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Abstract

Background: Metabolomics has become increasingly popular in the study of disease phenotypes and molecular
pathophysiology. One branch of metabolomics that encompasses the high-throughput screening of cellular
metabolism is metabolic profiling. In the present study, the metabolic profiles of different tumour cells from
colorectal carcinoma and breast adenocarcinoma were exposed to hypoxic and normoxic conditions and these
have been compared to reveal the potential metabolic effects of hypoxia on the biochemistry of the tumour cells;
this may contribute to their survival in oxygen compromised environments. In an attempt to analyse the complex
interactions between metabolites beyond routine univariate and multivariate data analysis methods, correlation
analysis has been integrated with a human metabolic reconstruction to reveal connections between pathways that
are associated with normoxic or hypoxic oxygen environments.

Results: Correlation analysis has revealed statistically significant connections between metabolites, where
differences in correlations between cells exposed to different oxygen levels have been highlighted as markers of
hypoxic metabolism in cancer. Network mapping onto reconstructed human metabolic models is a novel addition
to correlation analysis. Correlated metabolites have been mapped onto the Edinburgh human metabolic network
(EHMN) with the aim of interlinking metabolites found to be regulated in a similar fashion in response to oxygen.
This revealed novel pathways within the metabolic network that may be key to tumour cell survival at low oxygen.
Results show that the metabolic responses to lowering oxygen availability can be conserved or specific to a
particular cell line. Network-based correlation analysis identified conserved metabolites including malate, pyruvate,
2-oxoglutarate, glutamate and fructose-6-phosphate. In this way, this method has revealed metabolites not
previously linked, or less well recognised, with respect to hypoxia before. Lactate fermentation is one of the key
themes discussed in the field of hypoxia; however, malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-
phosphate, which are connected by a single pathway, may provide a more significant marker of hypoxia in cancer.

Conclusions: Metabolic networks generated for each cell line were compared to identify conserved metabolite
pathway responses to low oxygen environments. Furthermore, we believe this methodology will have general
application within metabolomics.
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Background

Within systems biology, metabolomic studies have been
shown to be an essential component for elucidating the
interdependency between substrates and products. To
date, metabolomics data have been limited to relatively
standard statistical techniques including univariate ana-
lyses and multivariate analyses such as principal compo-
nent analysis [1,2]. Whilst these have shown potential to
elucidate disease or cellular phenotypes and to discover
potential predictive biomarkers, their ability to provide
insights into the underlying biochemical function is lim-
ited, particularly when a system is in a perturbed state
through disease or environmental stress. In this scenario, a
deeper insight into a system response could be offered
using novel computational approaches to allow improved
interpretability of the complex large-scale metabolomic
datasets generated.

The concentrations of metabolites in cells relate in
part to the underlying structure of the metabolic net-
work and thus the relative concentrations of metabolites
within these networks can exhibit correlations [3].
There have been examples of correlation analysis for
metabolomics that have allowed powerful biological in-
terpretation of data [4]. Although a simple interpret-
ation of metabolite correlations would be to assume
that strongly correlated metabolites must be neighbours
in the metabolic network, in reality this is often not the
case. For example, metabolites that are spatial or tem-
poral neighbours may not be strongly correlated whilst
apparently distant metabolites are correlated [3,5].
Valcarcel et al. recently demonstrated the application of
differential correlation analysis to create networks offer-
ing an insight into characterising a variety of biological
states [6]. Whilst these networks provided a snapshot
of the system response and were useful to determine
differences between individuals with different pheno-
types, in this case normal fasting glucose and
pre-hyperinsulinameia, the underlying origin of the
correlation with respect to metabolic pathways was not
explored. Bridging the gap between analysing large-
scale untargeted metabolomics data and interpreting
the biological regulation in relation to the entire meta-
bolic network may benefit from combining genome-
scale metabolic networks. There are several large-scale
human metabolic networks available, however popular
models include the global reconstruction of the human
metabolic network based on genomic and bibliomic
data reconstruction 1 (reconl) [7] and the recently
published recon2 [8] as well as the Edinburgh human
metabolic network (EHMN) [9]. The EHMN is available
as both compartmentalised or un-compartmentalised
[10]. Depending on the samples and the application,
compartmentalised or un-compartmentalised forms offer
different advantages. For example, if the biological samples
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used for the analysis are organelle specific, more specific in-
formation may be gained from using a compartmentalised
model; whereas if the samples are representative of whole
cells and the overall cellular phenotype is of interest then
using an un-compartmentalised model can be more accur-
ate. These models have been used previously, for example
reconl was used to predict alternative drug targets for
treating hyperlipidaemia [7].

