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Abstract

Background: Transcription factors (TFs) and miRNAs are essential for the regulation of gene expression; however,
the global view of human gene regulatory networks remains poorly understood. For example, how is the
expression of so many genes regulated by limited cohorts of regulators and how are genes differentially expressed
in different tissues despite the genetic code being the same in all tissues?

Results: We analyzed the network properties of housekeeping and tissue-specific genes in gene regulatory
networks from seven human tissues. Our results show that different classes of genes behave quite differently in
these networks. Tissue-specific miRNAs show a higher average target number compared with non-tissue specific
miRNAs, which indicates that tissue-specific miRNAs tend to regulate different sets of targets. Tissue-specific TFs
exhibit higher in-degree, out-degree, cluster coefficient and betweenness values, indicating that they occupy central
positions in the regulatory network and that they transfer genetic information from upstream genes to downstream
genes more quickly than other TFs. Housekeeping TFs tend to have higher cluster coefficients compared with other
genes that are neither housekeeping nor tissue specific, indicating that housekeeping TFs tend to regulate their
targets synergistically. Several topological properties of disease-associated miRNAs and genes were found to be
significantly different from those of non-disease-associated miRNAs and genes.

Conclusions: Tissue-specific miRNAs, TFs and disease genes have particular topological properties within the
transcriptional regulatory networks of the seven human tissues examined. The tendency of tissue-specific miRNAs
to regulate different sets of genes shows that a particular tissue-specific miRNA and its target gene set may form a
regulatory module to execute particular functions in the process of tissue differentiation. The regulatory patterns of
tissue-specific TFs reflect their vital role in regulatory networks and their importance to biological functions in their
respective tissues. The topological differences between disease and non-disease genes may aid the discovery of
new disease genes or drug targets. Determining the network properties of these regulatory factors will help define
the basic principles of human gene regulation and the molecular mechanisms of disease.
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Background

Gene regulation is underpinned by interactions among
regulators, including transcription factors and miRNAs
and their target genes. The elucidation of gene regulation
is important for understanding the behaviour of biological
systems and in recent years, network-based approaches
have been widely used to uncover the mechanisms of gene
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regulation [1-4]. The elements involved and the structure
of transcriptional regulatory networks reflect the behaviour
of complex systems at the system-wide level [5]. It is also
possible to infer how biological processes or functions
change when the regulatory system confronts specific
gene mutations, gene knockouts or pharmacological
treatments [6].

Simple topological properties can directly reflect
important cellular functions [7]. For example, different
types of genes have different topological properties in
human biological networks [8-11], and these properties
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can help to identify the functions of new genes. Genes
with certain topological properties were found to have
particular importance in the organization of human
biological networks. For example, Han et al. [12] and
Taylor et al. [13] found that removal of two classes of
hubs could strongly affect the organization of protein
interaction networks, while analysis of network dynamics
for multiple processes by Luscombe et al. [14] revealed large
topological changes in regulatory networks. Gerstein et al.
[4] found that factors at different in-degree or out-degree
levels in a regulatory network have different biological func-
tions and Bhardwaj et al. [15-17] showed that factors with
different hierarchies in model organism regulatory networks
have different properties. Specifically, Lin et al. [18] revealed
that housekeeping (HK) and tissue-specific (TS) proteins
have their own structural organization in human protein
interaction networks. In addition, tissue-specific genes were
twice as likely as housekeeping genes to be drug targets,
allowing the identification of tissue ‘signature networks’ that
will facilitate the discovery of new therapeutic targets and
biomarkers of tissue-targeted diseases [19]. miRNA studies
also showed that functionally distinct classes of miRNAs
have specific topologies in regulatory networks [2,20-22].
However, the mechanism by which HK and TS encoded
regulators (TFs and miRNAs) are organized in gene human
regulatory networks and the biological significance of the
network properties await elucidation.

A central goal of our study was to classify how regulators
are organized to realize gene expression patterns in different
cell types and tissues. We have addressed this problem by
constructing miRNA-TF regulatory networks for seven
human tissues, including brain, heart, kidney, liver,
ovary, spleen and testis. We have then analysed the
regulatory features of these TFs and miRNAs through
analysis of their topological properties in the regulatory
network. We have also classified the regulatory structures
of disease-related genes and miRNAs in the networks.

