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Abstract

Background: Network inference from gene expression data is a typical approach to reconstruct gene regulatory
networks. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional
network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation,
microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference aimes at determining
interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target predictions. We
applied the NetGenerator tool in order to infer an integrated gene regulatory network.

Results: Time series experiments were performed to measure mRNA and miRNA abundances of TGF-beta1+BMP2
stimulated hMSCs. Network nodes were identified by analysing temporal expression changes, miRNA target gene
predictions, time series correlation and literature knowledge. Network inference was performed using NetGenerator
to reconstruct a dynamical regulatory model based on the measured data and prior knowledge. The resulting model
is robust against noise and shows an optimal trade-off between fitting precision and inclusion of prior knowledge. It
predicts the influence of miRNAs on the expression of chondrogenic marker genes and therefore proposes novel
regulatory relations in differentiation control. By analysing the inferred network, we identified a previously unknown
regulatory effect of miR-524-5p on the expression of the transcription factor SOX9 and the chondrogenic marker
genes COL2A1, ACAN and COL10A1.

Conclusions: Genome-wide exploration of miRNA-mRNA regulatory relationships is a reasonable approach to
identify miRNAs which have so far not been associated with the investigated differentiation process. The
NetGenerator tool is able to identify valid gene regulatory networks on the basis of miRNA and mRNA time series data.

Keywords: Gene regulatory network, Network inference, NetGenerator, MicroRNA, Mesenchymal stem cells,
Chondrogenesis

Background
Modelling of gene regulatory networks (GRNs) has
become a widely used computational approach in systems
biology [1]. This development has been greatly promoted
by the availability of high-throughput data of adequate
amount and quality, such as genome-wide expression
data. A major task is the inference of regulatory depen-
dencies between genes on the basis of such data. The
inferred gene interactions constitute a network, which
contains predictions about cellular regulation. They can
motivate the design of new experiments, which might
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validate predicted dependencies and potentially eluci-
date unknown regulatory interactions. Successful applica-
tions of GRNs have been presented in studies of specific
human diseases like cancer [2] and rheumatoid arthri-
tis [3]), murine hepatocytes [4], E. coli [5,6] and fungal
infection [7].
In this study, we focus on the involvement of microR-

NAs (miRNAs) in the gene regulation of human mes-
enchymal stem cells (hMSCs) which differentiate towards
chondrocytes. Therefore, we provide a biological back-
ground about hMSCs, characteristics and function of
miRNAs and modelling approaches which integrate
miRNA regulation. HMSCs are multi-potent adult stem
cells, which have the capacity to differentiate into mul-
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tiple cell types, such as chondrocytes, osteoblasts and
adipocytes [8,9]. Lineage commitment towards a cer-
tain type of cell depends on specific environmental
factors. Those factors can activate intracellular sig-
nalling pathways which control developmental genes and
other signalling pathways. Here, we focus on chon-
drogenic differentiation, which is characterised by a
sequence of intermediate developmental stages, includ-
ing cell condensation, proliferation, differentiation and
hypertrophy [10]. Each of the individual processes is
associated with the activity and regulation of lineage-
specific genes [11] encoding transcription factors (e.g.
SOX9, MEF2C) or ligands of distinct signalling path-
ways (e.g. TGF-beta1, BMP2, IHH, WNT) [12]. Stimu-
lation of hMSCs by TGF-beta1 initiates the process of
chondrogenic differentiation [13]. Although key regula-
tory genes have been determined, the entire process of
regulation in chondrogenesis is still not fully understood.
In the recent years, it has become apparent that miR-
NAs are active regulators in the development of stem cells
[14,15].
MiRNAs are short (∼ 22 nucleotides), noncoding RNA

molecules, which are able to bind to complementary
sequences in target mRNAs, thereby repressing transla-
tion or inducing degradation of mRNA molecules [16].
Silencing of gene expression by such post-transcriptional
processes has been identified as a new level of gene reg-
ulation which is capable of modulating expression levels.
In the human genome, more than two thousand mature
miRNAs have been identified [17]. Much effort has been
put into the revelation of the complex functional net-
work of miRNA and target gene regulation. According
to sequence-based predictions, a single miRNA can tar-
get hundreds of genes, while a gene can be regulated by
multiple miRNAs [18]. Considering the biological func-
tion of the target genes, miRNAs were found to regulate
various signalling pathways as well as the cell cycle. Inter-
estingly, transcription factor genes are preferred targets of
miRNAs [19,20].
Network inference approaches have considered the

emerging knowledge about miRNA-dependent regulation
by taking account of interactions between miRNAs and
mRNAs. Such approaches utilise miRNA target predic-
tions as well as miRNA and mRNA expression data.
Consideration of post-transcriptional gene regulation has
been contributing to the extension and refinement of
GRNs. This new feature has promoted the analysis of
dependencies between miRNAs and target genes. For
example, tools like MAGIA [21], MMIA [22] and mir-
ConnX [23] perform integrated network analysis on
the basis of miRNA target predictions and correlation
between miRNA and mRNA expression profiles.
This study aims to present the inference of miRNA