In this study a network-based correlation analysis
method has been developed as a novel method for
the identification of linked metabolic pathways in the
context of the entire metabolic network. Pair-wise corre-
lations were mapped onto the EHMN genome-scale
metabolic network and the shortest path connecting the
two metabolites was extracted and used to construct a
network of the cellular response to a physiological per-
turbation. Since all reactions present in the EHMN are
reversible, all correlations were considered reversible
and in this way it does not matter in which direction the
path was drawn between correlated metabolites. Net-
work biology is an emerging field; however there are
complex issues, which remain to be addressed. For ex-
ample, the shortest path between metabolites has been
previously described for Escherichia coli [11]. The aver-
age path connecting metabolites was shown to be longer
than paths found by treating the metabolic system as a
normal network. Furthermore, there is the added influ-
ence that nodes may affect one another along multiple
paths simultaneously [12].

We shall illustrate this method for investigating
tumour hypoxia. Cancer metabolism has fascinated biol-
ogists since Warburg’s experiments in the 1920s [13].
Otto Warburg was the first to note that tumour cells
rely on anaerobic metabolism as a source of energy pro-
duction even under aerobic physiological oxygen levels
[14]. Hypoxia is prevalent in solid tumours and is a fea-
ture associated with the aggressive disease and poor re-
sponse to therapy. It arises and persists in tumorous
tissue due to poor oxygen supply and rapid oxygen con-
sumption. Hypoxia generally occurs in cells that are lo-
cated at a distance greater than 100 — 180 pm from the
blood supply [15]. Rapid cell proliferation and the pres-
ence of abnormal blood vessels in tumours contribute to
creating distances greater than this threshold, thus caus-
ing hypoxia [15]. Hypoxia can be simulated in cancer
cells such that its effect on cell metabolism can be stud-
ied at the simplest level. Several metabolomic studies
have revealed metabolic features of hypoxia in cancer
using in vitro cell models [16,17]. Here a similar ap-
proach has been applied to study the role of metabolism
in hypoxia, using a non-targeted metabolite profiling ap-
proach to gain a global profile of the metabolome of
each sample (via. cell-environment interaction). Rather
than simply to analyse the data in terms of each single
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metabolic feature that changes with respect to oxygen
level, we have applied our novel correlation mapping onto
the EHMN to reveal both correlated metabolites whose
concentrations change in unison and anti-correlated dis-
cordant metabolites.

Results and discussion

Correlation analysis

Two tumour cell lines cultured in vitro and exposed to
21% oxygen (normoxia) or 1% oxygen (hypoxia) have
been compared to assess the metabolic effect of lowering
oxygen availability and to determine whether or not
these effects are commonly observed across different cell
lines. The cell lines used were the human breast carcin-
oma cell line MDA-MB-231 and the human colon car-
cinoma cell line HCT116. Cell lysates were prepared for
each cell line exposed to each experimental oxygen
condition and metabolites were profiled using gas chro-
matography—mass spectrometry (GC-MS). For each cell
line exposed to each condition, a total of 30 replicates
were collected. Over 50 metabolites were detected using
GC-MS in each cell line exposed to normoxia or hypoxia
(see Table 1). Some of the metabolites detected were not
uniquely identified as a single metabolite, typically as a
consequence of isomerisation. Multiple identifications
are often the result of the high-throughput nature of the
metabolic profiling method where some metabolites with
a similar chemical structure cannot be chromatographi-
cally resolved.

Using these identified metabolites, the approach was
to reveal correlations between the metabolites that dif-
fered between the two oxygen levels. Statistical outliers
were identified within each experimental group as values
greater than three standard deviations away from the
mean for that metabolite in that group [19]. These were
replaced with a mean and the data were observed to fol-
low an approximately normal distribution, meeting the
requirements for the Pearson’s correlation method. For
each experimental group of 30 replicates in turn, a
Pearson’s correlation coefficient was computed between
metabolites in a pair-wise fashion. An example of the calcu-
lated correlation coefficients for metabolites detected in the
MDA-MB-231 cell line cultured in normoxia are shown as
a heatmap in Figure 1, where green represents a positive
correlation and red a negative correlation. Different
methods for correlation analysis can be employed and the
decision is usually based upon the type and quality of the
data. For example, the Pearson’s product—-moment correl-
ation method computes a coefficient for normally distrib-
uted data and the relationship is linear [5], or at least
assumed to be. Since our data were observed to follow an
approximately normal distribution, it was appropriate to
perform the Pearson’s product—-moment correlation
method. When such requirements are not met it may be
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more appropriate to use a routine that does not use mean
values in correlations such as the Spearman’s rank correl-
ation analysis.