We divided TFs into three sets: HK TFs, TS TFs and
trivial TFs and miRNAs into two sets: TS miRNAs and triv-
ial miRNAs. We then compared the topological properties
of HK/TS TFs with trivial TFs, TS miRNAs with trivial
miRNAs, and HK TFs with TS TFs. In addition, we also de-
termined the topological bias between disease TFs/miRNAs
and non-disease TFs/miRNAs. Our study intends to pro-
vide a global view of the organization of housekeeping TFs,
TS TFs and miRNAs in a gene transcriptional regulatory
network and to uncover specific properties of disease genes
and miRNAs in the network. This will further our under-
standing of miRNA and TF regulation and provide clues to
identify human disease genes in the network.

Results
We characterized the regulatory patterns of different
types of genes by scaling their topological features in
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tissue regulatory networks. These networks comprise the
regulatory interactions between TF, miRNA and non-TF
genes (see Methods). The topological features of each
gene (vertex) were quantified with four centrality measures,
i.e. in-degree (the number of incoming edges to each vertex),
out-degree (the number of outgoing edges from each
vertex), betweenness (the percent of shortest paths that go
through a vertex) and cluster coefficient (the percent of
neighbours of a vertex that connect to each other) [23]. We
detected the topological features of genes in seven tissue
regulatory networks, and investigated the topological biases
of the HK and tissue-specific TS genes (see Methods).

Topological bias of TS/HK genes relative to trivial genes

Table 1 presents the global view of topological differences
among HK and TS genes in the seven tissue regulatory net-
works relative to randomly selected trivial genes from the
same network, i.e. non-HK and non-TS genes (see Methods).

TS miRNAs

Compared with trivial miRNAs, TS miRNAs showed
significantly higher cluster coefficients in most of the
tissues (five out of seven). The cluster coefficient measures
the connecting density of neighbours to a gene. The higher
it is, the more densely the neighbours are connected. Thus,
this suggests that TS miRNAs are likely to be involved in
small, densely connected clusters. Furthermore, because

Table 1 Significant topological bias of TS/HK genes
relative to trivial genes

In-degree Out-degree cC Btwn
Brain * * ok *
Heart * * * O
Kidney * * KO *
Liver % * KO %
ovary * * wHO K
Spleen KO x O S
Testis % O

P <0.10. cc: cluster coefficient; Btwn: betweenness, Red five-pointed star:

TS miRNAs; Green five-pointed star: TS TF; Green diamond: HK TF.

Red five-pointed star indicates that the relative centralities of TS miRNAs are
significantly higher than those of trivial miRNAs in the corresponding tissue. Green
five-pointed star indicates that the relative centralities of TS TFs are significantly
higher than those of trivial TFs in the corresponding tissue; Green diamond
indicates that the relative centralities of HK TFs are significantly higher than those of
trivial TFs in the corresponding tissue. P < 0.10.
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Figure 1 The average number of TFs that connect to TS miRNAs (red) and trivial miRNAs (blue) in seven tissues.

neighbouring genes of the TS miRNAs have the tendency
to connect to each other they are more likely to be TFs,
because TFs are the only type of regulator that is capable
of connecting with both miRNAs and its targets. Such
deduction is supported by the detection of the number of
TFs connecting TS and trivial miRNAs (see Figure 1). In
all seven tissue regulatory networks, the numbers of TFs
connecting to TS miRNAs was apparently larger than that
connecting to trivial miRNAs. The local cluster behaviour
of TS miRNAs and TFs also suggests strong co-regulation
of gene expression by TS miRNAs and TFs.

Interestingly, although the average out-degree of TS
miRNAs was comparable to that of trivial miRNAs
(no significance in Table 1), the average global target
number of TS miRNAs was higher than that of trivial
miRNAs across all seven tissues. This led to the high
target compact rate (TCR) of TS miRNAs relative to
trivial miRNAs (Figure 2). The TCR is defined as:

< Narg> / < Kout > —1/Npjr

TCR =
1_1/Nmir

(1)

where < N;;,,>and < K,,, >are the average target
number and average degree respectively, and N,,;, is
the number of miRNAs. TCR equals 0 when all the
out-degrees converge to the same target, and equals 1
when every out-degree directs to different targets
(Figure 2a). Such behaviour (Figure 2b) suggests that
TS miRNAs tend to regulate different sets of targets,
whereas the trivial miRNAs tend to co-regulate the
same set of targets. Such distinct regulatory features
of TS and trivial miRNAs were also observed in the
shape of the related graphs. Taking the heart as an
example, the sub-network composed of TS miRNAs

and their targets was assembled by several small fans,
where the root is the TS miRNA and the leaves are
the specific targets of the TS miRNA (Figure 3).
However, the sub-network composed of trivial miRNAs
and their targets behaved chaotically, with trivial miRNAs
and their targets mixed together.

