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Abstract

Background: Protein-protein interaction (PPI) networks carry vital information about proteins’ functions. Analysis of
PPI networks associated with specific disease systems including cancer helps us in the understanding of the
complex biology of diseases. Specifically, identification of similar and frequently occurring patterns (network motifs)
across PPl networks will provide useful clues to better understand the biology of the diseases.

Results: In this study, we developed a novel pattern-mining algorithm that detects cancer associated functional
subgraphs occurring in multiple cancer PPl networks. We constructed nine cancer PPl networks using differentially
expressed genes from the Oncomine dataset. From these networks we discovered frequent patterns that occur in
all networks and at different size levels. Patterns are abstracted subgraphs with their nodes replaced by node
cluster IDs. By using effective canonical labeling and adopting weighted adjacency matrices, we are able to
perform graph isomorphism test in polynomial running time. We use a bottom-up pattern growth approach to
search for patterns, which allows us to effectively reduce the search space as pattern sizes grow. Validation of the
frequent common patterns using GO semantic similarity showed that the discovered subgraphs scored consistently
higher than the randomly generated subgraphs at each size level. We further investigated the cancer relevance of
a select set of subgraphs using literature-based evidences.

Conclusion: Frequent common patterns exist in cancer PPl networks, which can be found through effective
pattern mining algorithms. We believe that this work would allow us to identify functionally relevant and coherent
subgraphs in cancer networks, which can be advanced to experimental validation to further our understanding of

the complex biology of cancer.

Background

Protein-protein interaction (PPI) networks carry vital
information on the molecular functions and biological
processes of cells. Analysis of PPI networks associated
with specific disease systems including cancer helps us to
better understand the complex biology of diseases. PPI
networks are dynamically modulated in a tissue-specific
microenvironment; hence, a set of similarly expressed
genes from two types of cancer tumors may exhibit differ-
ent PPI patterns. A lot of gene expression data has been
accumulated on cancer-specific tumors warranting the
need for developing effective algorithms to translate the
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differentially expressed gene lists into functionally coher-
ent modules that are common to all cancers or shared in a
given subset of cancers. To achieve this, genes are mapped
to corresponding proteins and known PPIs are represented
as a network graph for further analysis. Using graph the-
ory-based algorithms, pairs of networks can be compared
to identify common, distinct or frequent sub-networks.
These sub-networks containing a set of proteins (nodes)
with a distinct set of connections (edges) can represent a
functional unit in a pathway or in a biological process.
Similarly, frequent sub-networks (network motifs) may
represent recurring functional units within a network or
among multiple networks. In this study, we focus on
developing a graph-based algorithm to identify common
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and frequent network motifs from PPI networks of nine
different cancers.

Graphs have been widely used to model a variety of
data types such as PPI networks [1], biological pathways
[2] and molecular structure of chemical compounds [3].
Graph comparison has a wide range of applications in
biological data analysis. For example, by aligning biologi-
cal pathways represented by graphs, evolutionarily con-
served patterns are identified [2]. Similarly, by measuring
the discrepancies between PPI networks of healthy and
sickened individuals, interactions that are involved in dis-
ease outbreak and progression are determined [4].

Existing methods for graph comparison can be cate-
gorized into the following three major types: distance-
based, alignment-based and kernel-based methods. In a
distance-based method, similarity of graphs is measured
based on the graphs’ common structures [5,6]. The lar-
ger a maximum common subgraph (MCS) is, the more
similar are the two graphs; and thus the smaller the
MCS distance between the graphs is. The MCS distance
between the graphs is defined to be 1-|V,,.|/{| V1], | Val}
where | V] is the number of nodes in graph G = (V, E)
[5]. The MCS distance method only considers the maxi-
mum common subgraph when comparing graph similar-
ity. It will only identify graphs that globally resemble
each other and ignore graphs that share many similar
but disconnected subgraphs. Another distance-based
method [7] measures the similarity of graphs based on
their edit distance. With substitutions, deletions and
insertions for both nodes and edges, any graph can be
transformed into another graph by iteratively applying
these operations. Intuitively the more operations needed,
the more dissimilar the two graphs are. With a cost
function associated with each operation, the graph edit
distance is defined to be the minimum total cost to
transform one graph to the other. However, similar to
the MCS method, the edit distance methods also mea-
sure only the global similarity of the graphs.

The alignment-based methods utilize the idea of graph
alignment that is conceptually similar to sequence align-
ment. In sequence alignment, different scores or penalties
are assigned for matches, mismatches and gaps, and the
alignment algorithm looks for the best way to arrange
the sequences so that the overall alignment score is maxi-
mized. In graph alignment, the similarities of graphs are
determined by the conservation of interactions, which is
measured through the edges and similarity of nodes [8,9].
Depending on the requirement, the node-based or edge-
based weights are used in calculating the alignment score
[8]. Graph alignment algorithms such as PathBLAST [2]
use the dynamic programming approach to find optimum
solutions. Graph alignment algorithms can detect global
or local similarity depending on the scoring function
used by the algorithm. However these algorithms either
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end up with exponential running time or turn to heuris-
tic methods for solutions when dealing with graphs that
contain cycles.