In the MDA-MB-231 model, a total of 7 correlations
were found to differ significantly in response to lowering
oxygen availability. For the HCT116 cell line a total
of 18 correlations were significantly different between
normoxia and hypoxia. The five most significantly differ-
ent correlations between normoxia and hypoxia are
shown in Table 2. for MDA-MB-231 samples and in
Table 3 for HCT116 samples. For HCT116 all correla-
tions are positive in hypoxia which suggests the response
to low oxygen is to up-regulate rescue pathways. By
contrast the MDA-MB-231 cells appear to no longer
correlate glucose/malate metabolites and rather correlate
malate/pyruvate and octadecanoic acid/glutamate to
promote cell survival.

The oxygen response for MDA-MB-231 cells cultured
in normoxia shows a correlation between glucose and
malate, glucose/galactose and malate and glucose and
glucose/galactose. Furthermore, for MDA-MB-231 cells
cultured in hypoxia there is a correlation between malate
and pyruvate and octadecanoic acid and glutamate. The
shift from malate being correlated with glucose in
normoxia to then being correlated with pyruvate in hyp-
oxia may represent a shift from oxidative phosphoryl-
ation metabolism to partial use of the tricarboxylic acid
(TCA) cycle though glutaminolysis. The TCA cycle is
part of central carbon metabolism and it is widely
known to be one of the main responses to hypoxia [20].
Glutaminolysis has been suggested to be an important
energy source in tumour cells [21]. Hypoxic cells may
utilise this pathway when low oxygen availability causes
a shift from oxidative phosphorylation metabolism to
non-oxidative phosphorylation metabolism. Conse-
quently, glutaminolysis partially uses the TCA cycle
resulting in the production of malate and pyruvate.
This pathway can contribute towards cellular survival
in low oxygenated environments through the gener-
ation of ATP, NADH and synthesis of metabolic pre-
cursors such as amino acids and nucleotides required
for cell growth. Furthermore, acetyl-CoA entering the
TCA cycle can be consequently guided towards de
novo synthesis of fatty acids for cell growth. Glutamate
and octadecanoic acid are immunosuppressive metab-
olites that are often released by the cells to protect the
system from an immunity attack [22,23]. The correlation
between these two metabolites may be a consequence of
the glutaminolysis pathway increasing the production of
these two metabolites. Potentially interfering with the path-
ways that connect these pair-wise correlated metabolites
could lead to selectively killing the hypoxic tumour and fur-
thermore, network mapping may help to identify effective
novel targets for drugs.
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Table 1 52 metabolite peaks detected using gas

chromatography mass spectrometry (GC-MS) including

corresponding KEGG ID or associated pathway

ID Metabolite name KEGG ID Pathway

1 Glycine C00037  Amino acid metabolism

2 Lactate C00186  Glycolysis pathway

3 Pyruvate C00022  Glycolysis pathway

4 Valine C00183  Amino acid metabolism

5 Leucine C00123  Amino acid metabolism

6  Glycerol C00116  Glycerolipid Metabolism

7 Isoleucine C00407  Amino acid metabolism

8 Leucine C00123  Amino acid metabolism

9 Malonate C00383  Pyrimidine metabolism

10 Glycine C00037  Amino acid metabolism

11 Phosphate C00009  Osmolyte, enzyme cofactor,

signalling

12 Threonine C00188  Amino acid metabolism

13 Alanine C00041  Amino acid metabolism

14 Threonine C00188  Amino acid metabolism

15 Succinate C00042  TCA cycle

16 Benzoic acid C00180  Unknown

17 Threitol/erythritol ~ C00503  Unknown

18 Malate C00149  TCA cycle

19 4-hydroxyproline  C01157  Amino acid metabolism

20 Aspartate C00049  Amino acid metabolism

21 4-aminobutyric C00334  Amino acid metabolism
acid

22 Aspartate C00049  Amino acid metabolism

23 4-hydroxyproline  C01157  Amino acid metabolism

24 Xylitol C00379  Pentose and glucuronate

interconversion metabolism

25 2-hydroxyglutaric  C03196  Butanoate metabolism
acid

26 4-hydroxybenzoic  C00156  Carbohydrate metabolism
acid

27 Methionine C00073  Amino acid metabolism

28 Creatinine C00791  Amino acid metabolism

29 Putrescine C00134  Amino acid metabolism

30 Hypotaurine C00519  Amino acid metabolism

31 Glutamate C00025  Amino acid metabolism

32 2-oxoglutarate C00026  TCA cycle

33 Fructose C02336  Carbohydrate metabolism

34 Sorbose/fructose - Carbohydrate metabolism

35 Sorbitol/galactose - Carbohydrate metabolism
/glucose

36 Sorbose/fructose - Carbohydrate metabolism

37 Glycerol 3- C00093  Glycolysis pathway
phosphate

38 Galactose/glucose - Carbohydrate metabolism
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Table 1 52 metabolite peaks detected using gas
chromatography mass spectrometry (GC-MS) including
corresponding KEGG ID or associated pathway (Continued)

