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Abstract

Background: Due to the difficulty in separating two (paternal and maternal) copies of a chromosome, most published
human genome sequences only provide genotype information, i.e., the mixed information of the underlying two
haplotypes. However, phased haplotype information is needed to completely understand complex genetic
polymorphisms and to increase the power of genome-wide association studies for complex diseases. With the rapid
development of DNA sequencing technologies, reconstructing a pair of haplotypes from an individual’s aligned DNA
fragments by computer algorithms (i.e., Single Individual Haplotyping) has become a practical haplotyping approach.

Results: In the paper, we combine two measures “errors corrected” and “fragments cut” and propose a new
optimization model, called Balanced Optimal Partition (BOP), for single individual haplotyping. The model
generalizes two existing models, Minimum Error Correction (MEC) and Maximum Fragments Cut (MFC), and could
be made either model by using some extreme parameter values. To solve the model, we design a heuristic
dynamic programming algorithm H-BOP. By limiting the number of intermediate solutions at each iteration to an
appropriately chosen small integer k, H-BOP is able to solve the model efficiently.

Conclusions: Extensive experimental results on simulated and real data show that when k = 8, H-BOP is generally
faster and more accurate than a recent state-of-art algorithm ReFHap in haplotype reconstruction. The running time
of H-BOP is linearly dependent on some of the key parameters controlling the input size and H-BOP scales well to
large input data. The code of H-BOP is available to the public for free upon request to the corresponding author.

Background
Each human somatic cell contains 23 pairs of chromo-
somes, and there are about 0.5% differences between the
DNA sequences of two copies of each chromosome [1].
The dominant DNA differences are single nucleotide poly-
morphisms (SNPs). Identification of the combination of
alleles at the SNP loci on the same chromosome copy, i.e.,
haplotyping, is needed to fully understand the human
genetic variation patterns and enhance the power of gen-
ome-wide association studies for complex diseases [2,3].
Currently, it is expensive and labor-intensive to separate
two copies of chromosomes by biological techniques [4],
and most published human individuals’ genomes contain

only the mixed information, i.e., genotype information, of
the underlying two copies of chromosomes [5]. Therefore,
to reduce the cost, accurate and fast computational haplo-
typing methods are of urgent importance.
There have been many computational haplotyping mod-

els [6-8] and they can be grouped into two main classes:
haplotype inference and haplotype assembly [6]. Haplotype
inference is to phase the haplotypes of individuals in a ped-
igree or a population from their genotypes. Computer algo-
rithms of haplotype inference have been used in the
International HapMap Project [9] and the 1000 Genomes
Project [5] to identify haplotypes. Haplotype assembly is
also called Single Individual Haplotyping (SIH). SIH assem-
bles a pair of haplotypes from an individual’s aligned DNA
sequence fragments. With the dramatically dropped cost of
human whole genome sequencing, more and more human
individual’s DNAs have been sequenced. With mate-pairs
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sequencing and read length improvements of the next-
generation sequencing technologies, and with the develop-
ment of new sequencing technologies, SIH methods have
been used to build haplotype-resolved genome of human
beings [10,11]. When there are enough DNA sequence
fragments that cover two or more consecutive variant loci,
SIH builds longer and more accurate haplotype blocks
than haplotype inference does [12].
Since Lancia et al., first formalized the SIH problem

[13], many optimization models and algorithms have
been introduced to solve the problem [7,14-25]. The
main models are MEC (minimum error correction) [24],
MFR (minimum fragment removal), and MSR (minimum
SNP removal) [13]. Recently, Duitama et al., proposed a
new model MFC (maximum fragments cut) [16]. Most of
the models are NP-hard and APX-hard [16,21,26], and
their exact algorithms run in time exponentially depen-
dend on at least one input parameter [15,17,19-21].
Therefore, a large number of heuristic algorithms have
been designed to deal with the problem [16,22,23,25].
According to [16], one of the most accurate heuristic
algorithms is HapCUT [25], while ReFHap [16] runs
much faster than HapCUT without loss of accuracy. In
this paper, we consider both quality measures “errors
corrected” and “fragments cut”, and propose a new opti-
mization model, called Balanced Optimal Partition
(BOP), for the SIH problem. The model generalizes the
most popular model MEC and the recent model MFC. In
fact, it could be made either model by setting some para-
meters to extreme values. To solve the model, we pro-
pose a dynamic programming algorithm H-BOP. By
limiting the number of intermediate solutions at each
iteration to an appropriately chosen small integer k,
H-BOP is able to solve the model efficiently. The time
complexity of H-BOP linearly depends on some of the
key parameters controlling the input size and the algo-
rithm scales well to large input data.