regulation as a novel application for the previously

published NetGenerator V2.0 tool. The focus of this
work is integrated network inference based on mRNA
and miRNA time series data and prior knowledge
[6,24,25]. The resulting network predicts the role of
selected miRNAs in the chondrogenic regulatory net-
work. In comparison to correlation-based approaches
(e.g. MAGIA), the NetGenerator tool applies a dynam-
ical model, which is based on linear ordinary differen-
tial equations (ODE). Previous network inference studies
have successfully shown the ability of linear approaches
to result in network models of high biological relevance
[4,26-29]. Experimental verification of predicted interac-
tions underscored their validity, while it is often empha-
sised that biological processes can include more complex
relationships [3].

Results and discussion
Chondrogenesis data and node selection
We analysed a dataset which contained mRNA and
miRNA microarray measurements of cultured hMSCs in
pellet cultures after stimulation with growth factors TGF-
beta1 and BMP2. Both factors are known to induce the
process of chondrogenesis [12,13]. Microarray samples
were available for 9 time points (0, 3, 6, 12, 24, 48, 72,
120 and 192) h after stimulation, with 3 (mRNA microar-
ray) and 2 (miRNA microarray) replicates per time point.
For mRNA microarray data pre-processing, custom chip
definition files [30] were used in order to improve the
accuracy of the expression estimates. Quantile normal-
isation was applied to mRNA and miRNA microarray
data, respectively (see Methods). This resulted in time
series expression data for 12,175 protein-coding genes
(mRNAs) and 1,023 miRNAs. Integrated network infer-
ence requires the filtering of relevant mRNAs and miR-
NAs, which constitute the network nodes in the model. A
multi-step selection strategy was applied, which included
statistical filtering, knowledge-based filtering and time
series correlation, to identify miRNAs and genes that are
associated with the investigated differentiation process.
A workflow which illustrates the sequence of selection
procedures, starting from microarray data and resulting
in network components, is displayed in Figure 1. Differen-
tially expressed genes (DEGs) and differentially expressed
miRNAs (DEMIRs) were identified using the Limma
package of the Bioconductor software suite, as described
in the Methods section. It resulted in the selection of
192 DEGs and 485 DEMIRs. Subsequently, both sets were
used to perform a knowledge-driven selection, which was
based on miRNA target predictions and prior knowl-
edge about gene regulation during hMSC differentiation.
It is known that the transition from stem cells to termi-
nally differentiated cells is mainly controlled by transcrip-
tion factors [10]. Moreover, transcription factor genes are
reported to be potential targets of miRNAs, because they
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Figure 1 Gene selection workflow. This workflow illustrates the
steps from pre-processed miRNA/mRNA microarray data to the
selection of 11 network components, which includes statistical
filtering (2), transcription factor annotation (3), determination of
negatively correlated miRNA-mRNA pairs (4) and identification of
chondrogenesis marker genes (5).

are significantly overrepresented among the miRNA tar-
get genes [20]. Consequently, transcription factor genes
from the Gene Ontology term GO:0003700 (sequence-
specific DNA binding transcription factor activity) were
selected, resulting in 10 differentially expressed transcrip-
tion factor genes (DETFs). In the next step, predicted
interactions between miRNAs and target genes were con-
sidered, as they provide a useful subset of linked miRNA
and mRNA data. There are numerous resources of exper-
imentally validated or computationally predicted inter-
actions between miRNAs and target mRNAs, such as
TarBase [31], miranda [32], miRBase [17], MirTarget2 [33]
and TargetScan [18]. Access to these databases is pro-
vided by the R package RmiR.Hs.miRNA, which provides
the possibility to download the data in form of interac-
tion tables. Taken together, there are more than 1 million
predicted interactions stored in these tables. However,
most prediction approaches are reported to have relatively
low specificity [34]. This issue can be addressed by com-
bining the sequence-based predictions with predictions
based on the temporal correlation of miRNA and target
genes. To obtain the most reliable interaction predictions,
two criteria were applied: (1) at least two of the five
above mentioned databases must contain the interaction
and (2) the associated expression time series of miRNA