The third approach, using kernel-based methods mea-
sures graph similarities through kernel functions. Exist-
ing graph kernels can be viewed as a special case of R-
convolution kernels proposed by Haussler [10]. The
basic idea of a graph kernel is to decompose a graph
into smaller substructures, and build the kernel based
on similarities between the decomposed substructures.
The natural and most general R-convolution on graphs
would decompose graphs to all of their subgraphs and
compare each pair of the subgraphs. However, it is pro-
ven in that computing all-subgraph kernel is as hard as
deciding subgraph isomorphism which is NP-hard [11].
Alternative graph kernels include product graph kernel,
marginalized kernel, subtree-pattern kernel, and so on.
These kernels differ in the way they decompose graphs
to substructures and the similarity measure they use to
compare the substructures. Similar to distance-based
methods, kernel methods can only be used to measure
global similarity of graphs. There is no information
about which subgraphs contribute to the similarities.

One of the most important tasks in the analysis of PPI
networks is to predict functional modules that represent
either stable protein complexes or groups of transiently
interacting proteins that together can accomplish a bio-
logical function. These functional modules can be
mapped to specific subgraphs in PPI networks. Below,
we discuss three methods that have been used to extract
substructures from graphs: (i) frequent subgraph identi-
fication, (ii) graph segmentation and (iii) core-based
clustering. Apriori-based approach and pattern growth
approach are the two major types of algorithms for
identifying frequent subgraphs. The discovery of fre-
quent subgraphs usually consists of two steps that
include candidate generation and frequency counting.
Apriori-based algorithms such as FSG [12] generate can-
didates of larger size by joining two smaller subgraphs.
In order for two frequent k-subgraphs to be eligible for
joining, they must contain the same (k-1)-subgraph.
This introduces a lot of overhead, as there are multiple
ways to join two subgraphs of size k. The frequency ver-
ification step involves subgraph isomorphism test and
therefore is not feasible for large graphs. On the other
hand, the pattern growth approach [13] extends patterns
from a single pattern directly, instead of joining two
smaller subgraphs. Pattern growth approach needs to
deal with the redundancy problem: the same (k+1)-sub-
graph can be generated from extending many different
k-subgraphs. Both apriori-based approach and pattern
growth approach are restricted by the graph size due to
the subgraph isomorphism problem. Heuristic methods
such as Subdue [14] look for incomplete result set.
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Subdue is an approximate algorithm and finds patterns
that can best compress the original graph by substitut-
ing those patterns with a single vertex. Minimum
description length (MDL) is used to evaluate how effi-
cient the graph can be compressed.

Graph segmentation method extracts substructures by
partitioning graphs into disjoint dense subgraphs. K-
means clustering [15] aims to partition graphs to clus-
ters that minimize the within-cluster sum of squares.
Min-cut [16] and a more recent spectral clustering algo-
rithm [17] consider not only the within-cluster density
but also inter-cluster distance. King et al. [18] used a
cost-based local search algorithm to find highly inter-
connected subsets of nodes.

In contrast to the graph segmentation method, where
the central nodes of the subgraphs are usually randomly
chosen, in core-based clustering the central nodes are
selected before clustering is performed [19,20]. The cen-
tral nodes are also referred to as seeds or core of sub-
structures. MCODE method [1] selects the central
nodes based on the highest k-core of the nodes neigh-
borhood. A k-core is a graph of minimal degree k. All
nodes are weighted based on their local network density
using the highest k-core of the nodes neighborhood.
SPICi method proposed by Jiang and Singh [19] chose
the nodes that have highest weighted degree as core
nodes. After selecting the central nodes, clusters are
expanded to maximize the local density of the substruc-
tures. The expansion stops when local density stops
increasing or when all nodes are exhausted.

Due to the NP-hardness of many graph problems,
most of the previous methods offer approximate solu-
tions to measure graph similarity. In this paper we pre-
sent a method that produces the exact solutions in
graph comparison and pattern identification. Our algo-
rithm works in a bottom up fashion. It starts from one-
node subgraph, and proceeds to one-edge and multiple-
edge subgraph. At each loop the search space is reduced
by eliminating parts of networks that are not eligible for
next round of comparison. Even though the run-time
increases exponentially as the size of subgraph increases,
in our case the size of the search space, as the base of
the exponential, reduces quickly. Therefore we can
obtain the complete result in a reasonable amount of
time. As we look for common substructures across the
networks, we also perform graph isomorphism test.
Graph isomorphism problem is known to be in NP;
however, it’s unknown to be in P or NP-complete if P =
NP. In our specific context of network comparison, we
solve this in polynomial time with our pattern-labeling
algorithm.

We applied our algorithm on nine cancer associated
PPI networks to identify common and frequent patterns
in these networks. We collected differentially expressed
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genes from microarray studies of various solid tumor
tissues derived from the Oncomine database [21]. Using
the algorithm we identified common frequent subgraphs
of up to 10 edges in these networks. These subgraphs
may correspond to functional modules that play com-
mon roles in cancer diseases as they occur multiple
times in all the nine cancer networks.