Results and discussion
We use a public available Java package SIH [27] to test the
performance of H-BOP. The package contains a simulated
data generator and implements algorithm ReFHap [12,16].
The simulated data are generated according to five para-
meters: number of SNPs (haplotype length) n, number of
fragments m, average fragment length l, sequencing error
rate e, and gap rate g. In our experiments, since we only
consider heterozygous SNPs, for each data set, a haplotype
h1 containing n SNPs is generated randomly first and then
the other haplotype h2 is obtained by flipping each allele
of h1. For each haplotype, m/2 fragments are randomly
sampled from the haplotype and their lengths follow a
normal distribution with mean l and variance 1. Finally for
each fragment, every allele is flipped with probability e to
introduce sequencing errors and, except at the first and

last positions, every allele is deleted with probability g to
introduce gaps. Given fragments generated as above, the
average call coverage c is calculated by dividing the total
number of alleles of the fragments by the haplotype length
n. Please see [16] for more details.
Among many algorithms for the SIH problem, Hap-

CUT and ReFHap are two of the most accurate heuristic
algorithms [12,16]. Since ReFHap is much faster than
HapCUT, we only compare our algorithm with ReFHap.
We implemented our algorithm H-BOP in Java and
embedded it in the java package SIH and tested the
accuracies, phased haplotype lengths and running time of
H-BOP and ReFHap on simulated data and a real data
set provided by [12]. All tests are carried out on a Win-
dows 7 64 bit PC (3GHz CPU, 4GB RAM). To measure
the haplotype reconstruction accuracy of an SIH algo-
rithm, the hamming distance between the reconstructed
haplotype pair and the real haplotype pair was previously
used widely in the literature [14,23]. However, a recent
study [28] showed it over-penalizes simple switch errors.
Therefore, as in [12,16], we use switch errors to measure
the accuracy of an algorithm. A switch error is an incon-
sistency between the reconstructed haplotype pair and
the real haplotype pair over two contiguous SNPs. There
may be some SNP sites where an algorithm is unable to
determine the alleles of a haplotype. The phased haplo-
type length is defined as the number of SNP sites where
the alleles of the reconstructed haplotype pair are deter-
mined. And the number of switch errors divided by the
phased haplotype length is called switch error rate.
If the allele of a fragment f at a SNP site s is known, we

say f covers s. When there are no fragments covering two
consecutive loci, it is not possible to determine the haplo-
type containing these consecutive loci for all SIH models.
Therefore, for each test we divide a haplotype into blocks
according to the input fragments as in [16]. A block corre-
sponds to a connected component of a graph G = (V, E)
where V is the set of the SNP sites and there is a edge
between two SNP sites s1 and s2 if and only if there is a
fragment covers both s1 and s2. The switch errors of an
algorithm are the sum of the switch errors in all blocks. In
the following simulation tests, the haplotype length n =
100, the gap rate g = 0.1 and each result is the average
over 100 repeated experiments if there is no explicit
specification.