TS TFs

In four out of the seven tissues (brain, kidney, liver and
ovary), all four topological parameters (i.e. in-/out- degree,
cluster coefficient and betweenness) of TS TFs were
significantly higher compared with those of the trivial TFs
(Table 1). The high in-/out-degree indicates that TS TFs
tend to regulate a large number of targets, and that TS
TFs are regulated by a large number of regulators, while
the high betweenness values show that TS TFs locate to
bridge positions through which many regulatory pathways
pass. These two features suggest that TS TFs act as
information-transition hubs in either the local or global
topology of tissue regulatory networks. The TS TFs
receive a large amount of information from the upstream
regulators (or pathways), and then re-distribute the
information to a large number of downstream targets
(or pathways). A deficiency of TS TFs would severely
disrupt the transition of regulatory information, and
lead to dysfunction of associated biological processes.
For example, POU3F2, a brain TS TF, has high in-degree,
out-degree, betweenness and cluster coefficient values. It
regulates 115 genes (among which 17 are TFs and 17 are
miRNAs). At the same time it is heavily regulated by 21
miRNAs. Among these 21 miRNAs, three mutually
regulate POU3F2, and also regulate some of the targets
of POU3F2 (Figure 4). GeneCards [24] documents the
involvement of POU3F2 in the neurogenesis pathway
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Figure 2 TS miRNAs show higher TCR values compared with trivial miRNAs. (a) The TCR for three miRNAs in the left network is 1, while the
TCR for three miRNAs in the right network is 0. (b) The TCRs for TS miRNAs (red) and trivial miRNAs (blue) in seven tissues.

and in SIDS (Sudden Infant Death Syndrome) suscep-
tibility pathways. In neurogenesis, POU3F2 is activated
by association with other POU gene products and alters
the expression of banks of downstream genes that partici-
pate in specification of neuronal cell subsets in the brain
[25]. POU3F2 also regulates the transcription of a diverse
set of genes in the central nervous system and regulates
stem cell state [26]. These observations indicate that
POU3F2 occupies a vital position in the transmission of
regulatory signals in a brain regulatory network and plays
essential roles in neuronal differentiation by promoting
morphogenesis of neuronal cells.

A high cluster coefficient suggests that TS TFs are
preferred to regulate/be regulated by regulators in the
same way as miRNAs, as described above. The differ-
ence is that the regulator that is able to interact with a
miRNA can only be a TE. Here, the regulator that inter-
acts with a TS TF could be a miRNA as well as a TF.
Both TFs and miRNAs are significantly enriched in the
neighbours of TS TFs (P-value < 0.05, Fisher exact test,
see Table S1 in Additional file 1) across all the tissues.
Moreover, the number of neighbours that are miRNAs is
significantly higher compared with that of TFs (Fisher
exact test, P-value < 0.05, see Table S2 in Additional file 1),



Li et al. BMC Systems Biology 2013, 7:112
http://www.biomedcentral.com/1752-0509/7/112

Page 5 of 9

Figure 3 Examples of sub-networks in the heart. (@) Sub-network in which regulators are TS miRNAs. (b) Sub-network in which regulators are
trivial miRNAs. miRNAs are shown as yellow circles, while TFs and non-TFs are indicated by green and blue circles, respectively. miRNAs are

denoted by yellow circles.

suggesting a particularly strong co-regulation of TS TFs
and miRNAs on gene expression.

Significantly high out-degree values for TS TFs were
found in the heart and spleen, whereas significantly high
betweenness values for TS TFs were observed in the
brain and spleen. This may be related to the specific
topological features of TS TFs in distinct tissues.

HK TFs

In the majority of tissues (six out of seven), the HK TF
cluster coefficients were significantly higher than those
of trivial TFs. (Table 1), suggesting that HK is associated
with local, densely connected clusters and that TFs
tend to regulate/be regulated by other TFs and miRNAs,

as described above for TS TFs (Fisher exact test, P-value
<0.05, see Table S3 and Table S4 in Additional file 1).
Specifically, HK TFs show significantly high out-degree
values in two tissues, kidney and spleen.