39 Galactose/glucose - Carbohydrate metabolism

40 Galactose/glucose - Carbohydrate metabolism

41 C(Citrate C00158  TCA cycle

42 N-acetyl aspartate  C01042 ~ Amino acid metabolism
43 Glucose C00031  Carbohydrate metabolism
44 Scyllo-inositol C06153  Carbohydrate metabolism
45 Lysine C00047  Amino acid metabolism
46 Myo-inositol - Carbohydrate metabolism
47 Pantothenic acid ~ C00864  Pantothenate and

CoA biosynthesis
48 Tyramine/tyrosine - Amino acid metabolism
49 Hexadecanoic acid 00249
50 Octadecanoic acid C01530

co1177

Fatty acid metabolism
Fatty acid metabolism

51 Myo-inositol
phosphate

Carbohydrate metabolism

52 Llactose/maltose - Carbohydrate metabolism

Those metabolites that possess a KEGG identifier are those that have been
definitively identified to Level of MSI [18].

Although it has not previously been linked with hyp-
oxia, the greatest difference in correlation between
HCT116 cells exposed to normoxia and hypoxia oc-
curred in the correlation between galactose/glucose
and 4-hydroxyproline. These metabolites are corre-
lated in hypoxia but are not correlated in normoxia
and must therefore be a response to hypoxia. Further-
more, the 4-hydroxyproline peak was correlated with
many other metabolites in hypoxia and could be
potentially considered a central ‘hub’ in cellular re-
sponse to this oxygen condition, such that pathways
involving this metabolite are changed in regulation.
This highlights the potential importance of this
metabolite in a hypoxic response.

Many of the metabolites found to be differently cor-
related between normoxia and hypoxia in both cell
lines were features of central carbon metabolism. Such
metabolites include glucose, malate and pyruvate.
Central carbon metabolism is obviously a feature of
hypoxic response that is conserved between cell lines;
however, the way the concentrations of these metabo-
lites is affected by hypoxia is to a certain extent cell
line specific. Other central carbon metabolites may
also have changed in the same way within the system,
just that they were not detected. It is possible to
measure all central metabolites and they are present in
our libraries, however many can be missing from the
profile if their concentrations are below the limits of
detection [24].



Kotze et al. BMC Systems Biology 2013, 7:107
http://www.biomedcentral.com/1752-0509/7/107

10 20 30 40 50

Figure 1 A colour heatmap of the Pearson’s correlation
coefficients computed for the 52 metabolites observed in the
MDA-MB-231 cells exposed to normoxia (21% oxygen). The
metabolites appear in the same order as in Table 1. The colours refer to
the pair-wise correlation coefficient ranging from 1 (green) to —1 (red).

Network analysis

The metabolic profiles acquired for correlation analysis
here were obtained from whole cell lysates of MDA-MB-
231 and HCT116 human carcinoma cells. For this rea-
son it was appropriate to use a metabolic reconstruction
that did not contain compartmentalisation of metabo-
lites, for example those biochemical reactions that occur
in the cytosol and those that are contained in the mito-
chondria. The EHMN contains approximately 2800 non-
compartmentalised reactions [9]. Correlated metabolites
were identified within the EHMN and the shortest path
between these was computed from the reactions avail-
able in the network. This allowed the connection be-
tween correlated metabolites to be observed. From a list
of differently correlated metabolites between two experi-
mental groups at a time it was possible to collect
pathways between them and together create new sub-
networks to describe the network based origin of the
differences. Some metabolite pathways could not be
extracted from the EHMN as the metabolite was not
present in the network or the metabolites were not
connected in the network. This is a result of the limita-
tion of the reconstructed human metabolic networks as
some reactions of human metabolism are currently
unknown. The future constructions of more detailed
metabolic networks may overcome this; note that
Recon2 [8] may address this but was not available during
this study. Subsequently, pathways from each correlation
were combined to generate a network to visualise the
significant difference. The aim was to use the networks
to observe variation and similarities between the cell
lines with respect to lowering oxygen availability. The
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Table 2 Metabolite pairs that were differentially correlated
between normoxia and hypoxia in MDA-MB-231 samples

Metabolite A Metabolite B Correlation Correlation Correlation
coefficient  coefficient coefficient
(normoxia) (hypoxia) difference