Parameters of the algorithm H-BOP
There are two parameters w and k in H-BOP. The para-
meter w is a weighting factor. H-BOP tries to seek a solu-
tion with the minimum number of errors corrected when
w = 0, and a solution with a maximum cut of the
weighted conflict graph corresponding to the input frag-
ments [16] when w is set sufficiently large. k is the maxi-
mum number of intermediate solutions that we will keep
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at each iteration of H-BOP. When k is large enough, H-
BOP in fact becomes an exact algorithm. To choose
appropriate values for w and k, we test H-BOP on differ-
ent combinations of w and k.
In Figure 1, the haplotype length n = 100 and the aver-

age fragment length l = 3. In Figure 1(a), the number of
fragments m = 140 (c = 4.25) and k = 16. In Figures 1(b)
and 1(c), m = 210 (c = 6.42) and w = 0.1. Figure 1(a)
shows that when the sequencing error rate e increases
from 0.01 to 0.05, the switch errors of H-BOP increases
accordingly. The switch errors of H-BOP is larger when
w = 0 than those when w >0 with e unchanged, which is
obvious when e = 0.05. It indicates that the optimal objec-
tive minimum errors corrected leads large switch errors
when sequencing error rate is high. When w = 0.01 and
0.1, the switch errors of H-BOP are smallest. Figure 1(b)
shows that when k increases from 1 to 8, the switch errors
decrease accordingly. When k increases from 8 to 64,
there are no significant improvements in switch errors of
H-BOP. When sequencing error rates are high, exact opti-
mal solutions may incur large switch errors and Figure 1
(b) indicates that when k increases from 8 to 64, switch
errors of H-BOP increases accordingly. Figure 1(c) shows
that the running time of H-BOP increases linearly with k
when the haplotype length n, number of fragments m and
average fragment length l remain fixed. In the following
tests, we set w = 0.1 and k = 8 for H-BOP.

Simulation results
We changed the sequencing error rate e, the average frag-
ment length l and the number of fragments m to generate
different fragment data sets, and compared the perfor-
mance of H-BOP and ReFHap. Figure 2 shows that
H-BOP and ReFHap are both accurate and there are only
several switch errors in reconstructing haplotypes of 100
SNPs. The accuracies of both algorithms decrease with the
increase of e and improves with the increase of m. These
results are consistent with those in [16], which claim that

the accuracy of an SIH algorithm increases with decreas-
ing sequencing error rate and increasing call coverage. In
a half of the total 48 cases shown in Figure 2, H-BOP pro-
duces fewer switch errors than ReFHap, especially when
l = 3 and e ≥ 0.02. In the other half, H-BOP presents a few
more switch errors than ReFHap only in two cases (i.e.,
Figure 2(a), m = 140, e = 0.005 and Figure 2(b), m = 111,
e = 0.02). In the remaining 22 cases, H-BOP has the same
switch errors as ReFHap.
The phased haplotype lengths of both algorithms gener-

ally increase with decreasing e and increasing m. Table 1
shows that when l = 3 and m <351, or when e = 0.05
(except when l = 10 and m >44), H-BOP is able to phase
more SNPs than ReFHap. In other cases the phased haplo-
type lengths of H-BOP and ReFHap are equal.
We set e = 0.01 and varied the haplotype length n, the

number of fragments m and the average fragment length
l to compare the running time of H-BOP and ReFHap
(Figure 3). When n = 100, l = 3 and m increases from
100 to 400, the running time of H-BOP increases line-
arly, but the running time of ReFHap increases sharply
(Figure 3(a)). When m reaches 400, the running time of
H-BOP is only about 4 seconds, while that of ReFHap is
about 468 seconds. When n increases from 50 to 200 while
m = 200 and l = 3, the average call coverage decreases and
the running time of both algorithms decreases accordingly
(Figure 3(b)). When m = 200, n = 100 and l increases from
3 to 9, the running time of ReFHap increases significantly
while that of H-BOP increases slowly and remains less
than 5 seconds (Figure 3(c)). When the number of frag-
ments and the average fragment length increase, the aver-
age call coverage c increases accordingly. When c is large,
H-BOP runs much faster than ReFHap.

Results on real data
We downloaded a real data set from the SIH website
[27], which contains the aligned sorted fosmid-based
NGS DNA sequence fragments and gold-standard

Figure 1 Performances of H-BOP with different parameter values. Here, the haplotype length n = 100, the gap rate g = 0.1 and the average
fragment length l = 3. (a) The number of fragments m = 140 and k is 16. (b) w = 0.1 and m = 211. (c) w = 0.1, m = 211 and e = 0.01.