Results and discussion

Cancer protein interaction networks

Our PPI networks are constructed from a comprehen-
sive, non-redundant dataset of experimentally-derived
PPIs [22] that are collected from five major databases
including IntAct [23], MINT [24], HPRD [25], DIP [26]
and BIND [27]. Our goal is to mine for cancer-asso-
ciated subgraphs from the global interaction networks;
however, PPI data that are specific to a cancer tumor do
not exist in the public domain. Hence, we used all the
available PPI datasets for humans from five major data-
bases as the basis for our studies. In our final human
PPI network, there are 19,710 unique proteins repre-
senting 95,931 unique interactions. Note that this
unique set of proteins exhibit some level of redundancy
because splice variants with minimal sequence differ-
ences are included as unique proteins due to the fact
that PPIs are isoform-specific.

We collected differentially expressed genes (DEGs)
between tumor and normal samples from microarray
studies of nine different solid-tumor cancer types using
the Oncomine database [21]. Oncomine is a cancer
microarray database that provides access to DEGs on
most major types of cancer. For each cancer, DEG lists
are available from multiple experiments, where the g-
values (a variant of p-value) for a gene vary from experi-
ment to experiment. Hence, we choose only DEGs
whose average q-values are equal to or smaller than
0.05. The gene lists are then mapped to protein lists
using our in-house mapping tools. The number of pro-
teins is roughly 2 times the number of genes due to the
multiple mappings between genes and proteins. These
proteins are further mapped to the proteins in the
human PPI network to create nine cancer-specific PPI
networks. Table 1 summarizes the number of genes and
proteins and the corresponding network size associated
with each cancer type.

Similar to many PPI networks, cancer PPI networks
also exhibit power-law degree distributions (Figure 1).
Such a distribution indicates that most proteins in the
network have only a few interactions, while a small
number of proteins acting as hubs participate in a large
number of interactions. This makes cancer PPI networks
resistant to random failure but vulnerable to targeted
attacks to the hub nodes. Figure 1 depicts the degree
distribution (on a log-log scale) of the nine cancer PPI
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Table 1 Number of genes and proteins mapped under each cancer network.
Cancer type Number of genes Number of proteins Edge count Node count
Bladder cancer 1771 29286 47909 10726
Breast cancer 11373 26498 33558 8611
Cervical cancer 9811 22447 19332 6288
Colorectal cancer 18982 40905 58212 13273
Esophagus cancer 5135 13380 13405 4218
Gastric cancer 12137 28224 41289 9707
Melanoma 8763 22421 30843 7677
Pancreatic cancer 17339 37160 52125 12199
Prostate cancer 11181 27598 41658 9621

networks we studied. All of the charts exhibit a linear
relationship on a log-log scale, which is the signature of
power-law distribution.

Network analysis

The reason we are interested in frequent patterns is that
the presence of these subgraphs in PPI networks consti-
tute an analogy to motifs in multiple sequence align-
ment. These frequent subgraphs represent conserved
functional modules that play significant roles in the dis-
ease systems we study. First we look for frequent sub-
graphs within a network because of the possibility of
finding more than one identical subgraph from nodes
that belong to the same cluster (see below). Then we
perform comparative analysis across multiple networks
to measure the commonality across networks. These

subgraphs must be connected components, which is a
prerequisite for forming protein complexes or pathways.
Our method of frequent pattern extraction involves the
following three key steps: identification of node similar-
ity, graph isomorphism test and discovery of frequent
patterns.

Identification of node similarity

Each node in a PPI network represents a unique protein.
Nodes are considered similar if the proteins they repre-
sent have similar functions. We use the sequence align-
ment algorithm Blastclust [28] to cluster protein
sequences into mutually exclusive groups. Proteins pre-
sent in the same cluster are deemed functionally similar
to each other and they will be assigned the same cluster
ID. Blastclust is a single-linkage clustering algorithm to
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Figure 1 Power-law distribution of PPl networks from nine different cancers.
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cluster sequences hierarchically. It begins with pair-wise
alignment and places a sequence in a cluster if it
matches at least one of the sequences already in the
cluster. Blastclust uses the BLASTP algorithm to com-
pute the pair-wise matches. We used stringent criteria
of 90% sequence identity over 95% of the length of each
sequence and divided 18,888 proteins to 14,838 clusters.
The cluster ID will be tagged to each node in the net-
work and will be used in pattern labeling process as
described in the following section.

Graph isomorphism test
The basic idea in canonical graph labeling [29] is to
represent relational graph data using a sequence of sym-
bols that can uniquely identify the graph. Kuramochi et
al. [12] proposed to use concatenation of upper triangle
of adjacency matrix as canonical label of graphs. For
graphs with no edge weights, an adjacency matrix is a
binary matrix. Every row and column corresponds to a
node in the graph. The value at M[j, j] is 1 if there is an
edge between node i and node j and O otherwise. For
undirected graphs, the adjacency matrix is symmetric on
its main diagonal. Therefore we can use upper right tri-
angle of the adjacency matrix to fully represent a graph.
The ordering of rows and columns will determine the
content of adjacency matrix. We order the rows and
columns using protein IDs the nodes are labeled with.
The adjacency matrix generated in such way unambigu-
ously represents a given graph. To create the canonical
label of the graph, we first concatenate the protein IDs
sorted in order. Then we concatenate the upper triangle
of the adjacency matrix.