and mRNA must be negatively correlated. The first crite-
rion ensures that the considered interactions were found
by different approaches. To check the second criterion,
the Pearson correlation coefficient between miRNA and
mRNA time series was calculated for each interaction
pair. Under the assumption that the predicted miRNA tar-
get gene interaction is functional, we would intuitively
expect a negative correlation coefficient, due to the nega-
tive regulatory effect of the miRNA on the expression of
its mRNA target. This assumption could be confirmed by
Liu et al. [35], who successfully identified miRNA targets
by correlation. However, the authors also emphasise that
a strong miRNA effect on target gene expression might be
better recognisable on target protein level or downstream
gene expression levels. Moreover, we noted that positive
as well as negative correlations have been reported in
the literature for functional miRNA target relations [36].
In this study, we merely focused on strongly negatively
correlated miRNA-gene pairs, which can be explained
by a repressing interaction between the miRNA and its
target. Accordingly, four interactions with a Pearson cor-
relation coefficient smaller than -0.8 were extracted (see
Table 1). In other words, focusing on negatively correlated
interactions resulted in the selection of 4 DEMIRs and
4 DETFs.
As reported in the literature, there are prominent chon-

drogenesis marker genes such as COL2A1, ACAN (aggre-
can) and COL10A1, whose expression level indicates the
progress of differentiation [37,38]. They encode for struc-
tural proteins of the extracellular matrix (ECM) and are
differentially expressed in our time series data. Therefore,
we added them to the selection of network nodes, because
marker genes help to monitor the effects of regulation
by miRNAs and transcription factors on chondrogenic
differentiation.
In summary, the applied multi-step selection procedure

resulted in a set of 11 network components, including 4
miRNAs (miR-524-5p, miR-494, miR-298 and miR-500),
4 transcription factor genes (SOX9, TRPS1, MEF2C and
SATB2) and 3 chondrogenic marker genes coding for
components of the extracellular matrix (COL2A1, ACAN
and COL10A1).

Table 1 PredictedmiRNA targets and associated time
series correlation

miRNA Gene Method Pearson
correlation

hsa-miR-494 TRPS1 miranda, mirtarget2, targetscan -0.89

hsa-miR-298 MEF2C miranda, mirtarget2 -0.86

hsa-miR-500 SATB2 miranda, mirtarget2 -0.86

hsa-miR-524-5p SOX9 miranda, mirtarget2 -0.88

Predicted miRNA target genes, corresponding prediction methods and the
attained time series correlation.
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Network inference
The NetGenerator tool was applied to infer a system
of linear ordinary differential equations, which describes
a network of regulatory interactions between the com-
ponents and the influence of the external stimulus
(TGF-beta1+BMP2). The general model structure and
the utilised optimisation approach is explained in the
Methods section. Input data for the tool comprised
time series data and prior knowledge about potential
regulatory interactions between the components. Time
series data were extracted from the available miRNA and
mRNA microarray datasets, averaged across replicates
at each time point, centered and scaled by their maxi-
mum absolute value (see Methods). The resulting time
series matrix has 9 rows (time points) and 11 columns
(nodes) (Additional file 1). Prior knowledge about regu-
latory interactions between the nodes was collected from
diverse sources, which will be described below.

Extraction of prior knowledge
We considered knowledge about the general regulatory
potential of each component as well as knowledge about
regulatory interactions among the components for GRN
inference. For the three component classes ((1) miRNA,
(2) transcription factor gene, (3) marker/target gene),
prior knowledge regarding the typical biological function
was derived as follows: (1) miRNAs primarily function
by degradation of their target mRNAs [16]. Therefore,
they are expected to downregulate the expression of their
respective target genes. (2) Transcription factors posi-
tively or negatively regulate the expression of their tar-
get genes, which can be protein-coding genes as well as
miRNA precursor genes. (3) Genes encoding structural
components of the extracellular matrix are not known
to have an effect on the expression of neither protein-
coding genes nor miRNA genes. Therefore, they were
considered to be pure target genes, whose expression is
regulated by transcription factors and miRNAs. In addi-
tion to this annotation-based knowledge, a set of potential
regulatory interactions was obtained from miRNA target
predictions, as described in the previous section, and sci-
entific literature. This included four predicted interactions
between miRNAs and target genes, which have not been
reported in previous studies (see Table 1). To extract reg-
ulatory interactions from published work, Pathway Studio
V9 was applied, which provides a database of interactions
automatically derived from PubMed [39]. In total, four
interactions from transcription factors on target genes
were retrieved from the database. SOX9 was found to reg-
ulate the expression of COL2A1, ACAN and COL10A1
by specifically binding to regulatory elements in the pro-
moter region of these genes [40]. The chondrocyte hyper-
trophic marker COL10A1 is activated by MEF2C, which
binds to conserved sequences in the promoter region

of COL10A1 [38]. Finally, the collected prior knowledge
was stored in form of interaction matrices (see Methods),
which can be processed by NetGenerator.