Glucose Malate 0.701 -0420 1.125

Galactose/ Malate 0.708 -0.262 0975

Glucose

Malate Pyruvate —-0.139 0.725 0.865

Octadecanoic  Glutamate —0.068 0.717 0.791

acid

Glucose Galactose/ 0.922 0.291 0617

Glucose

EHMN and other large-scale networks contain highly
connected nodes from molecules such as ATP, H,O and
NAD. When computing the shortest network path
connecting two nodes the path calculates a shortcut that
passes through these highly connected nodes [25]. These
molecules are present in many of the biochemical reac-
tions as products or substrates; however they are side re-
actions (co-factors) and therefore these intermediates
were removed prior to applying graph-theory.

Metabolism is usually considered in terms of pathways
in the way they are traditionally represented in databases
such as KEGG. Many of the pathways in these databases
are interconnected and it is possible to consider new
pathways that cross over several ‘traditional’ pathways
that may potentially be more biochemically relevant than
each of the traditional pathways; this is depicted as a
cartoon in Figure 2. The method used to build sub-
networks of differently correlated metabolites in this
research has found interlinked pathways that connect
correlated metabolites via the shortest route. This means
many pathways form interactions between traditional
pathways and thus cross over them (the black route in
Figure 2). Sub-networks have been built considering
metabolic pathways in this different way and although
this is less conventional, it has made it possible to reveal
potentially more relevant pathways than if only ‘trad-
itional’ pathways were considered. This is demonstrated
in Figure 2 which is comprised of real biochemical reac-
tions but that are not illustrated in this way in traditional
pathways such as in KEGG.

Figure 3 shows a network of pathways connecting dif-
ferently correlated metabolites in normoxia and hypoxia
for cell lines MDA-MB-231 (white) and HCT116 (black);
where metabolites common in both the cell lines are
shown in grey. This global view of both cell lines enables
the comparative study of the metabolic connectivity.
The grey nodes could potentially be central metabolites,
marking a change in metabolism in response to hypoxia
that is qualitatively the same between the two cancer cell
lines. The network encompasses a range of KEGG
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Table 3 Metabolite pairs that were differentially correlated between normoxia and hypoxia in HCT116 samples

Correlation coefficient (normoxia) Correlation coefficient (hypoxia) Correlation coefficient difference

Metabolite A Metabolite B

Galactose/Glucose  4-Hydroxyproline 0.082
4-Hydroxyproline  Malate 0.199
4-Hydroxyproline  Aspartate 0.287
Fructose 4-Hydroxyproline 0.124
4-Hydroxyproline  Glycerol 0.200

0.886 0.804
0.902 0.702
0.951 0.664
0.753 0.629
0.794 0.594

pathways including glycerolipid metabolism (ko00561);
glycine, threonine and serine metabolism (ko00630);
glycolysis/gluconeogenesis (ko00010); fructose and man-
nose metabolism (ko00051) and the TCA cycle (ko00020)
to name a few. In this way, Figure 3 describes how the
underlying mechanisms of a real biological system can
be more complex than considering individual pathways
in isolation as they are traditionally represented.

From this network in Figure 3 it can be seen
that malate, pyruvate, 2-oxoglutarate, glutamate and
fructose-6-phosphate are conserved features of meta-
bolic response to hypoxia in both MDA-MB-231 and
HCT116. These five metabolites can be connected
via a single pathway between malate and fructose-6-
phosphate using pyruvate, 2-oxoglutarate and glutam-
ate as intermediates. However the network also shows
that all five of these metabolites interact with other
metabolites via different reactions. They are central to
this network depicted in Figure 3 and describe differ-
ential metabolic regulation between normoxia and
hypoxia. The shortest network path connecting these
metabolites occurs in the TCA cycle. As previously

1 2
*.2 ¢
\
\

v
v
\\\& ‘

Figure 2 An alternative way to view metabolic pathways.
Metabolism involves many inter-connections between metabolites;
however there are traditional ways to represent pathways. In this
schematic 1, 2, 3 and 4 represent 4 individual pathways as they are
traditionally considered, however a pathway exists in metabolism
that can connect these 4 pathways via the intermediates of each.
This pathway (highlighted in black) could biochemically be more
important than 1, 2, 3 or 4.

suggested for MDA-MB-231 cells, the hypoxia cells
may be producing glutamate as an immunosuppressive
response which would protect the hypoxic cells from
immune attack. This metabolite is shared in the net-
work and it may be that the HCT116 cells also synthe-
sise glutamate as an immunosuppressive response
through an alternative mechanism to glutaminolysis
[23]. Furthermore, glutamate is also a precursor for
nucleic acid synthesis and may have the potential to
drive the uptake of other amino acids from the extra-
cellular environment [26].