Topological bias for TS genes relative to HK genes
We also compared the centrality topology of TS genes and
HK genes (Table 2). Because there are no HK miRNAs
(no miRNA has been found to be widely expressed
throughout different tissues, see Methods), only the topo-
logical bias of TS TFs relative to HK TFs was detected.

In kidney and ovary, the out-degree, cluster coefficient
and betweenness values of TS TFs were all significantly
higher compared with those of HK TFs (Table 2). The

Figure 4 A subnet formed by POU3F2 and its targets and miRNAs that regulate POU3F2. Target TFs of POU3F2 are denoted by green
circles and target non-TFs by blue circles; red circles are miRNAs. Arrows represent transcriptional regulation from regulators to target genes.
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Table 2 Significant topological bias of TS TFs relative to
HK TFs

In-degree Out-degree cC Btwn
Brain ¥ e
Heart *
Kidney * * * 7:\7
Liver
Ova ry * * *
Spleen
Testis *

P <0.10. cc: cluster coefficient; Btwn: betweenness, Green five-pointed star: TS TF.
Green five-pointed star indicates that the relative centralities of TS TFs are
significantly higher than those of HK TFs in the corresponding tissue. P < 0.10.

out-degree and betweenness values of TS TFs relative to
those of HK TFs could be inferred, because TS TFs
showed significantly high out-degree/betweenness values
relative to those of trivial TFs, whereas no significant dif-
ference was found between the out-degree/betweenness
values of HK TFs and trivial TFs for these two tissues
(Table 1). However, TS TFs and HK TFs both showed
significantly higher cluster coefficients relative to trivial
TFs (Table 1). Thus, a distinct order was determined with

Table 3 Significant topological bias of disease genes
relative to non-disease genes

In-degree Out-degree cc Btwn
Brain O O @)
Heart ©]@) @)
Kidney O @) O O
Liver @) OO O O
Ovary @) O O
Spleen O O
Testis e 'e) O O

P < 0.10. cc: cluster coefficient; Btwn: betweenness, Red circle: disease miRNA;
Green circle: disease TF.

Red circle indicates that the relative centralities of disease miRNAs are significantly
higher than those of non-disease miRNAs in the corresponding tissue. Green circle
indicates that the relative centralities of disease TFs are significantly higher than
those of non-disease TFs in the corresponding tissue. P < 0.10.
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TS TFs having the highest cluster coefficients, followed by
HK TFs and trivial TFs having the lowest.

There were also some features that were only present
in specific tissues (Table 2). For example, in brain the TS
TF in-degree value was higher than that for HK TFs. In
addition, high cluster coefficient/betweenness values for
TS TFs were observed in the heart and brain.

Topological bias of disease genes relative to non-disease
genes

Numerous disease genes are expressed in all of the seven
tissues. In each tissue, the number of disease TFs was
comparable to that of non-disease TFs (see Additional
file 1: Table S2). No tendency of disease TFs to be either
TS TFs or HK TFs was found (Fisher test, P-value >0.5).
However, the cluster coefficients of disease TFs were
significantly higher compared with those of non-disease
TFs (Table 3), suggesting that disease TFs tend to be
involved in small clusters that mainly consist of regulators.
In addition to the TS and HK TFs mentioned above, both
TFs and miRNAs were significantly enriched in disease TF
neighbours (P-value < 0.05, Fisher exact test, see Table S5
in Additional file 1) across all the tissues. Moreover, the
number of neighbours that were miRNAs was significantly
higher than the number that was TFs (Fisher exact test,
P-value < 0.05, see Table S6 in Additional file 1), suggest-
ing particularly strong co-regulation by disease TFs and
miRNAs on gene expression. In addition, significantly
high out-degree values of disease TFs were specifically
found in heart and liver.