Model inference and interpretation
The NetGenerator approach aims to identify a set of
model parameters which is optimal with respect to the
given input data and the presumption of a sparse inter-
action matrix. The algorithm’s objective is to minimise
the model error J, which quantifies the deviation between
measured and simulated data, and to consider prior
knowledge. The balance between network complexity and
an adequate model error is controlled by the parameter
“allowedError”, which is the permitted maximum error
for each time series. A series of inference results vary-
ing this parameter was analysed with respect to the model
error, the model complexity (total number of connections)
and the number of correctly integrated known connec-
tions (see Methods and Figure 2). This resulted in the
selection of an optimised model, which shows a good
fit to the measured time series data (J=0.0833) and con-
tains 8 known interactions. Simulated and measured time
series are compared in Figure 3. The simulated time
courses (blue lines) show a good reproduction of the mea-
sured time series data (black points). Even if the model
seems to be excellent in terms of the objectives men-
tioned above, a model validation is necessary. The main
reason is to prevent over-fitting of the measured time
series data by the model. Therefore, the model’s robust-
ness against noise in the data was evaluated by using an
approach which is based on repeated resampling of the
time series data (see Methods). This procedure resulted
in a table of occurrence frequencies for each interaction
of the optimised model (Additional file 2). While most
of the connections attained a high frequency, two con-
nections with a frequency less than 40% were discarded
from the network. All remaining interactions were consid-
ered robust against minor fluctuations in the expression
data. The final network (Figure 4) consists of 11 nodes,
thereof 4 miRNAs, 4 transcription factors (TF) and 3 tar-
get genes (chondrogenesis marker), and of the external
stimulus (TGF-beta1+BMP2). There are 19 stable con-
nections in the network, which indicate transcriptional or
post-transcriptional regulation, depending on the type of
the connected components. Considering the proportion
of nodes and connections (11 nodes / 19 connections)
the network appears to be sparsely connected. There
are 6 input-to-node and 13 node-to-node interactions.
The latter type of interactions can be further grouped
into miRNA-miRNA (1), miRNA-TF (6), TF-miRNA (2)
and TF-target (4) interactions. Four connections are
coloured in green, which indicates their concordance
with literature knowledge. Four connections are coloured
in blue, because they are underpinned by predicted
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Network model selection
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Figure 2 Network model selection. A series of ten network inference results, with varying NetGenerator parameter “allowedError”, is shown. For
each inference result, the model error J (left ordinate) and the number of model connections / prior knowledge connections (right ordinate,
orange/green) are displayed. For further analysis, one model (highlighted in red) was selected (allowedError = 0.01).

miRNA target sites. Connections coloured in black repre-
sent hypothetical regulatory interactions without further
evidence.

Biological interpretation
The biological interpretation of the network will be based
on transcription factor nodes (SOX9, MEF2C, TRPS1,
SATB2), by identifying regulator and target nodes for
each of them. This promotes the understanding of the
model, particularly of the mechanism that enables miR-
NAs to interfere with transcriptional regulation in order
to control the differentiation process. As seen in the final
model, the input stimulus (TGF-beta1+BMP2) inhibits
the expression of 3 miRNAs (miR-494, miR-524-5p, miR-
298) and activates miR-500, which is in turn suppressed
by TRPS1. Consequently, the negative effect of down-
regulated miRNAs on their target genes is attenuated,
which leads to the activation of the transcription fac-
tor genes SOX9, MEF2C, TRPS1 and SATB2. SOX9, the
main regulatory factor in chondrogenesis [41], is inhib-
ited by miR-524-5p, a finding which is supported by a
predicted miRNA target site (Table 1). Since miR-524-5p
expression is suppressed by the TGF-beta1+BMP2 stim-
ulus, SOX9 expression increases and leads to activa-
tion of the differentiation markers COL2A1, ACAN and

COL10A1. This transactivation is enabled by the presence
of a consensus binding motif ((A/T)(A/T)CAA(A/T)G),
which is shared by the SOX family members [40]. In
COL2A1, multiple copies of this motif could be identified
in an enhancer located in intron 1. Activation of ACAN
could be associated with the binding of SOX9 in its first
intron [42] and the COL10A1 promoter contains a dis-
tal enhancer element 4.3 kb upstream of the transcription
start site [41]. Therefore, primary chondrogenesis might
be under control of miR-524-5p through the modulation
of the expression of SOX9 and its target genes. TheMADS
box transcription factor MEF2C, which controls chon-
drogenic hypertrophy, positively regulates expression of
COL10A1 through binding to conserved sequences in the
promoter region [38]. Negative regulation of MEF2C by
miR-298 might be a mechanism to prevent early activa-
tion of hypertrophic genes. The transcriptional repressor
TRPS1 is known to be activated by a specific type of BMP-
signalling and promotes chondrogenic differentiation by
transcriptional repression of only a few known target
genes [43]. In our model, its expression is regulated by the
stimulus as well as bymiR-494 andmiR-524-5p. The inter-
action with miR-494 is underpinned by prior knowledge
(blue connection in Figure 4), but surprisingly there is also
a predicted binding site for miR-524-5p within the TRPS1
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Figure 3 Chondrogenesis model: time courses. Comparison of the measured and simulated time courses. Each panel displays the results of one
model component: the simulated time course (blue solid line), interpolated measurements (black dashed line) and the measured time series
(black dots).