Figure 2A illustrates how canonical label is created
for a four-node graph. If we can apply similar idea to
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define canonical labels of graph patterns, then graphs
with same pattern labels are isomorphic to each other.
Using the method described above, we can replace pro-
tein IDs with cluster IDs and generate a new series of
symbols. However when there are multiple nodes bear-
ing same cluster IDs in a graph, we cannot make a
proper ordering of the nodes because different ordering
of the nodes will result in different code [12]; thus
making them ineffective for isomorphism test as illu-
strated in Figure 2B. In this Figure, three of the nodes
are having the same cluster ID, ‘A’, which results in
three possible adjacency matrices to be constructed.
Correspondingly three different pattern labels can be
formed. One way to obtain isomorphism-invariant
codes is to try every permutation of the nodes and find
lexicographically the largest or smallest code. In the
above case, the pattern label constructed from matrix
(c) is [A, A, A, B]J0111011000, which is lexicographi-
cally the largest. But doing so will result in O(|V|!)
worst case running time. To overcome this problem,
here we present an algorithm that generates unique
pattern labels in polynomial time.

PageRank algorithm [30] is used by Google Internet
search engine to measure relative importance of web
pages. The algorithm calculates a numeric value for
each node to indicate its ranking in the overall network.
Based on the ranking information, Google can deter-
mine which web pages are more important or more
relevant and tune their search results accordingly. A
similar idea can be applied to compute structural
equivalence. In PageRank, all graph nodes are consid-
ered of the same type. So the ranking information solely
reflects the positions of nodes in the graph. In our case,
we want to first differentiate graph nodes based on their
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Vi 0 1 1 1
@ @ V2 1 0 1 1
V3 1 1 0 1
Va4 1 1 1 0

Vez =,

Canonical label: [V1,V2,V3,V4]0111011010

(2A)

in three possible adjacency matrices to be constructed.

Figure 2 Canonical labeling of subgraph structures. 2A: The columns of the adjacency matrix are arranged according to the natural order of
node labels. As this is a complete graph, there are edges between every pair of distinct nodes. Therefore non-diagonal elements are all 1. And
since there is no self-loop in the graph, the diagonal elements are all 0. The canonical label [V1, V2, V3, V4]0111011010 is formed of two parts.
The first part [V1, V2, V3, V4] is the concatenation of node labels, delimited by comma. The second part 0111011010 is the concatenation of
upper triangle of adjacency matrix. Two parts are separated by square bracket. 2B: Three of the nodes are having same cluster ID, which results

o &
A A A B A Ay A B
A0 1 10 A0 1 11
A1 0 11 A1 0 10
A1 1 01 A1 1 01
o o B O 1 10 B 1 0 10
- @ - (b)
= .
A A A B
A o 1 41 1
B A1 0 11
A1 1 00
B 1 1 0 0
~ -
(©) (2B)




Shen et al. BMC Systems Biology 2012, 6(Suppl 3):S2
http://www.biomedcentral.com/1752-0509/6/53/5S2

cluster ID; then differentiate the nodes based on their
equivalence class (see below). To achieve this purpose,
we assign weights to nodes based on their cluster ID.
We associate a unique integer value with each cluster.
The same integer value will be assigned to all nodes in
the cluster as the weight of the node. The magnitude of
the weight is not an indication of the functional impor-
tance of the cluster. It is solely used to differentiate the
clusters.

In Figure 3A, all nodes from cluster A are assigned
weight 1; all nodes from cluster B are assigned weight 2,
etc. In a weighted graph, nodes at either end of an edge
are not equal because they may be assigned different
weights. Therefore we replace undirected edges with
two edges going to opposite directions. Then we com-
pute the adjacency matrix, denoted as W for the
weighted graph.

W o weight of node i, if node j connected to node i
il = Vo, if not

From adjacency matrix, we can compute hyperlink
matrix, denoted as H.

Wiij)

' , kis number of nodes in graph
2_i-1 Wiiji

Hpij) =
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The hyperlink matrix generated from the above exam-
ple is

00111
00111
22002 | =
22002
33330

0 0 1/51/51/6
0 0 1/51/51/6
2/72/7 0 0 1/3
2/72/7 0 0 1/3
3/73/73/53/5 0

H =

Hyperlink matrix is a stochastic matrix. Every column
of H sums to 1. The entry H[j, j] indicates the probabil-
ity of moving from node j to node i. It can also be
understood as the ratio of contribution node j makes to
node i among all nodes j connected to. Let v be the vec-
tor storing relative importance of nodes. v[i] denotes the
relative importance of node i. A node’s relative impor-
tance is determined by the contribution all other nodes
have made to it. So we need to solve the equation Hv =
v. This is actually to find the Eigen vector corresponding
to eigenvalue 1 of matrix H. Eigenvalue computation
can be performed in polynomial time.
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Figure 3 Computing the weighted adjacency matrix.
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It shows that A1 and A2 are of the same relative
importance. They will be included in the same equiva-
lence class. B1 and B2 will also be included in the same
equivalence class. Then we sort nodes based on cluster
ID at first level and equivalence class at second level. In
matrix M when we shuffle nodes in the same equiva-
lence class, the matrix content will not be changed; the
canonical label remains the same. Therefore permuta-
tions are not needed to generate a unique pattern label.