Xie et al. BMC Systems Biology 2012, 6(Suppl 2):S8
http://www.biomedcentral.com/1752-0509/6/S2/S8

Page 3 of 10



haplotypes of a HapMap trio child, NA12878 [12]. The
total heterozygous SNP sites of the data are 1,704,166,
the total fragments are 285,341, the average fragment
length is 18.03, and the average call coverage is 3.02.

Since the coverage is low, there are many consecutive
heterozygous SNP site pairs not covered by any frag-
ments, and hence the 23 pairs of chromosomes are
divided into 17,839 haplotype blocks. Due to the low

Figure 2 Switch errors of ReFHap and H-BOP with varying e, m and l. The parameters k and w of H-BOP are set as 8 and 0.1, respectively,
and the haplotype length n is again set as 100.
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coverage, both H-BOP and ReFHap ran very fast and
completed the reconstruction of haplotypes for all 23
pairs of chromosomes in about half a minute. The total
phased haplotype lengths of H-BOP and ReFHap are
1,563,741 and 1,562,402 respectively. Compared with
the gold-standard haplotypes, the total switch errors of
the haplotypes built by H-BOP and ReFHap are 21,859
and 21,835 respectively. Though the switch errors of H-
BOP is larger than that of ReFHap, the switch error
rates of H-BOP and ReFHap are both 0.014.
To account for both completeness and quality, Duitama

et al. [12] proposed an alternative measure QAN50 (qual-
ity adjusted N50). QAN50 is calculated as follows [12]:
(1) Break every haplotype block into the longest possi-

ble segments containing no switch errors.
(2) Calculate span (in reference base pairs) from the

first phased SNP to the last phased SNP for every
segment.
(3) Adjust each span by multiplying the span with

phased SNPs ratio (the number of phased SNPs divided
by the number of total SNPs) inside the segment (to
correct for un-phased SNPs).
(4) Sort segments from the largest to the smallest

adjusted span.

(5) Traverse the list and count the number of phased
SNPs. When the count is more than a half of the total
number of SNPs, the adjust span of the current segment
is QAN50.
Clearly, algorithms with larger QAN50 values are

more desirable. The QAN50 values of H-BOP and
ReFHap on the above real data set are 114,261.09 and
113,831.67, respectively.

Conclusions
Haplotyping is regarded as one of the hardest challenges
in personal genome sequencing. Though some single
molecule sequencing technologies have been developed,
they are still too expensive and labor-consuming. Compu-
ter algorithms are widely used to reconstruct haplotypes
in personal genome sequencing. SIH uses computer algo-
rithms to build a pair of haplotypes from an individual’s
aligned DNA sequence fragments. There are many differ-
ent combinatorial optimization models for SIH, among
which MEC is the most popular and MFC is the most
recent introduction [16]. In this paper, we combine the
two quality measures “errors corrected” and “fragments
cut” used in MEC and MFC and introduce a new model
BOP. We design a heuristic dynamic programming

Table 1 Average phased haplotype lengths of ReFHap and H-BOP

l = 3 l = 6 l = 10

m = 140 211 281 351 74 111 148 185 44 67 89 111

e = .005 ReFHap 98.16 99.59 99.79 99.97 97.2 99.04 99.39 99.66 96.24 97.7 98.51 99.06

H-BOP 98.17 99.61 99.8 99.97 97.2 99.04 99.39 99.66 96.24 97.7 98.51 99.06

e = .01 ReFHap 97.99 99.6 99.68 99.9 97 98.87 99.32 99.59 95.68 97.81 98.73 99.13

H-BOP 98.07 99.63 99.7 99.9 97 98.87 99.32 99.59 95.69 97.81 98.73 99.13

e = .02 ReFHap 97.42 99.39 99.71 99.86 96.94 98.59 99.48 99.63 95.31 98.06 98.24 99.22

H-BOP 97.57 99.48 99.74 99.86 96.95 98.59 99.48 99.63 95.31 98.06 98.24 99.22

e = .05 ReFHap 96.6 98.88 99.49 99.77 95.61 98.31 99.14 99.5 94.25 97.56 98.62 98.87

H-BOP 96.94 99.09 99.63 99.84 95.76 98.42 99.15 99.51 94.33 97.56 98.62 98.87

The numbers in the table are the average of 100 repeated tests.