mRNA. However, the positive sign of the connection
suggests that the assumed inhibitory effect may be not
reflected by the given data. In recent literature, extensive
control of TRPS1 by at least 7 miRNAs has been described
for the process of skeletal development [44]. In the net-
work, TRPS1 inhibits the expression of miR-500 and miR-
298, which controls the chondrogenic transcription factor
MEF2C. While knowledge about target genes of TRPS1
is rare, it is known that TRPS1 can upregulate the chon-
drogenic marker gene COL10A1 and thereby promote
chondrogenic differentiation [43]. SATB2, a transcrip-
tion factor mainly associated with osteogenesis [11], is
repressed by miR-500 and miR-494, as predicted by the
model. A potential regulation of SATB2 by miR-500 is
supported by the associated binding sequence (Table 1).
However, since there is no influence of SATB2 on the
expression of chondrogenic marker genes in the net-
work, it is less relevant for chondrogenesis according to
our model.

To summarise, the involvement of transcription factor
genes is a central part of the model. The model inte-
grates transcriptional regulation (by transcription factor
genes) and post-transcriptional regulation (by miRNAs)
and thereby displays the interrelationship between miR-
NAs and transcription factors. Since all four investigated
miRNAs are ultimately downregulated, the model pro-
poses the suppression of miRNA activity, which gives
rise to the activation of the transcriptional regulators of
chondrogenic differentiation such as SOX9. The model
comprises miRNAs acting on different stages of the
differentiation process including early proliferation and
late hypertrophic stages. The downregulation of miR-
524-5p provides an interesting explanation about how
chondrogenic differentiation might be modulated on the
level of post-transcriptional mRNA interference. Further-
more, we found expression of miR-524-5p to be differ-
ently regulated during osteogenic and adipogenic hMSC
differentiation (Additional file 3). This indicates that the
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Figure 4 Chondrogenesis model: inferred network. Network
structure of the chondrogenesis model, which contains the input
TGF-beta1+BMP2 and 11 nodes. Nodes represent either a miRNA
(miR-524-5p, miR-494, miR-298, miR-500), a transcription factor gene
(SOX9, MEF2C, TRPS1, SATB2) or a chondrogenic marker gene
(COL2A1, COL10A1, ACAN). Connections are coloured in green
(consistent with prior knowledge), blue (predicted miRNA target site)
and black (predicted interaction).

repression of miR-524-5p activity may be relevant for
lineage specificity during hMSC differentiation. Previous
studies have reported that miR-524-5p is active in glioma
cells and interacts with two components of the Notch
signalling pathway [45].

Experimental validation
The inferred chondrogenic network implies that mir-
524-5p is able to target SOX9 mRNA, thereby inhibiting

expression of SOX9 and its target genes (COL2A1,
ACAN, COL10A1). Therefore, we performed overexpres-
sion experiments of mir-524-5p in hMSCs to validate
if chondrogenesis is impaired in this case. Changes in
chondrogenic differentiation were measured based on the
expression of specific marker genes. For this, hMSCs
were transfected with lentivirus harbouring the mir-524-
5p coding sequence, while a non-related murine Jnk
RNAi lentivirus was used as a negative control. Then,
hMSCs were allowed to differentiate for 14 days into
chondrocytes after which the expression of chondro-
genic marker genes was measured by using qPCR. Rela-
tive expression of marker genes of transfected cells was
compared to the negative control (incomplete: differen-
tiation in culture medium without any growth factors
added) and a positive control (TGFB1+BMP2: medium
containing TGF-beta1 and BMP2) in which differenti-
ation occurs in culture medium but without lentiviral
transduction (see Figure 5). The positive control sets the
baseline for comparison of the different expression lev-
els, because differentiation is optimal. The results showed
that mir-524-5p overexpression decreases the relative
expression of all measured marker genes. The decrease
in relative expression is significantly stronger than the
decrease observed when using the non-related murine
Jnk RNAi lentivirus. This negative control had no effect
on chondrogenesis observed for all marker genes tested.
In addition, hMSCs were transfected with mir-524-5p
lentivirus and the empty pMIRNA backbone (PM_40)
vector lentivirus (as negative control) and, subsequently,
cells were allowed to differentiate for 14 days prior
RNA qPCR analysis. The relative expression of SOX9
decreased when mir-524-5p was overexpressed and the
control virus (PM_40) remained comparable to the rela-
tive expression of the positive control (TGFB1+BMP2). In
conclusion, experimental validation showed that lentiviral
based overexpression experiments of mir-524-5p in dif-
ferentiating hMSCs resulted in a significant inhibition of
several chondrogenic marker genes compared to either
non-transfected hMSCs or transfected with a control
lentivirus.