In Figure 3B, node Al, A2 and A3 are from the same
cluster. But A3 falls into a different equivalence class
from Al and A2 because their relative importance
values (the middle column) are different. When we sort
the nodes, the relative positions between equivalence
classes are fixed. The order is based on the relative
importance value. The relative position within equiva-
lence classes can be changed without impacting the con-
tent of matrix.

Using the algorithm described above we can generate
pattern labels for graphs. Generally it takes O(n®) time
to compute eigenvalue decomposition. Constructing
adjacency matrix and hyperlink matrix each takes O(n?)
time. Sorting of nodes takes O(n lg n) time. Thus the
algorithm to compute pattern labels runs in polynomial
time.

Discovery of frequent patterns

Finding frequent subgraphs is an NP-hard problem.
When the size of the subgraph is a variant, finding fre-
quent subgraphs takes exponential run-time. Therefore,
to solve frequent subgraphs problem we need to effec-
tively reduce the search space as subgraph size increases.
To accomplish this, we take the bottom up approach to
find small subgraphs first and proceed to larger sub-
graphs. We start with frequent subgraphs of 1 node. We
look for clusters with size no less than the given thresh-
old in each network. This can be done through a simple
counting of nodes within each cluster in each network.
Among the selected clusters, we look for those present
in all networks. Nodes belonging to these clusters are
kept; the rest are removed from the networks. Edges
incident to removed nodes are also removed from the
networks. On the remaining part of the networks we
will discover patterns of next size level.

Frequency downward closure is an important property
that most of the frequent-subgraph-finding algorithms
are based on. It is essential for the computational tract-
ability of most frequent subgraph discovery algorithms
[3]. Frequency downward closure property states that
the frequency of subgraphs decreases monotonically as a
function of its size. Our algorithm also looks for non-
overlapping subgraphs when counting the subgraph fre-
quency. Counting edge-disjoint embeddings of subgraph
patterns can be transformed to Maximum Independent

Page 7 of 14

Set (MIS) problem. Pattern labels are formulated using
the canonical labeling algorithm described in the pre-
vious section. Frequencies of patterns are first computed
by counting the occurrence of pattern labels. Then MIS
algorithm will be used to further filter overlapping pat-
terns. Finally, we check if the selected patterns exist in
all the nine cancer networks. Unqualified subgraphs will
be removed from the networks. Qualified patterns will
be kept for next round of pattern finding. Using these
procedural steps iteratively, we have identified a number
of frequent and common subgraphs at each edge-level
covering from 2-10 edge subgraphs (Figure 4). A com-
plete list of the patterns at each edge-group can be
accessed from the additional files 1, 2, 3, 4, 5, 6, 7, 8, 9.

Figure 4 summarize the number of common and fre-
quent patterns at each edge size. From 2-edge to 4-edge,
the number of patterns increases as pattern size
increases. In these cases, the number of patterns appears
to be influenced by the possible combinations of edges,
which is an increasing function of number of edges.
From 4-edge on, as the number of edges increases, there
is a decline in the number of patterns. This is because
it’s harder for large size patterns to be both frequent
and common. As shown in Figure 4, the 10-edge is the
maximum size of common and frequent pattern that
could be found on our datasets. Beyond this point the
number of patterns will become zero as the pattern size
increases beyond 10 edges.

Each of the patterns listed in Figure 4 shows the same
topology but corresponds to multiple subgraphs, where
the subgraphs can vary with one another by having dif-
ferent nodes from the same cluster at equivalent posi-
tions. This is illustrated in Figure 5, generated in
Cytoscape [31], for a 4-edge pattern involving MYC as
the central node with the alpha and beta tubulins and
their homologs varying in the same position. Similarly,
the 10-edge pattern corresponds to 16 distinct sub-
graphs in bladder cancer. Note that all the common pat-
terns exist in all the nine cancer networks, but the
number of subgraphs in each pattern varies among
them due to the cancer tissue-specific expression of the
equivalent genes that belong to the same cluster. Pat-
terns of smaller sizes exhibit more variations because
more subgraphs are available.

Performance validation

We compared our method with FSG, which is a fre-
quent subgraph-mining algorithm [12], on analyzing the
9 cancer PPI networks. Given a set of network transac-
tions, FSG looks for subgraph patterns that exist in at
least o percent of the networks, where c is the support
threshold. We ran both programs on our 24-core 2.93
Ghz Intel Xeon server. We set FSG o to 100, which is
equivalent to our method of finding common patterns
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Figure 4 Graph showing the number of identified patterns versus pattern size.

in all given networks. FSG doesn’t have the option of
setting the subgraph support within each network and
its default value is 1. At 2-edge and 3-edge levels, FSG
ran faster than our method using less than one second
and 1 second, respectively; while our method used 6
and 20 seconds, respectively. At 4-edge level, FSG spent
similar amount of time as our method, which is around
30 seconds. But FSG was not able to continue the task
at 5-and-higher-edge levels and ran out of memory. The
running time and resource requirements increased
exponentially as the subgraph size increased. Our
method, on the other hand, showed a much slower rate

of increase in time complexity. When support within
network is set to 2, our program took 800 seconds to
find 5-edge patterns. The running time reached the
maximum for the 9-edge patterns and then finally
reduced to 600 seconds at the 10-edge group.