Hypoxic cells are expected to rely on increasing non-
oxidative phosphorylation metabolism to promote sur-
vival due to the decreasing oxygen availability limiting
oxidative phosphorylation metabolism. One of the inter-
esting observations of the network (Figure 3) is that lac-
tate does not feature in the network suggesting non-
oxidative metabolism is not an important feature of cel-
lular survival at 1% oxygen compared to cells cultured in
normal oxygen levels. It may be that this process is in-
duced at lower than 1% oxygen and therefore was not
observed in this experiment. The network suggests that
cells are using mechanisms other than non-oxidative
phosphorylation metabolism to promote survival such as
shunting off into the TCA cycle.

Conclusions

Within systems biology, metabolomics is an essential
tool as it allows the establishment of interdependency
between metabolites. Metabolic profiling generates
large-scale datasets, with complexity that makes inter-
pretation difficult with respect to providing an insight
into cell physiology. Here, the network visualisation of
the biochemical connectivity between metabolite con-
centrations using correlation analysis has been demon-
strated as a novel method to generate hypotheses about
the regulation and cellular response to an environmental
perturbation in the context of systems biology. The
topological differences in the network offer a further di-
mension to the understanding of the regulation of key
metabolites.

Network-based correlation analysis offers a comple-
mentary tool to statistical and multivariate analysis
methods typically applied to metabolomics datasets to
identify metabolite differences in physiological state.
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4-hydroxyproline
C01157

3-oxopropanoate 2-oxoglutarate

114112 3 49.7;1.4.1.3; 1.4.1.4; 1.14.11.16;

2.6.1.1;2.6.1.2; 2.6.1.5; 2.6.1.6; / 2711
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C€00026

Oxoalacetate
C00036

Malate
00149

-oxoeicosanoyl-
coA

1.1.1.26;1.1.1.29;

Octadecanoic acid
C01530

each reaction.

2.6.1.22; 2.6.1.23; 2.6.1.39;
2.6.1.40; 2.6.1.42; 2.6.1.52;
2.6.1.55; 2.6.1.57; 2.6.1.65

1.1.1.81;1.1.1.79 WWLIEICA 1.2.1.3

Figure 3 Network of pathways connecting differently correlated metabolites between normoxia and hypoxia in both MDA-MB-231and
HCT116 cell lines. Nodes unique to MDA-MB-231 cells are shown in white, nodes unique to HCT116 cells are shown in black, and nodes
common between cell lines are shown in grey. The KEGG identification code is given for each metabolite listed along with the enzymes used for

phosphate
00085,

C00095

Sucrose
€00089

C00049

1.1.1.1;1.1.1.2;
1.1.1.21;1.1.1.72

Glyceraldehyde
C00577

Glycerol
C00116

Additionally, this method could be readily applied to meta-
bolic profiling data from different biological systems or to
other profiling datasets such as those acquired in proteo-
mics and transcriptomics. Its application in systems biology
could therefore be of paramount importance.

Methods

Experimental

Cell lines and cell culture

Human cell lines HCT116 colorectal carcinoma and MDA-
MB-231 breast adenocarcinoma were routinely cultured in
RPMI 1640 (Gibco BRL, Paisley, UK) supplemented with
10% fetal calf serum (Labtech International, East Sussex,
UK) from a single batch and 2 mM glutamine (Sigma-Al-
drich, Dorset, UK). Cells were incubated in 95% air and 5%
CO, at 37°C and 95% relative humidity.

Treatment

8 mL of cells were seeded, in exponential phase, at 1 x
10° cells/mL into a 10 cm? Petri dish (Falcon, Runcorn,
UK). For consistency, the same batch of undefined FCS
was used for all experiments. Cells were cultured and
allowed to adhere in normoxia (21% oxygen) for 24 h
prior to experimental analysis in the incubator described
above. Subsequently, cells were divided into two groups
where one group was retained in the normoxia condition
and the other group was placed in a closed vessel though

which gas containing 1% O,, 5% CO, balanced with N,
was flowed at a rate 2 mL/s (hypoxia). This vessel was
developed in-house and was constructed from an
ADDIS® 5 L air tight container (including removable clip
lid) with a male BSPT- female BSPP reducer and male
parallel straight adaptor to connect a 6 mm polytube to
a 6 mm 2/2 finger tap at either side of the container (all
components were sourced from RS Components Ltd,
Stockport, UK).