Figure 3 Running time of ReFHap and H-BOP. (a) The number of fragments m varies with n = 100 and l = 3. (b) The haplotype length n
varies with m = 200 and l = 3. (c) The average fragment length l varies with m = 200 and n = 100.
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algorithm H-BOP to solve the model. By setting appropri-
ate parameters of the algorithm, H-BOP is accurate and
fast. Extensive simulation experiments show that H-BOP
is generally faster and more accurate in assembling haplo-
types than a recent state-of-art algorithm ReFHap. When
the average fragment length is small and sequencing error
rate is relatively high, H-BOP is significantly more accu-
rate than ReFHap. The running time of H-BOP increases
linearly as the average call coverage c increases, and
H-BOP runs much faster than ReFHap when c is large.
The test on a real data set also shows that H-BOP is
superior to ReFHap considering both completeness and
quality of the reconstructed haplotypes.

Methods
Formulation and problem
With the input of aligned DNA sequence fragments
derived from a pair of chromosomes, SIH tries to recon-
struct a pair of haplotypes of their underlying chromo-
somes. If there are no sequencing errors and for any two
consecutive (but not necessarily adjacent) heterozygous
SNP loci, there is at least one fragment covering both, we
can easily determine the linkage relationship between two
consecutive heterozygous SNPs and thus SIH is easy.
However, sequencing errors are unavoidable which makes
the problem complicated. In the following, we first intro-
duce some notations and definitions similar to those in
[15,16,20,23], and then propose a new optimization model.
Since we only consider the alleles at SNP loci in the

SIH problem, the input aligned fragments are encoded
as an m × n SNP matrix M [15,16,25], where m is the
number of fragments and n the number of SNP loci. An
entry at the ith row and the jth column of M is denoted
as M[i, j]. M[i, j] takes a value from {0, 1, −}, where ‘0’
(or ‘1’) encodes the major allele (or the minor allele,
respectively) in the population and ‘−’ represents an
unknown allele. As in previous work [16,25], we assume
that all SNP loci are heterozygous and every fragment
covers at least two heterozygous SNP loci. If this is not
the case, a simple preprocessing as in [22] and [29] can
be used to remove homozygous loci and fragments cov-
ering only one heterozygous SNP locus. In the remain-
der of the section, the ith row of M is equivalent to the
ith fragment and the j column of M is equivalent to the
jth SNP locus without explicit specification for briefness.
Let a, b Î {0, 1, −} and define

c(a, b) =
{
1, if a, b �= −and α �= b;
0, otherwise.

(1)

Given an m × n SNP matrix M, let the underlying hap-
lotype pair be H = (H1,H2). The allele at the jth SNP
locus of H1 (or H2) is denoted as H1[j] (or H2[j], respec-
tively). Notice that since all SNP loci of interest are

heterozygous, for any j Î {1, ..., n}, H1[j] ≠ H2[j], i.e. when
H1[j] = 0, H2[j] = 1 and when H1[j] = 1, H2[j] = 0. Let fi
denote the ith fragment (i.e. the ith row of M). c(M[i1, j],
M[i2, j]) = 1 means that fi1 and fi2conflict at SNP locus j
(i.e. column j), and that if both fragments come from the
same chromosome, either M[i1, j] or M[i2, j] is a sequen-
cing error. Similarly, c(M[i, j], Hp[j]) = 1 (p = 1 or 2)
means that fi and Hp conflict at SNP locus j, and that if fi
comes from the chromosome with haplotype Hp, M[i, j]
must be a sequencing error.