The subgraph patterns identified by us are frequent
within each network and also common to all the nine
cancer networks. Hence, we hypothesize that each sub-
graph corresponds to an important functional module in
cancer. We used GO semantic similarity [32] as a metric
to quantitatively verify the functional importance of the
frequent common patterns, and thus the performance of

TUBAS ' sP1 TUBA4A SP1

MYCBP2—— MYC MYCBP2—— MYC |

MAX | MAX

Figure 5 Multiple subgraphs of the MYC pattern that vary by nodes of the same cluster at an equivalent position. The 4 subgraphs
have similar nodes (TUBA4A, TUBA8, TUBA1B and TUBATA) at corresponding positions. Therefore they belong to the same pattern.

TUBA1A ' sP1

TUBA1B | sP1 )

MYCBP2—— MYC

MYCBP2—— MYC

| MAX | . MAX |
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our method, in detecting the functional subgraphs.
Semantic similarity provides a quantitative measure of
how similar a pair of proteins is, based on the annota-
tions (GO terms) in a given GO concept category. The
idea is that the interacting proteins are more likely asso-
ciated with similar cellular processes and/or involved in
similar function. Hence, this similarity measure is higher
for functionally related proteins, and vice versa. This
concept has been very effective in interpreting the func-
tional similarities of genes/proteins based on gene anno-
tation information from heterogeneous data sources
[33,34].

To test this hypothesis, we compared sets of randomly
generated subgraphs (SGrang) against the sets identified
by our algorithm (SGcancer). We generated random sets
of 1000 subgraphs for each edge-group of size n (n = 4-
10) from the human PPI network. In other words, both
sets of SGrand and SGcancer Subgraphs are derived from
the same parent interactome, but they differ in the node
and edge topologies they contain. We computed the
average semantic similarity scores of SGrang and SGecan.
cer subgraphs for each edge-group. The results of the
comparison are shown in Figure 6. As expected, the
similarity scores of SGcancer subgraphs are substantially
higher than those of the SGranq subgraphs at all edge-
group levels tested. This result validates that the SGcg,.
cer Subgraphs identified by our algorithm are function-
ally coherent modules. Still, the question remains as to
what kind of a role do they play in cancer. To address
this, we have further studied a select set of subgraphs
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from different edge-groups to understand their role in
different cancers.

Role of subgraph patterns in cancer

The 10-edge subgraph primarily consists of the gluco-
corticoid receptor (NR3C1), three of its coactivators
(CREBBP, NCOAL1, and NCOA3) and one co-repressor
(NCOR2). In addition, there are three transcriptional
regulators (STAT3, STAT5A and RELA) and an RNA
binding motif protein (RBM8A). All the known direct
and indirect interactions among these proteins are
shown in Figure 7, which is generated by the Ingenuity
Pathway Analysis tool (IPA) using only the “cancer dis-
ease” filter. All nine nodes identified in our 10-edge pat-
tern subgraph are associated with the cancer disease
with glucocorticoid receptor (GR) as the central mole-
cule. GR plays a prominent role in apoptosis through
genomic [35] and non-genomic [36] mechanisms. Due
to this action of GR, glucocorticoids are commonly used
to treat patients suffering from a wide range of cancers
[35]. All the three coactivators of GR exhibit histone
acetyl transferase activity (HAT), and genetic alterations
in HATs have been linked to various forms of cancer
[37]. For example, NCOA1 (SRC-1) and NCOA3 (SRC-
3) are members of the p160/steroid receptor coactivator
(SRC) family that are the most studied of all transcrip-
tional coactivators [38]. SRC genes are subject to ampli-
fication and overexpression in some breast and prostate
cancers [39]. The role of the third coactivator, CREBBP
(CBP), merits special mention: its role in tumor

Random subgraph GO score vs frequent common subgraph GO score
14
12 ———
10 —
o —
g 8 —— Random subgraphs
w
o 6 —— Frequent common
= 4 subgraphs
2
O T T T T T T
1 2 3 4 5 6 T
Number of edges

Figure 6 Validation of the prediction performance using GO semantic similarity scores. The purple line represents average GO scores of
cancer subgraphs and the blue line represents those of randomly generated subgraphs, at each edge-group level.
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Figure 7 Ingenuity pathway analysis of the 10-edge pattern subgraph showing cancer-associated interactions among its nodes. The
edges represent both physical (direct) and regulatory (indirect) relationships.

suppression has been well-documented [40], and in a
recent study, sequence or deletion mutations of CREBBP
was found to be highly associated with relapsed acute
lymphoblastic leukemia, a leading cause of death due to
disease in young people [41]. CREBBP also regulates the
tumor suppressor p53 in two ways: in the nucleus, acet-
ylation of p53 by the HAT domain activates p53 [42]
through formation of a binary complex [43]. In the cyto-
sol, CREBPP promotes polyubiquitination and destabili-
zation of p53 [44]. The RNA-binding motif containing
gene, RBM8A is also known to interact with OVCA1,
which is a tumor suppressor gene [45]. In summary, the
functional module highlighted in this study directly
impacts the activity of the Glucocorticoid Receptor, and
its dysregulation, probably through the effect on the GR
mediated apoptosis pathway, is a common motif found
in the nine cancers included in this study. This func-
tional module also impacts the p53 mediated tumor
suppressor pathway through the regulation of p53 activ-
ity by CREBBP.