Conclusions
This study presented and analysed large-scale miRNA
time series expression data, which captures the post-
transcriptional level of chondrogenic differentiation of
hMSCs. The combination of miRNA and mRNAmicroar-
ray data enabled the identification of miRNAs which
potentially act in this developmental process. To detect
the most relevant miRNAs, a custom filtering based
on diverse biological prior knowledge (literature knowl-
edge, transcription factor annotation, miRNA target pre-
dictions) in conjunction with statistical criteria was
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Figure 5 Experimental validation. Barplots depict the relative expression of COL2A1, COL10A1, ACAN and SOX9, respectively, under a series of
distinct conditions. Those include untreated cells (Incomplete), TGF-beta1+BMP2-treated cells (TGFB1+BMP2), lentiviral based miR-524-5p
overexpression with three different concentrations (Mir-524_20, Mir-524_40, Mir-524_80) and negative control experiments (Jnk RNAi_20,
Jnk RNAi_40, Jnk RNAi_80, PM_40).

applied. Four miRNAs (miR-524-5p, miR-494, miR-298
and miR-500) were found to be potentially involved in
the regulation of chondrogenesis. To infer an integrated
network of miRNA and gene regulation, we presented a
novel application of the NetGenerator tool i.e. its capa-
bility to integrate miRNA and mRNA time series data
into a single network inference. The good quality of
the resulting network model with regard to complex-
ity, data fit and robustness underlines the tool’s utility
to infer the post-transcriptional level of gene regula-
tion. Analysis of the network resulted in hypotheses and
additional experiments which verified model predictions
by showing that miR-524-5p can affect the expression
of the central transcription factor gene SOX9 and dif-
ferentiation marker genes. Therefore, this work demon-
strated how dynamic modelling of miRNA regulation
can enhance the understanding of a specific biologi-
cal process and lead to the discovery of new regulatory
interactions.

Methods
Culture and differentiation of humanmesenchymal stem
cells
Humanmesenchymal stem cells (hMSCs), harvested from
normal human bone marrow, were purchased from Lonza
(Walkersville, MD) at passage 2. Cells were tested by
the manufacturer and were found to be positive by flow
cytometry for expression of CD105, CD166, CD29 and
CD44 and negative for CD14, CD34 and CD45. We con-
firmedmultipotency of all donor batches based on in vitro
osteo-, chondro- and adipogenic differentiation capacity
[9]. The cells were expanded for no more than 5 passages
in ‘mesenchymal stem cell growth medium’ (MSCGM;
Lonza, Walkersville, MD) at 37°C in a humidified atmo-
sphere containing 7.5% CO2. Studies were performed with
hMSCs from multiple donors, including 5F0138, 5F0138
and 1F1061. For chondrogenic differentiation, hMSCs
were trypsinised and 2.5x 105 cells pelleted in a 10 ml
round bottom tube (Greiner Bio-One, Monroe, NC) for
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10 min at 250xg. Cell pellets were subsequently cultu-
red for 21 days in chondrogenic differentiation medium,
consisting of proliferation medium supplemented with
6.25 μg/ml insulin, 6.25 μg/ml transferrin, 6.25 ng/ml
sodium selenite, 5.35 μg/ml linoleic acid, 400 μg/ml pro-
line, 1 mg/ml sodium pyruvate, 10−7 M dexamethasone,
50 μg/ml sodium L-ascorbate (all obtained from Sigma-
Aldrich, St. Louis, MO), in the absence (incomplete or
control) or presence of 10 ng/ml recombinant TGF-beta1
in combination with 50 ng/ml recombinant human BMP2
(TGF-beta1+BMP2). Growth factors were obtained from
R&D Systems.

mRNA andmicroRNA profiling
Affymetrix Human Genome U133A (HG-U133A)
microarrays were employed in triplicate experiments at
9 time points (0, 3, 6, 12, 24, 48, 72, 120 and 192 hours
after onset of treatment with TGF-beta1+BMP2). Further
experimental details can be found in [9]. For miRNA
profiling, 18 RNA samples were obtained from duplicate
experiments, one biological condition and measured at 9
time points (0, 3, 6, 12, 24, 48, 72, 120 and 192 hours after
onset of treatment with TGF-beta1+BMP2). RNA was
extracted using TRIzol� according to the protocol pro-
vided by the manufacturer (Invitrogen). For each sample,
5 μg of RNA was used for miRNA profiling. Hybridisation
and profiling were performed using Exiqon (Vedbaek,
Denmark) capture probe sets spotted on Schott Nexterion
Hi-Sense E glass slides [46].