The disease miRNAs constituted more than 80% of
miRNAs in every tissue (see Table S7 in Additional file 2).
Both TS and trivial miRNAs could be disease associated.
No significant tendency of disease miRNAs to be TS
miRNAs was identified in any of the seven tissues
(Fisher test, P-value >0.5). Nevertheless, there were
distinct differences in topology between disease miRNAs and
non-disease miRNAs. In all seven tissues, the out-degree
values of disease miRNAs were significantly higher than that
of non-disease miRNAs (Table 3), suggesting that the disease
miRNAs tend to co-ordinately regulate a large number of
targets. Moreover, the disease miRNAs also showed
tissue-specific features in certain tissues. For example,
the in-degree values of disease miRNAs were rela-
tively higher in brain, kidney, liver and testis, whereas
the betweenness values of disease miRNAs were high
in kidney, liver, ovary and testis.

Discussion

TFs or miRNAs usually co-regulate with each other to
control the expression of several genes. This suggests
that the topological properties of regulators could be
related with those functions. In the present study, we
compared four topological properties of different types
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of regulator and an interesting pattern in terms of how
cells organize their regulatory information emerged.

The relative high TCR values of TS miRNAs suggest
TS miRNAs tend to regulate different sets of targets,
whereas trivial miRNAs are more likely to co-regulate
the same set of targets. We also performed functional
enrichment analysis of genes regulated by TS miRNAs
and trivial miRNAs using the DAVID [27,28] online
tools. For example, in brain, the targets of non-TS
miRNAs were enriched in fundamental biological pro-
cesses, such as metabolic processes (GO: 006259, GO:
0016071) and transport (GO: 0045031, 0051028), and
their enriched KEGG (Kyoto encyclopedia of genes
and genomes) pathways were “nucleotide excision repair”
(hsa03420) and “citrate cycle” (hsa00020). As well as
several fundamental biological processes, the targets of TS
miRNAs were enriched in tissue specific functions,
such as “neuropeptide receptor activity” (GO: 0008188),
“motor neuron axon guidance” (GO: 0008045), “cell mor-
phogenesis” (GO: 0000902) and the KEGG pathway “axon
guidance” (hsa04360). These observations indicate that triv-
ial miRNAs mainly regulate genes involved in fundamental
cellular functions, while TS miRNAs tend to regulate genes
with tissue-specific functions. This implies that non-TS
miRNAs form the core of human transcriptional regulation
networks, while tissue-specific miRNAs are attached to the
core at more peripheral positions of the networks, and form
new regulatory modules to execute particular functions in
tissue differentiation.

TS TFs tend to exhibit higher in-degree, out-degree,
betweenness and cluster coefficient values than trivial
TFs in four of the tissues examined. These results mean
that TS TFs occupy important locations in the regulatory
networks and act as message transmitters in the informa-
tion flow from upstream activators to downstream effectors.
This may help in the understanding of how different tissues
achieve specificity. First of all, TS TFs are essential for tissue
differentiation; second, TS TFs alone are not enough for
tissue differentiation and co-regulation with other regula-
tors is required. This complicated and finely tuned regula-
tory mechanism can ensure correct cell morphogenesis
and tissue differentiation.

HK TFs tend to have neighbours that densely interact
with each other, indicating that HK TFs are inclined to
form complicated associations with other TFs and miRNAs
in the expression of genes.

Disease regulators also show particular properties in the
regulatory networks. Although no tendency of disease
TFs/disease miRNAs to be either TS TFs/TS miRNAs or
HK TFs/trivial miRNAs was found, disease TFs tend to be
connected with small clusters and disease miRNAs show
higher out-degree values than non-disease miRNAs. Some
approaches for identifying disease genes based on
topological properties have been shown effective in

Page 7 of 9

protein-protein interaction network [11,29-31]. Applying
the methods to transcriptional regulatory network may
lead new disease genes and miRNAs to be found. These
topological differences between disease and non-disease
regulators may also provide a way to find drug targets for
early diagnosis and treatment .

We also calculated characteristic path length, average
in-degree, average out-degree, average betweenness and
average cluster coefficient for seven tissues (see Table S8
in Additional file 3). The characteristic path length, average
in-degree and average out-degree are similar in brain and
testis. The two tissues were found to be clustered together
according to a bower-tie structure [22] previously. On
the other hand, brain and testis were reported to have
similarities in both mRNA and miRNA expression profiles
[32,33]. This consistency between the network status and
expression profiles for brain and testis may suggest some
correlations between them.

