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Background: Robert Rosen’s Metabolism-Replacement, or (M,R), system can be represented as a compact network
structure with a single source and three products derived from that source in three consecutive reactions. (M,R) has
been claimed to be non-reducible to its components and algorithmically non-computable, in the sense of not
being evaluable as a function by a Turing machine. If (M,R)-like structures are present in real biological networks, this
suggests that many biological networks will be non-computable, with implications for those branches of systems
biology that rely on in silico modelling for predictive purposes.

Results: We instantiate (M,R) using the process algebra Bio-PEPA, and discuss the extent to which our model represents
a true realization of (M,R). We observe that under some starting conditions and parameter values, stable states can be
achieved. Although formal demonstration of algorithmic computability remains elusive for (M,R), we discuss the extent
to which our Bio-PEPA representation of (M,R) allows us to sidestep Rosen’s fundamental objections to computational

Conclusions: \We argue that the behaviour of (MR) in Bio-PEPA shows life-like properties.
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Background

Relational biology is a discipline founded by Robert
Rosen (1934-1998) [1-3], based on the previous work of
Nicolas Rashevsky (1899-1972), which considers bio-
logical network structures using the mathematical tools
of category theory. Relational biology might be consid-
ered a branch of systems biology, in that it studies the
same objects as systems biology, and for similar reasons,
namely to improve our understanding of how complex
biological processes work. However, its methods and
conclusions are so radically different to those of conven-
tional systems biology that one might almost say it con-
stitutes an alternative discourse on the subject. Systems
biologists attempt to represent biological network sys-
tems as software objects for simulation on computers.
These network structures may vary in their degree of
complexity, but the difference between simple and com-
plex networks is treated as one of degree rather than of
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kind. By contrast, relational biologists define complex
systems as only those systems having impredicative (self-
referencing) components, and claim that these systems
are non-computable as functions by Turing machines. For
relational biologists, complex systems are therefore quali-
tatively different to simple ones.

A Turing machine is a formal mathematical model of
computation, which has a notion of its internal state, an
unbounded tape and a read-write head for that tape [4].
It also has a table to determine the next internal state,
the symbol to be written to the tape and the direction in
which to move the head, all of which depend on the
current internal state and the current symbol. The con-
cept of the unbounded tape may be taken to imply limit-
less time and space for computation. A function is
(Turing-) computable if it can be evaluated by a Turing
machine which, when given an input to the function,
eventually writes the value of the function for that input
on its output tape, assuming that the function is defined
for the input. No time bound can be imposed on how
long the Turing machine will take to output the value.

An adequate exposition of the logic of relational biol-
ogy is impossible within the limits of a research paper.
The strategy adopted here is therefore to concentrate on
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Rosen’s Metabolism-Repair/Replacement system, conven-
tionally abbreviated in brackets as (M,R), a very small, but
nevertheless allegedly non-computable, network which
is the central object of study in modern relational biol-
ogy. Metabolism-Repair was Rosen’s own phrase, but
Metabolism-Replacement is used here for reasons given
by previous authors [5]. Readers interested in the con-
struction of (M,R), and in particular the reasons why it is
deemed to be non-computable, are referred to Louie’s re-
cent book [6], and for contextual material to Rosen’s pre-
vious book [7] and the recent series of reviews [5,8-11].
Only the briefest description of (M,R) is given in the fol-
lowing paragraphs, referring to Figures 1 and 2, which
illustrate (M,R) in two ways.

Relational biologists argue that the non-computability
of (M,R) by Turing machines is achieved through a circu-
lar pathway of causal relations, termed closure to efficient
causation [7]. Furthermore relational biologists seek to
demonstrate that such non-computable systems, when
represented as graphs, may be surprisingly small in terms
of their total number of nodes and edges. Relational biolo-
gists do not deny that complex systems can be simulated,
but maintain that they can never truly be computed as
functions [6,7,12]. Since even the most advanced com-
puters still use Turing architecture (i.e. they are random
access stored program machines that are almost Turing
machine equivalent), the full computational analysis of
complex biological systems is therefore postulated to be
beyond our current computing abilities.