Let sc(Hp, fi) =
∑

j=1,...,n
c(M[i, j], Hp[j]) and

sc(H, fi) = min(sc(H1, fi), sc(H2, fi)) and define

sc(H, M) =
∑

i=1,...,m

(sc(H, fi)). (2)

If the real haplotype pair is H, it is easy to verify that
the number of sequencing errors in the input fragments
is at least sc(H, M), which we call the errors corrected
measure. Based on the principle of parsimony, it is a
natural optimization objective that to minimize the
number of errors and hence Minimum Error Correction
[20,23,24] is the most popular model for SIH.
Minimum Error Correction (MEC): Given an m × n

SNP matrix M, find a haplotype pair H such that
sc(H, M) is minimized.
Based on the underlying haplotype pair H = (H1,H2),

it is easy to partition the fragments into two groups G1,
G2 according to the following rule: For each fragment fi,
if sc(H1, fi) < sc(H2, fi), add fi to G1, otherwise add fi to
G2. Let PH denote the partition (G1, G2) obtained by the
above rule. A partition P = (G1, G2) of a fragment set R
is encoded as a map such that P(f ) = 0 (or 1) if the
fragment f in R belongs to G1 (or G2, respectively).
Conversely, given a partition P = (G1, G2), a haplo-

type pair H = (H1,H2) can be constructed as follows.
Let Ng,v[j] be the number of fragments of Gg whose
allele at the jth locus is v for g = 1, 2 and v = 0, 1. For
each SNP locus j, if N1,1[j] + N2,0[j] ≤ N1,0[j] + N2,1[j],
H1[j] = 0 and H2[j] = 1; otherwise, H1[j] = 1 and H2[j] =
0. Let HP denote the haplotype pair obtained by the
above method.
Theorem 1 Given an SNP matrix M and a haplotype

pair H, sc(H, M) ≥ sc(HPH , M).
There is another formulation of MEC equivalent to

the above one: Given an SNP matrix M, find a partition
P of the rows in M such that sc(HP ,M) is minimized.
In the following, sc(HP ,M) is called the errors corrected
measure of P. While MEC aims to find a partition such
that the conflict between the fragments in the same
group is minimized, Maximum Fragments Cut (MFC)
[16] aims to find a partition such that the conflict
between the fragments in G1 and the fragments in G2 is
maximized.
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Let a, b Î {0, 1, −} and define

d(a, b) =

⎧⎨
⎩

−1, if a, b �= −and a = b;
1, if a, b �= −and a �= b;
0, otherwise.

(3)

Let fi1 and fi2 be two rows of M and define

d(fi1 , fi2 ) =
∑

j=1,...,n
(d(M[i1, j], M[i2, j])). As in [16],

we convert an m × n SNP matrix M into a weighted
complete graph G = (V,E), where V is the set of rows in
M and the weight of the edge between two rows fi1 and
fi2 is d(fi1 , fi2 ). Therefore, a partition P of the rows in M
corresponds a cut of G. Given an SNP matrix M and a
partition P, the fragments cut measure is defined as:

sd(P , M) =
∑

P(fi1)=1,P(fi2 )=2

d(fi1 , fi2). (4)

Maximum Fragments Cut (MFC) [16]: Given an SNP
matrix M, find a partition P of the rows of M such that
sd(P ,M) is maximized.
To take into account both the conflict between the

two groups and the conflict between the fragments
within the same group, we introduce a new score com-
bining the above errors corrected measure and the frag-
ments cut measure. Given a partition P of the rows of
M, define the partition score as

sp(P , M) = sc(HP , M) − wsd(P , M), (5)

where w is a weight factor that is used to adjust the
weight of the fragments cut measure. In the following
we propose a new optimization model for the SIH
problem.
Balanced Optimal Partition (BOP): Given an SNP

matrix M, find a partition P of the rows in M such that
sp(P ,M) is minimized. A solution to BOP of M is
denoted by BOP(M), i.e. a partition with the minimum
partition score.
Note that when w = 0, BOP becomes MEC which has

been proved NP-hard [24] and APX-hard [26]. There-
fore, BOP is NP-hard and APX-hard.