It should be noted that there are some limitations of
this study. The target genes of TFs and miRNAs in our
TRNs are all come from prediction which may lead to
some false positive. In addition, we did not subdivide the
tissue to certain cell type when we constructed tissue
TRN, which may limit the precision of the networks.
Despite such limitations, the work provides a new sight
into the topological properties of HK/TS regulators and
disease genes. The results uncovered here are important for
understanding the key roles of different types of regulators
in normal and disease tissues.

Conclusions

The study provides an insight into the regulatory
patterns of different types of genes in tissue regulatory
networks. Tissue-specific genes and disease genes have
particular topological properties in transcriptional
regulatory networks and certain topological properties
relate to certain regulatory mechanisms in gene regulation.
From the regulatory differences between TS and trivial
miRNAs, we inferred that trivial miRNAs might act at the
core of human transcriptional regulation networks to
perform basic biological functions, while tissue-specific
miRNAs might be attached to the core at more peripheral
positions, and form new regulatory modules to execute
particular functions in tissue differentiation. The higher
in-degree, out-degree, cluster coefficient and betweenness
values for TS TFs in four tissues indicated that TS TFs act
as bridges in gene expression information flow from
upstream activators to downstream effectors, which in
turn contributes to differentiation of certain tissues. Last,
disease TFs/miRNAs show topological differences to
non-disease TFs/miRNAs. These differences may provide
a way to find new disease genes that are important in the
early diagnosis and prevention of disease.
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Methods

Construction of tissue regulatory network

The tissue regulatory networks (TRN) for the seven human
tissues, brain, heart, kidney, liver, ovary, spleen and testis,
were generally constructed in the following way. First, a
reference network was constructed by predicting the
regulatory relationships between TFs, miRNAs and non-
TF protein genes throughout the whole human genome.
Then, the TRN for a certain tissue was built by extracting
the TFs, miRNAs and non-TF protein genes that are
known to be expressed in that tissue and incorporating
the regulations between them from the reference network.

For the reference network, the regulations between
TFs and their targets were predicted by identifying the
5-way (human, dog, cow, mouse and opossum) conserved
potential TF-binding sites within a 1-kb region upstream
of each target gene with the help of the TRANSFAC
database [34]. The regulations between miRNAs and
the targets were predicted with Targetscan [35], Pictar
[36] and Tarbase [37]. The intersection of the predicted
results was finally integrated into the reference network.
More detailed information concerning TRN construction
is described in our previous study [22].

The gene expression data for protein-encoding genes
(including TFs and non-TFs) were collected from
UniGene [38] and CGAP [39], and the miRNA expression
data were obtained from Landgraf et al. (2007) [40].

Housekeeping, tissue-specific and disease genes
In general, HK genes are widely expressed in various types
of tissue, while tissue-specific genes are expressed and
function in one or several tissues/cell types. If a TF is
widely expressed, we name it HK TF. Similarly, if a TF is
specifically expressed, we call it TS TF. For miRNA, we
define it as TS miRNA if it is specifically expressed in one
tissue. The other miRNAs are the type of trivial miRNAs.
- HK gene information was collected from Eisenberg
et al. [41] and Chang CW et al. [42], while TS gene from
the TiGER database [43] and Dezso Z et al. [19]. In total,
2827 HK genes and 4897 TS genes were recognized. 95
TS miRNAs were obtained from the literature [40]. In
addition, 7877 disease genes and 317 miRNAs were ac-
quired from the OMIM [44] and miR2Disease databases
[45], respectively.

Calculation of topological difference

For two sets of genes (e.g. TS TFs and trivial TFs, i.e.
non-TSs and non-HK TFs) in a certain TRN, the topo-
logical difference between them is calculated as follows.
First, we calculated the average of the topological parameter
(ie. in-degree, out-degree, cluster coefficient, or between-
ness) for these small sets of genes. Second, 2000 random
sets were generated to represent the large set of genes. Each
random set is produced by randomly picking out the same
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number of genes as are in the small set from the large set
of genes. Third, the average topological parameter of each
random set was calculated. Finally, the average value of the
small set was compared with those of the 2000 random
sets, and the probability that the value of the small set is
larger or less than that of the random set gives the P-value
that characterizes the topological difference between these
two sets of genes.

Note that a P-value < 0.10 indicates significant topological
difference.

Additional files

Additional file 1: Fisher exact test for tissue specific, house-keeping
and disease TFs in seven tissues.

Additional file 2: Number of disease TFs and miRNAs.
Additional file 3: Network properties for seven tissues.
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