Relational biology has therefore concentrated its ef-
forts into pure mathematics to the exclusion of compu-
tational analysis. Rosen once quipped that his mentor,
Rashevsky, had lived in a time when computers were not
easily accessible but, even if they had been, he would not
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Figure 1 The Louie-Kercel representation of (M,R) [10]. Lines
with open arrowheads are metabolic productive reactions, for
instance A produces B. Lines with filled arrowheads represent
catalysis. Conventionally these point to the substrate of a metabolic
reaction. For instance f catalyses the production of B from A, and
this is indicated by f pointing to A. Likewise, O catalyses the production
of f from B, so an open-headed arrow goes from B to f, and a filled
arrow from O to B.
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Figure 2 The Goudsmit representation of (M,R) [15]. Black lines
are metabolic productive reactions. Red dotted lines represent
catalysis — for instance f catalyses the production of B from A.
Compare with Figure 1, to which this figure is equivalent.

have used them [12]. The abstract graph structures de-
veloped by relational biologists are referred to as models,
and a modelling relation is achieved between a system in
the natural world and a model in the mathematical world
when their entailment structures, meaning the totality of
their internal causal relations, are identical. Entailment is
an important concept in relational biology. When a certain
pattern of system states necessarily results in a certain out-
come, it is said that this outcome is entailed by that cause.
Relational biologists describe logical entailments in their
mathematical work that represent entailments from the
physical world and insist, for a correct modelling relation
to be obtained, that these entailments must occur in the
model. A simulation, by contrast, represents the world in
a much more approximate way than a model, without the
requirement for congruence of internal causal relations. A
simulation may be an excellent predictive tool for the nat-
ural world, but when it goes wrong one may have no idea
why, since its entailment structure is largely a work of cre-
ative approximation. Relational biologists maintain that
much of conventional systems biology is merely about the
development of such approximate simulations [6,7,12].
Rosen also argued that a corollary of the non-
computability of complex systems is the fact that they are
also non-reducible to their component reactions, in that
a model of a complex system cannot be constructed sim-
ply by an additive assembly of smaller models of that sys-
tem’s individual reaction components [7]. By contrast,
whatever claims that systems biologists may make about
their own anti-reductionism [13], the construction of
software representations of biological networks requires
the individual representation of component reactions in
code, in effect a reduction at the software level. Relational
biologists acknowledge that there are many systems that
are reducible and algorithmically computable in this way,
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but none of these are truly complex, and therefore few
are really interesting from a biological point of view. A
further point of disagreement concerns the issue of
mechanism. Systems biologists, and molecular biologists
in general, view biological processes as machine-like. Rela-
tional biologists maintain that closure to efficient causation
(i.e. the presence of closed causative loops, as in (M,R))
produces an entailment structure, meaning a pattern of
necessary causal relationships, that is quite unlike that
of a machine. In summary, relational biologists see
complex biological systems as non-mechanistic, non-
reducible and non-computable [7,12]. Relational biolo-
gists are therefore drawn to the conclusion that much of
systems biology is at best over-ambitious, an attempt to
compute the impossible and to force biological systems
into inappropriate mechanist and reductionist strait-
jackets, and as a result of this that systems biology has no
predictive power. On the other hand, systems biologists
rarely stay the course with the two book-length exposi-
tions of relational biology [6,7], and may even believe that
anything is computable, given sufficient time and pro-
cessing power, despite the fact that computer scientists
have long known this to be trivially false [14]. The two
disciplines exist on either side of a looking-glass. In this
paper, we attempt, like systems biology versions of Alice,
to cross the looking-glass and force the tools of one
world onto the materials of the other. A certain amount
of abrasion inevitably results, both to tools and materials,
but we aim to demonstrate that a minimal degree of ad-
justment is required to achieve congruence between
the two approaches. Whether this represents genuine pro-
gress or yet another fudge perpetrated by systems biolo-
gists, is left to the judgement of the reader.

