that the SNP−MSP problem is NP-hard
and develop an efficient heuristic algorithm for the
SNP - MSQ problem for practical use.

Additional material

Additional file 1: Extensions to edit distance. The analysis results for
the problems SNP - MSPe and SNP - MSQe are presented. See
“Additional file 1.pdf”.
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