Metabolite extraction protocol

Prior to metabolite extraction, the hypoxic vessel was
closed using the taps and placed in an anoxic chamber
(Bactron anaerobic chamber, Sheldon Manufacturing,
Cornelius, Oregon, USA). Normoxic samples were
extracted in air. Extracellular media were decanted and
cells were washed three times with 1 mL phosphate
buffered saline (PBS). Subsequently, 1 mL methanol
(maintained at —-48°C) was added to quench cellular me-
tabolism. Cells were scraped from the culture surface
and the suspension solution was placed into Eppendorf
tubes. A series of three freeze thaw cycles using liquid
nitrogen were performed to enhance metabolite ex-
traction before which the solution was centrifuged
(17000 x g for 15 min) and the supernatant was
transferred into a fresh Eppendorf tube. The volume
of supernatant to be lyophilised was normalised
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according to the weight of the pellet for intracellular
samples. Furthermore, supernatant remaining after
normalisation was used to generate QCs which
contained an equal proportion from each sample.
Supernatant for both the sample and QC were
lyophilised.

Metabolite profiling by GC-MS

Prior to analysis, all samples were chemically derivatised.
In the first stage of derivatisation, 50 puL of a 20 mg/mL
solution of O-methoxylamine in pyridine was added to
each sample, ensuring the pellet of metabolites was fully
immersed. Each sample was then vortexed in this
solution and heated at 60°C for 30 min. The second
stage of the process involved adding 50 puL of N-methyl-
N-(trimethylsilyl trifluoroacetamide (MSTFA) to each
sample which was then vortexed and heated at 60°C for
30 min. Finally, samples were centrifuged at 17000 x g
for 10 min to pellet the debris and 20 pL of a retention
index marker solution was added which contained
0.3 mg/mL n-decane, n-dodecane and n-pentadecane,
n-docosane and n-nonadecane in pyridine. The
resulting supernatant from each sample was collected
for analysis.

Samples were analysed using an Agilent 6890 GC
(Agilent Technologies, Stockport, UK) coupled to a
LECO Pegasus III (Leco Corp., St. Joseph, MO) EI-ToF-
MS. The GC-MS instrument setup used has been previ-
ously described [27,28]. The acquisition run was formed
to start with a derivatisation blank then 5 QC samples
(as previously optimised [28]) followed by 5 samples
followed by another QC followed by another 5 samples
and so on until the end of the analysis. The temperature
was set at 70°C for 4 min followed by a 20°C increase
every min until 300°C was reached and stabilised for
4 min. Samples were injected (2 pL) onto the column.
The total duration to analyse a single sample was
25 min.

The processing of raw GC-MS data was performed
following the methods described previously, using the
LECO ChromaToF v3.25 software package to apply
the chromatographic deconvolution algorithm [27].
Identifying the metabolites within the compiled data-
base was performed through searching against an in-
house mass spectral and retention index library as de-
scribed previously [24], where a mass spectral match
greater than 80% and a retention index match + 20
provided a definitive identification. Metabolites that
were not identified in the in-house database were
searched against the Golm metabolome database
[29]. The level of identification reported was applied
according to reporting guidelines as described by the
Metabolomics Standards Initiative [30].
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Data analysis
Data were normalised to the internal standard succinic
acid d; QC metabolites with a CV greater than 30%
were removed from the whole data matrix [28]. Prior to
statistical analysis outliers were replaced with the mean
of the group which were identified as metabolites with a
ratio of more than three deviations away from the mean
group [19]. These data are given in Additional file 1.
Each cell line is shown in a different sheet and sample
types are labelled N, H and A corresponding to the
normoxia, hypoxia and anoxia treatments.

The Pearson’s correlation calculation is given in
Equation 1:

ZLI(XFX)(Y#Y)
[Z(Xt—X)ZZYi—YZ} /a2

Equation 1: The Pearson’s product-moment correl-
ation equation (as shown in Rodgers and Nicewander
(1988) [31]) where r is the correlation coefficient calcu-
lated for the pair-wise correlation of variables X and Y,
X and Y are the mean values for variables X and Y
respectively and # is the number of samples.

To test for a significant correlation, the correlation
value was approximately normalised using the inverse
transform of Equation 2 which is known as the Fishers
z -transformation.

r =

(1)

1. 1+C
=—log—— 2
“T3%7 ¢ (2)

Equation 2: Fishers z -transformation where C is the
correlation coefficient (i.e., r from Equation 1), which
approximately normalises the distribution of the correl-
ation coefficient to a Gaussian distribution and is inde-
pendent on the number of samples.

The significance of the correlation was tested using
Equation 3.

N-3 (3)

Equation 3: Determining the significance of the correl-
ation that is dependent on sample number (N), where
the distribution is approximately Gaussian and the 95%
significance level is given by z7 +1.96 for o =0.05 (see
Table 4).