Determination of relative expression levels of
chondrogenic marker genes using quantitative PCR (qPCR)
Total RNA was isolated from chondrogenic pellets using
the Mirvana (Ambion) kit according to manufacturer’s
instructions. The isolated total RNA (≈100 ng) was then
used as a template in a 20 μl reverse transcriptase reaction
using superscript reverse transcriptase from Invitrogen
according to manufacturer’s instructions using random
hexamers to prime the reaction. The following cycling
conditions were used: 10 min at 20°C, 45 min at 42°C and
10 min at 94°C. The resulting cDNA solution was diluted
5x by adding 80μl water. qPCR of chondrogenic mark-
ers was performed using the following human primers:
COL2A1 (forward: 5’-CTGCCAGTGGGCAACCA-3’;
reverse: 5’-TTTGGGTCCTACAATATCCTTGATG-3’),
COL10A1 (forward: 5’-AAAGCTGCCAAGGCACCAT-
3’ and reverse: 5’-AGGATACTAGCAGCAAAAAGGGT
ATT-3’), ACAN (forward: 5’-GACAGAGGGACACG
TCATATGC-3’ and reverse: 5’-CGGGAAGTGGCGGT
AACA-3’) and SOX9 (forward: 5’-GCAAGCTCTGGA
GACTTCTGAAC-3’ and reverse: 5’-ACTTGTAATCC
GGGTGGTCCTT-3’), expression values were nor-
malised and corrected using RPS27a housekeeping gene
(Forward: 5’-GTTAAGCTGGCTGTCCTGAAA-3’ and

reverse: 5’-CATCAGAAGGGCACTCTCG-3’). Relative
expression was calculated using the following formula:
Relative expression: 2−Ct · 106 marker gene / 2−Ct · 106
RPS27a. Data are presented as a fraction of RPS27a
expression and all qPCRs were performed in duplicates
(Additional file 4).

Microarray data analysis
Microarray data pre-processing and network inference
were entirely performed in the statistical programming
environment R [47] using Bioconductor software tools
[48]. Pre-processing aims to remove non-biological noise
from the data and to estimate gene expression levels.

Pre-processing ofmRNAmicroarray data
Data from mRNA microarray experiments were pre-
processed using the customised chip definition package
“gahgu133a” and the robust multi-array average (RMA)
procedures [49]. The chip definition package provides
custom probe-sets for the Affymetrix HG-U133A chip,
which reduces the number of cross-hybridising probes
[30]. The remaining probes allow for a one-to-one corre-
spondence between probe-set and gene. RMA procedures
were applied for background correction, quantile normal-
isation and summarisation. The resulting signal matrix
contains the logarithmised gene expression estimates for
12,175 genes.

Pre-processing ofmiRNAmicroarray data
First, mean signal values were extracted for each of the
measured miRNAs. Secondly, quantile normalisation was
applied, which is provided by the RMA package. This led
to logarithmised miRNAs expression estimates for 1,023
miRNAs. In contrast to mRNAmicroarray data, there can
be multiple probe-sets representing the same miRNA.

Statistical filtering
We applied the LIMMApackage of the Bioconductor soft-
ware suite [50] to the miRNA and the mRNA dataset,
respectively. It provides routines using an empirical bayes
approach for the identification of differentially expressed
genes. Time series data can be analysed by contrast terms,
which were defined by subtracting the control group
from the stimulus group at each time point. Statisti-
cal significance was determined by applying a moder-
ated F-statistics. Finally, LIMMA returned a ranked table,
which contains columns for gene name, fold-change and
adjusted p-values. While for mRNA selection a 2-fold-
change criterion was combined with a p-value threshold
(Benjamini-Hochberg adjusted p-value ≤ 10−10), miRNA
selection was merely based on a 2-fold-change criterion,
due to the low replicate number in the miRNA dataset (2
replicates per time point).
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Time series standardisation
Time series standardisation is a pre-processing step
required by the NetGenerator tool [25]. It includes cen-
tering and scaling of each time series. Centering implies
subtraction of the first value from all values such that the
transformed time series starts from zero. Subsequent scal-
ing divides the centered time series by its maximum abso-
lute value, which leads to gene-wise scaled data varying
within -1 and 1.

Network inference
Network inference was performed using the NetGener-
ator tool, which models gene regulation by a system of
ordinary differential equations (Equation 1).

ẋi(t) =
N∑

j
ai,jxj(t) + biu(t) (1)

Dynamic change of expression xi of component i is
described by the sum of weighted gene expressions of
N genes and the weighted input u(t), which is a step-
wise constant function representing the external stimulus
(e.g. TGF-beta1+BMP2). The values of xi can be inter-
preted as standardised expression changes of component
i between stimulated and non-stimulated (control) state,
which serves as a reference point.
Regulatory interactions are modelled by the interac-

tion parameters ai,j and the input parameters bi. A pos-
itive parameter value denotes an activating connection,
a negative value denotes an inhibitory connection and
the value zero denotes no connection. Consequently,
the GRN structure is determined by the model’s inter-
action parameters, which have to be identified by the
NetGenerator algorithm. The algorithm’s central part is
a heuristic algorithm, which performs network struc-
ture and parameter optimisation. Structure optimisation
applies the principle of sparseness. Iterative development
of sparse sub-models explicitly restricts the number of
identified connections. In each development step, param-
eter optimisation is applied to obtain interaction and input
parameter values. The resulting model contains a minimal
number of parameters that is necessary to obtain a good
fit between simulated model and measured time series. A
more detailed description of the algorithm can be found
in [6,24,25].
NetGenerator also allows for integration of additional