We also looked at some of the smaller subgraphs con-
taining 2-8 edges and found a number of network pat-
terns associated with cytoskeletal functions. One of the
8-edge patterns is related to a functional unit consisting
of actin (o, B and y isoforms) and six actin associated
genes, ACTR1A, CCT5, GSN, SPTANI1, TPMI,
DYNLL1 and their homologs, that are differentially
expressed across nine cancer types. CCT5 is a molecular
chaperone, and is part of the TCP1 ring complex,
known to fold various proteins including actin and
tubulin. We find that CCT5 is uniformly up-regulated
across datasets. We hypothesize that CCT5 may play an
important role in ensuring the correct folding of cytos-
keletal proteins that are produced during cell prolifera-
tion in cancer. It is well known that the actin
cytoskeleton is substantially modified in transformed
cells, and this occurs in concert with changes in a host
of actin filament-associated regulatory proteins [46].
These changes are thought be integrally involved in the
abnormal growth properties of tumor cells, their ability
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to adhere to tissue, and their increased ability to metas-
tasize [47].

In the 5-edge group of patterns, we have identified a
functional module centered on the well-known onco-
gene MYC, and Myc binding proteins, Max, Mycbp2
(PAM), and SP1, that are differentially regulated in nine
cancers. Interestingly, this functional pattern also
includes o and B tubulins and their homologs in various
subgraphs as shown in Figure 5. The MYC proto-onco-
gene family has been the subject of intense scrutiny due
to the involvement of deregulated MYC genes in a wide
range of cancers [48]. Myc is a short-lived protein that
promotes proliferation by regulating the expression of
specific target genes. Myc requires the constitutively
expressed family member Max to function. Myc and
Max form heterodimers via basic helix-loop-helix leu-
cine zipper domains and bind to E-box regulatory ele-
ments in target genes. Myc overexpression up-regulates
genes directed towards cell growth: ribosome biogenesis,
protein synthesis, and metabolism [49], and Myc has
also been shown to repress genes that attenuate cell
cycle progression [50]. High-throughput sequencing of
ChIP DNA (ChIP-seq) has been used to locate 3465
DNA regions bound by Myc, 20% of which were up or
down-regulated as a consequence of c-Myc expression
[51]. Oncogenic activation is known to occur from con-
stitutive and overexpression of the c-Myc protein. For
example, in Burkitt’s lymphoma, a translocation of
MYC, t(8,14) to a location that falls within the regula-
tion of the strong promoter of immunoglobin genes
increases the amount of expression of the MYC gene.

Conclusion

In this paper, we present a novel algorithm for mining
frequent and common patterns across multiple cancer
PPI networks. The comprehensive PPI datasets used in
this study exhibit power-law distribution across all can-
cer networks. By using effective canonical labeling and
adopting weighted adjacency matrices, we are able to
perform graph isomorphism test in polynomial running
time. The search starts from small patterns of 1 node,
proceeds by incrementing the subgraph size 1 edge at a
time, and stops when no frequent patterns are discov-
ered for a certain edge level. As the size increments, the
infrequent edges in the original networks are removed,
thus reducing the search space for the next round of
searching. We applied the algorithm on nine cancer PPI
networks and identified frequent and common patterns
of different sizes up to 10 edges. To validate the perfor-
mance of our method, we compared these patterns
against the randomly generated patterns at each edge-
group, using GO semantic similarity measure. Patterns
identified in this study exhibited significantly higher
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scores compared to the random ones at all edge-group
levels indicating that these patterns are functionally
cohesive modules. Further investigations on the specific
role of each module in cancer revealed their intricate
association with various cancer-associated processes
such as transcriptional regulation, cell growth, cell pro-
liferation, etc. Ingenuity pathway analysis of a 10-edge
module demonstrated that the cancer-associated func-
tions are tightly dependent among the nodes of the sub-
graph as evidenced by both direct and interactions.
Based on these results, we believe that the methodology
developed in this study is capable of identifying com-
mon and frequent subgraphs from large and multiple
interaction networks. While we used cancer PPI net-
works in our study, this is a generic methodology and
hence can be applied to mine subgraphs from many
other networks.

Methods

Human protein interactome dataset

We created a comprehensive, non-redundant dataset of
experimentally-derived interacting proteins by combin-
ing multiple datasets (downloaded in the PSI MI 2.5 for-
mat) from five major protein interaction databases that
include DIP (Database of Interacting Proteins) [26],
IntAct [23], BIND (Biomolecular Interaction Network
Database) [27], HPRD (Human Protein Reference Data-
base) [25] and MINT (Molecular Interaction database)
[24]. These datasets are fairly overlapping both within
and across databases, and protein sequences in these
databases are originally indexed with different source
identifiers from UniProt, DIP, GenBank, etc. We have
collected only those proteins belonging to the human
species. To remove redundancy, we first created datasets
of unique sequences (based on full-length protein
sequence string comparison) within each database and
then merged them to create a non-redundant dataset of
interacting protein sequences, each indexed with our
internal identifier. Finally, we obtained 19,710 unique
protein sequences representing 95,931 unique PPIs.