Algorithm
Given an m × n SNP matrix M, there are 2m-1 different
partitions of m rows in M. Therefore, when m is large,
it is impractical to enumerate all possible partitions and
choose one with the minimum partition score. To solve
the BOP model of M efficiently, we propose a dynamic
programming algorithm in the subsection. We first con-
sider the first row of M, then the first two rows and so
on until we have considered all rows of M.
We need some definitions and notations. Let M [1..i, :]

denote the SNP matrix consisting of only the first i rows
of M. The first and last columns at which the ith row of

M takes non ‘−’ values are denoted by l(i) and r(i),
respectively. For a column j, if l(i) ≤ j ≤ r(i), row i spans
column j. In the following, we assume that all the rows
of M are sorted such that if i1 < i2, l(i1) < l(i2) or l(i1) =
l(i2) ∧ r(i1) ≤ r(i2). Let R(i) denote the row set contain-
ing the rows in M[1..i, :] that span column l(i).
Let P be a partition of a row set R and P ′ a partition

of a subset R′ of R. If for every row i Î R’, P(i) = P ′(i),
P ′ is called the projection of P on R’ and P is called an
extension of P′ on R. Fix a row i and let P be a partition
of R(i). P ′ is an optimal extension of P, if the following
conditions hold: (1) P ′ is an extension of P on the row
set R = {1, ..., i}; (2) for any possible extension P ′′ of P
on R, sp(P ′, M[1..i, :]) ≤ sp(P ′′, M[1..i, :]).
Given a partition P of R(i), let εi(P) denote an opti-

mal extension of P. We call sp(Ei(P), M[l..i, :]) the par-
tition score of P and denote it as sip(P) for briefness.
Theorem 2 For an m × n SNP matrix M, let Pbe a

partition of R(m). Em(P) is a solution to BOP of M if
the following condition holds: for any possible partition

P ′of R(i), smp (P) ≤ smp (P ′).
Consider the submatrix containing only the first row

of M. Since R(1) contains only one row, i.e. R(1) = {1},
there are only two possible partitions P1 and P2 of R(1)
(P1 and P2 are in fact equivalent): P1(1) = 0 iff
P2(1) = 1. It is easy to verify that the following equal-
ities hold for i = 1; 2.

E1(Pi) = Pi; s1p (Pi) = 0. (6)

After Ei(P) and sip(P) have been calculated for every
possible partition P of R(i), we consider the submatrix
containing the first i + 1 rows of M. Let Rc(i, i + 1) = R
(i) ∩ R(i + 1), and we calculate Ei+1(P ′) and si+1p (P ′) for
every possible partition P ′ of R(i + 1) according to the
following method. Let q be the number of the rows in R
(i) but not in Rc(i, i + 1), i.e. q = |R(i)−Rc(i, i + 1)|. For a
partition P ′′ of Rc(i, i + 1), there are 2q distinct exten-
sions of P ′′ on R(i). Suppose Pm is the one whose parti-
tion score is the minimum among all 2q extensions.
Then Ei(P ′′) and sip(P ′′) can be computed with the fol-
lowing equations:

Ei(P ′′) = Ei(Pm); sip(P ′′) = sip(Pm). (7)

Since the rows in M are sorted, it is easy to verify that
R(i + 1) = Rc(i, i + 1) ∪ {i + 1}, and that the number of
all possible distinct partitions of R(i + 1) is two times
that of Rc(i, i + 1). For each partition P ′′ of Rc(i, i + 1),
there are two distinct corresponding partitions P1

′

and P2
′ of R(i + 1): for each l Î Rc(i, i + 1),

P1
′(l) = P2

′(l) = P ′′(l);P1
′(i) = 0, but P2

′(i) = 1. Opti-
mal extensions of P1

′ and P2
′ and their partition scores

can be calculated with the following equations:
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Figure 4 H-BOP Algorithm.
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Ei+1(P1
′)(l) =

{Ei(P ′′)(l), 1 ≤ l < i;
P ′

1 (l), l = i.
(8)

Ei+1(P2
′)(l) =

{Ei(P ′′)(l), 1 ≤ l < i;
P ′

2 (l), l = i.
(9)

si+1p (P1
′) = sip(P ′′) + δc(P1

′) − wδd(P1
′); (10)

si+1p (P2
′) = sip(P ′′) + δc(P2

′) − wδd(P2
′). (11)

In Equation (10) (or 11), δc(P1
′) (or δc(P2

′)) is the dif-
ference between the errors corrected measures of
Ei+1(P1

′) (or Ei+1(P2
′)) and Ei(P ′′); and δd(P1

′) (or δd(P2
′)) is

the difference between the fragments cut measures of
Ei+1(P1

′) (or Ei+1(P2
′)). The values δc(P) and δd(P) are

calculated by calling the following functions DeltaEC(i,P)
and DeltaFC(i,P), respectively.