Subsequently the correlation threshold was reported
using the inverse transform of Equation 2 as shown in
Equation 4 for a sample size of 27. Results are shown in
Table 4 where the correlation threshold was calculated
for a range of 27 values.
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Table 4 The value for 27 with a significance of a [32] used to calculate the correlation threshold C” that corresponds to

the significance level a

a 10 10° 10* 103 0.01 0.05
Fd 4891638 4417117 3.890592 3.290527 2575829 1.995996
" (N=27) 0.760964 0.717096 0660761337 0.586081 0482156 0380014

Results shown are calculated for an effective C” for a sample size of 27.

(227)-1 AT
cr=°¢ with 27 = 2 (4)

= p2e)+1

Equation 4: The effective correlation coefficient gener-
ated from the inverse of Equation 2.

Since the correlation threshold was relatively low for
a =0.05 Equation 5 was applied to determine the mini-
mum number of samples that would be required to
accept correlations with a standard error less than or
equal to 0.1. The minimum number of samples required
to obtain a statistically significant correlation was deter-
mined to be 27. Consequently, a total of 30 biological
replicates were extracted for each condition to minimise
the biological variance in the dataset. In the event that
correlation coefficients where computed where either
metabolite contained less than 27 entries (due to missing
values where either the metabolite was not present in
the sample or it was present at a concentration not de-

tectable by the GC-MS) these correlations were
discarded.
1- 2
sg - 1P (5)

Equation 5: The standard error equation where SE is
the standard error, p is the correlation coefficient and #
is the sample size.

For each metabolite detected, the GC peak area was
used for correlation. The Pearson’s correlation coeffi-
cients between metabolites were computed pair-wise
using Equation 1. Subsequently, the difference between
the correlations for two sample types (e.g., the correl-
ation difference for HCT116 samples exposed to
normoxia or hypoxia) was calculated. To be considered
a significant difference, one of the correlations must
be > 0.7 and the difference between the correlations co-
efficients must be >0.407. This was determined using
the Fishers z -transformation and permutation test as
shown in Equation 2 and Equation 6 respectively. The
Fishers z -transformation approximately normalises the
correlation coefficient to a Gaussian distribution. This
was inputted into Equation 6 to calculate the difference
required between two correlations for it to be considered
significant. The significance at level a = 0.05 was tested
using Equation 6 to satisfy the z7 =1.96 in Table 4. In
this case a correlation of 0.7 is accepted with a minimum

of 27 samples and there must be a correlation difference
of 0407 to be statistically significant. This was
performed using in-house routines in the software pack-
age Matlab version 9 software (The Mathworks, Inc.,
Natick, MA, USA).

1+ C,‘ (b)ﬁT _ ‘Zl—Z2|

1+C;
l matma

(@) =3 log (©

Equation 6: (a) Fishers z -transformation where C; is
the Pearson’s rank correlation coefficient for example,
0.7. (b) Permutation test for comparing correlations be-
tween metabolites, where z” is a value that corresponds
to the confidence of a correlation, z; and z, are the
values calculated through equation 3a and N; and N,
are the minimum sample sizes for each metabolite [33].

Pair-wise correlations that significantly differed with
respect to sample treatment were mapped directly onto
the uncompartmentalised EHMN. For this the pair-wise
correlations were taken in turn and using graph theory
the shortest pathway connecting these two metabolites
was computed. This was done using in-house routines
in Matlab. The network was imported into Matlab using
the SBML toolbox [34]. Subsequently, the currency me-
tabolites were removed. Currency metabolites were de-
fined as highly connected metabolites of side reactions
and included metabolites such as water, ATP, ADP and
other co-factors. These compounds reduce the average
path length connecting two metabolites and therefore
the pathways extracted do not represent the connectivity
of reactions. For example, water has 1083 metabolite
connections and therefore needed to be omitted along
with other highly connected energy and redox cofactors
including ATP, ADP, AMP, NAD, NADH, NADP,
NADPH, CoA, UTP, UDP, UMP, GTP, GDP, H,O, CO,,
O,, orthophosphate and hydrogen [9,35].

A stoichiometric matrix of the metabolic network was
constructed using the SBML toolbox. This matrix was
used to extract the two separate matrices of metabolites
consumed and produced. The consumed network was
multiplied by the transpose of the produced to construct
a metabolite connectivity network. The matrix was
symmetrised to account for reversibility in the network.
Graph theory was implemented to calculate the shortest
pathway between two metabolites using the bioinformat-
ics toolbox included in Matlab.
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Additional file

Additional file 1: GC-MS data after normalisation to internal
standard and filtering based on QCs.
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