Calculation of GO semantic similarity

The semantic similarity of GO terms between two inter-
acting proteins was calculated for all possible pairs of
proteins in the human PPI network. The GO terms
associated with each protein were obtained from the
GO database. The GO annotation (GOA) for a protein
can be based on three concepts i.e., biological process
(P), molecular function (F) and cellular component (C).
The best semantic similarity measure between the GO
terms of the two proteins, under each GO concept, was
determined for all pairs of proteins using the method
proposed by Brown and Jurisica [33].
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Semantic similarity is the probability of minimum sub-
sumer, P, that is determined separately for each GO
concept using the following derivation. Let g; and g,
represent the set of GO terms from proteins i and j,
respectively; let S(g;, g») represent the set of shared par-
ental GO terms of g; and g», and let Gc represent GO
concept P, F or C. Then, P, is calculated as the mini-
mum frequency of occurrence of the set of shared GO
terms over each concept:

min
S(81.82)1Ge

{r(g)}

Prs (glrg;z) =

A similarity measure based on this probability is then
calculated as the negative log probability of minimum
subsumer, using the following equation.

Sim (gl,gz) =—In (Pms (glrgz))

In brief, the similarity score between two GO terms is
higher if they share a common parent with a more spe-
cific GO term (less frequent), and vice versa. The total
similarity score is the sum of the best similarity scores
from each concept.

Graph theory preliminaries
Definition 1 (Labeled graph) A labeled graph is a triple
G = (V, E, p), where

+ V is the node set
+ Eis the edgeset, ESV x V
o w:V > Ly is a function assigning labels to nodes

In PPI networks, nodes are labeled with protein IDs.
Since each protein appears at most once in a PPI net-
work, no two nodes share same labels. Formally: ¥ v;, v;
€ V,v; #v; = u(vy) = u(vy).

Definition 2 (Undirected graph, connected graph) A
graph G = (V, E, p) is an undirected graph if and only if

Yvi, vj e V: (v; vj) € E < (vj; vj) € E. In an undir-
ected graph G, two nodes v; and v; are connected if G
contains a path from v; to v;. A graph is said to be con-
nected if every pair of nodes in the graph are connected.

Definition 3 (Subgraph) Graph G’ = (V’, E, i) is a
subgraph of graph G = (V, E, p) if VE Vand E € (V’
x V)NnE)and ' = p.

Definition 4 (Graph isomorphism) Given two labeled
graphs G = (V, E, p) and G’ = (V’, E’, i’). Graph iso-
morphism is a bijective function f: V — V’ such that
Vv, vj € V, (v, vj) € E < (f(w), f(vj)) € E".

Definition 5 (Frequent subgraph) Given a graph G =
(V, E, p), support(g) is the number of isomorphic
embeddings of subgraph g. A subgraph is frequent if its
support is no less than a given minimum support

threshold.
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Algorithms
Algorithm 1 frequentCommonDiscover(G,o)

1: for Every G; in G do

2:  C; N Find node clusters with size no less than ¢

3: end for

4: F° % Find node clusters that are present in all Cy ~
Ck

//k is number of graphs in G

5: for Every G; in G do

6: Remove nodes not present in clusters in F°

7: end for

8: for Every G; in G do

9:  Label edges with concatenation of sorted label of
nodes at both ends

10: Label edge groups with concatenation of sorted
cluster ID of nodes at both ends

11: L; N Find edge groups with size no less than ¢

12: end for

13: F' % Find edge groups that are present in all L, ~
Ly

14: for Every G; in G do

15:  Remove edges not present in groups in F'

16: end for

17:t % 2

18: while F™' is not empty do

19:  for Every G; in G do

20: E % Enumerate t number of edges

21:  for Every E; in E do

22: if connected then

23: Assign canonical labels to subgraphs using
subgraphLabel(E))

24: Assign pattern labels to subgraphs using
patternLabel(E))

25: end if

26: end for

27 Compute embeddings of patterns using MIS()

28: Pi N Find subgraph patterns with embeddings
no less than

29: end for

30: F' 9 Find subgraphs patterns that are present in
all Py ~ Py

31: for Every G; in G do

32: Remove subgraphs not present in patterns in F'
33: end for
34 tRt+1

35: end while

Algorithm 2 patternLabel(E)

1: Extract node set N from E

2: Assign weights to nodes based on their cluster ID

3: Construct weighted adjacency matrix

4: Construct hyperlink matrix

5: Compute eigenvalue decomposition of hyperlink
matrix

6: Sort nodes by cluster ID first
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7: Within cluster, sort nodes by corresponding values in
eigen vector

8: Construct binary adjacency matrix, with nodes in
order

9: Concatenate node list and upper diagonal of binary
adjacency matrix

10: Return the sequence of symbols
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