DeltaEC(i,P)
{ δ = 0;
for j = l(i + 1),..., r(i + 1) do
{ if M[i + 1, j] = = ‘-’ then continue;
N1,0 = N2,0 = N1,1 = N2,1 = 0;
for each row l Î Rc(i, i + 1) do
{ if M[l, j] = = ‘-’ then continue;
v = M[l, j], g = P (l),Ng,v + +; }

if N1,1 + N2,0 ≤ N1,0 + N2,1 then
{ δ = δ - (N1,1 + N2,0); }
else { δ = δ - (N1,0 + N2,1); }
v = M[i + 1, j], g = P (i + 1), Ng,v + +;
if N1,1 + N2,0 ≤ N1,0 + N2,1 then
{ δ = δ + (N1,1 + N2,0); }
else { δ = δ + (N1,0 + N2,1); }

}
return δ; }

DeltaFC(i,P)
{ δ = 0, g0 = P (i + 1);
for j = l(i + 1), ..., r(i + 1) do
{ if M[i + 1, j] = = ‘-’ then continue;
for each row l Î Rc(i, i + 1) do
{ if M[l, j] = = ‘-’ then continue;
v = M[l, j], g = P (l);
if g == g0 then continue;
if v == M[i + 1, j] then δ - -;

else δ + +; }
}
return δ; }

When Em(P) and smp (P) are known for every possible
partition P of R(m), a solution to BOP of M is easily
obtained by using the following formula:

BOP(M) = Em(P)|smp (P) is minimum. (12)

Based on the above equations, we can construct an
exact dynamic programming algorithm for BOP. How-
ever, the complexity of this exact algorithm increases
exponentially with the number of rows in R(i), which
implies that the algorithm is impractical when the call
coverage is large. Let P∗

i be the projection on R(i) of the
global optimal partition of M. If the partition score of
P∗
i is among the k smallest ones of all possible partitions

of R(i), we only need to compute k partitions of R(i)
whose partition scores are the smallest in each iteration
without losing the global optimal partition at the end.
Based on the above idea, we propose a heuristic algo-
rithm H-BOP whose pseudo-code is shown in Figure 4.
In the algorithm, a partition P of a row set is encoded
by a binary number P, and P(i) is represented by the
ith bit of P. Therefore, the number set {0, ..., 2q − 1}
encodes all possible partitions of a row set containing q
rows (in fact, there are only 2q-1 different partitions, and
in our implement of H-BOP, we use a binary number of
q − 1 bits to encode a partition to save time and space).
In each iteration of H-BOP, for each row i we maintain
a binary max heap H to store the candidate partitions of
R(i) whose partition scores are among the k smallest.
The heap H can store at most k elements, and each ele-
ment L of H contains a partition P, Ei(P) and sip(P),
which are denoted as L.P, L. E, and L.s respectively. The
value sip(P) of each element in the heap is larger than or
equal to those of its two children. When the number of
elements of H is smaller than its expected size (i.e. k),
and a new element L arrives, the element is inserted
into H and H is adjusted to maintain the max heap
property. When the number of elements of H reaches k,
L is compared with the root r of H. If L.s < r.s, the root
is replaced by L and H is adjusted accordingly; other-
wise, the new element is discarded. The above operation
is denoted by H.insert(L).
The time complexity of H-BOP is O(mkk1k2), and the

space complexity is O(mk1 + mk), where
k1 = max

i=1,...,m
(r(i) − l(i) + 1) and k2 = max

i=1,...,m
(|R(i)|).
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