information about regulation between the components,
referred to as prior knowledge. As this knowledge is inde-
pendent of the time series data, it represents valuable
additional input for the network inference. NetGenerator
is capable of using prior knowledge during the struc-
ture optimisation process, while also dealing with contra-
dictions between prior knowledge and time series data.
Knowledge is provided in form of an interaction matrix

which contains values assigned to particular connections,
coded in the following way: no connection (0), activa-
tion (10), inhibition (-10), activation or inhibition (1) or
not available (NA). NetGenerator provides a flexible inte-
gration mode which ignores prior knowledge in case the
model fit is worsened.
Since NetGenerator contains a heuristic core, it depends

on the setting of configuration parameters. The central
parameter “allowedError” controls the permitted total
deviation between simulated and measured data for each
time series. To achieve an optimal result, we performed
a series of network inference runs varying the value of
this parameter (0.001, 0.01 (0.005) 0.05) resulting in ten
models (see Figure 2). The resulting models were assessed
on the basis of the actual model error J and the number
of successfully integrated known connections. An opti-
mal model reproduces the data with a low error (high
accuracy), while attaining a relatively low model complex-
ity (number of interactions). Considering the ten models,
we found the second model (allowedError=0.01) to be
optimal with respect to model error (J=0.0833), model
complexity (21 interactions) and integrated prior knowl-
edge connections (8). The network model is shown in
Figure 4 and simulated time courses are shown in Figure 3.
For model validation, robustness of the inferred net-

work against small distortions of the time series data was
tested. Inaccuracy may occur in the data due to tech-
nical or biological variance. A robust inference result is
expected to maintain a similar network structure when
the input data is slightly perturbed. Therefore, we applied
random perturbation of the time series data by sampling
from a Gaussian noise distribution (N (0, 0.052)) and sub-
sequent network inference. This procedure was repeated
100 times leading to a series of models, from which rel-
ative frequencies for each of the connections of the final
model were derived. Connections which were inferred
with a frequency of at least 50% were considered stable
and therefore reliable.

Maintenance, lentiviral transfection and induced
chondrogenesis of hMSCs
hMSCs were maintained in DMEM medium supple-
mented with 10% FBS, 1% pyruvate, 1% L-glutamine, 100
U/ml penicillin and 100 μg/ml streptomycin (referred
to as proliferation medium, PM) and incubated at 37°C
and an humidified atmosphere containing 7,5% CO2. The
day before lentiviral transduction, about 5 · 105 cells
were transferred to 25 cm2 flasks in PM and incubated
for 18 hours, as before. Then, cells were transfected
using lentivirus containing either the empty pMIRNA
backbone vector (control) or pMIRNA vector with mir-
524-5p premature DNA sequences (purchased from
System Biosciences). Lentiviruses were added in various
concentrations (20 ng, 40 ng and 80 ng virus/30.000 cells)
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in addition to 1 mg/L polybrene (Milipore). The trans-
fected cells were incubated for 2-3 days to allow for
lentiviral integration and expression of the introduced
transgenes. Transfected hMSCs were grown as pellets
(by centrifugation) in high-glucose DMEM supplemented
with 100 U/ml penicillin, 100 μg/ml streptomycin, 1% L-
glutamate 6,25 μg/ml insulin, 6,25 ng/ml sodium selenite,
6,25 μg/ml transferrin, 5,35 μg/ml linoleic acid, 400 μg/ml
proline, 1% pyruvate, 100 nM dexamethasone, 50 μg/ml
sodium ascorbate and 1,25 mg/ml bovine albumin (listed
compound from Sigma). This medium will be further
referred to as incomplete medium. Differentiation exper-
iments were performed using incomplete medium in the
presence or absence of 10 ng/ml TGF-beta1 and 50 ng/ml
BMP2 (both purchased from R&D Systems). Differentia-
tion of hMSCs chondrogenic pellets was allowed for 14
days.

Additional files

Additional file 1: Expression data of network components. Expression
data, which contains non-standardised expression differences between
stimulation and control of the corresponding 11 network components.

Additional file 2: Table of connection frequencies frommodel
validation. A table of the network model connections and their relative
frequencies in the model validation.

Additional file 3: Time series of miR-524-5p expression. Time series of
miR-524-5p expression after chondrogenic, osteogenic and adipogenic
stimulation of human mesenchymal stem cells.

Additional file 4: Expression data for network validation. Expression
data of the validation experiments which investigated the impact of
miR-524-5p overexpression on the expression level of SOX9, COL2A1,
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