We now turn to consideration of (M,R) in more detail.
Figure 1 shows the current standard representation of
(M,R) as given by Louie & Kercel [10]. Figure 2 shows
an alternative provided by Goudsmit [8,15]. Figure 1 fol-
lows the representative conventions of relational biology,
as follows: B is produced from A, and this is represented
by an open-headed arrow from A to B. This productive
reaction is catalysed by f, and this is represented by a
filled arrow from f to A. These diagrams can be re-
expressed algebraically in category theory within which it
is possible to manipulate set theoretical expressions to
deduce that (M,R) contains impredicative set structures,
i.e. sets that are members of themselves [10]. These form
the centrepiece of the conclusion that (M,R) as a function
is not Turing-computable. Some authors have questioned
the mathematical correctness or completeness of the
various category theory manipulations performed by rela-
tional biologists [16-18]. Others have disputed these claims
[19-22]. The present paper concentrates solely on the
diagrammatic representation of (M,R) and attempts to
re-express it in process algebra.
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Rosen intended (M,R) to be interpreted very generally,
as a representation of a whole metabolic system B pro-
duced from an entire set of nutrient sources A. Meta-
bolic activity in B is catalysed by a set of enzymatic
functions f and maintained by replacement functions ©.
Here, in the spirit of the previous simulation by Prideaux
[23], we consider (M,R) as a representation of a single
metabolic pathway, with A, B, fand ® as individual en-
tities, rather than the sets of metabolites and enzymes
implied in Rosen’s use of (M,R) as a general schema. The
Goudsmit representation (Figure 2) can be thought of as
emphasizing this narrower interpretation, although it
was not necessarily intended as such by its author. This
therefore makes (M,R) more readily comprehensible to
systems biologists, in effect bringing (M,R) as close as
possible to the kind of network diagram typically dis-
played in the systems biology literature. In the Aristotelian
language used by relational biologists, A is the material
cause of B, demonstrated in Figure 1 by the open arrow-
head and fis the effective cause of B, represented by the
closed arrowhead ending on the material cause, A. The
combination of two sequential closed and open ended ar-
rows together represents entailment — the presence of f
entails (i.e. necessarily results in) the presence of B. A
similar relationship of material causation exists between B
and f, this time effected by ®, and between f and O,
effected by B, which is represented as b when acting as
an effective cause. This gives rise to a circular entailment
structure: f entails B which (as b) entails @ which entails f
and so on. Such a circular entailment structure results in
self-reference or impredicativity and therefore, it is claimed,
non-computability by a Turing machine.

Figure 2 represents (M,R) in narrower terms, A is a
substrate for the production of B under the catalytic ac-
tion of the enzyme f. B is also an enzyme (represented
as b) which catalyses the production of ® from f. Simi-
larly @ catalyses the production of f from B. Rather than
attempting to represent the whole of metabolism and re-
placement, this second version of (M,R) demonstrates
circular entailment and impredicativity in a single net-
work with four components. It can thus readily be seen
how (M,R), as a network motif [24], may repeatedly in-
trude into larger networks. If (M,R)’s non-computability
really presents an insuperable obstacle to understanding
complex biological systems, then by implication this raises
questions concerning the usefulness of computational sys-
tems biology.

Table 1 summarizes previous attempts to simulate
(M,R). As long ago as 1974, Varela et al. [25] simulated an
autopoietic system as a tessellation automaton on an IBM
360. The relevance of this early result to the computability
of (M,R) systems only became apparent once Letelier et al.
[35] demonstrated that autopoietic systems constitute a
sub-class of (M,R) systems, by which time several further
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Table 1 Summary of attempts to adapt (M,R) or its (alleged) derivatives, to run as simulations in computer systems

Type of simulation Software system

Authors

Autopoietic Tesselation automaton Varela et al. (1974) [25]
Autopoietic SWARM McMullin & Varela (1997), McMullin (2004) [26,27]
Autopoietic Assorted others Zeleny (1978), Breyer et al. (1998), lkegama et al. (2002, 2008) [28-31]

Extended (M,R) Hybrid automaton

Cho et al. (2005) [32]

Full (M,R)-consistent example MatLab/COPASI/MetaTool Piedrafita et al. (2010, 2012) [33,34]
Full (M,R)-consistent example SPICE Prideaux (2011) [23]
Compact (M,R) Bio-PEPA This paper

simulations of autopoietic systems had been developed
[26-31]. Cho et al. [32] produced an extension to Rosen’s
(M,R) system by allowing for mutation, defined simply as
alterations to the system while it is in operation, trans-
forming (M,R) from “a description in terms of mappings
into a dynamical model familiar to control engineers”.
This dynamical model was then represented as a hybrid
automaton operating with non-deterministic state transi-
tions. This automaton was then applied to a real ex-
ample, the xanthophyll cycle in plants. Other researchers
attempted to construct realistic biological network struc-
tures that capture all the required properties of (M,R).
Cardenas et al. [8] demonstrated that both a completely
abstract system that merely manipulated numbers and
a plausible biochemical network both fulfilled the the-
oretical requirements of (M,R). They then simulated the
latter using MatLab, COPASI and MetaTool [33]. A
similar philosophy was adopted by Prideaux [23] who
constructed an (M,R) system using the SPICE circuit simu-
lator software. The present study follows previous studies
(Table 1) in attempting to simulate (M,R) on a computer.
This is the first such attempt using the process algebra
Bio-PEPA [36,37].

Results

It is immediately evident that the Bio-PEPA (M,R) model
has dynamic behaviour. Figure 3 shows an ordinary dif-
ferential equation (ODE) analysis of the model with pa-
rameters chosen so that the model converges to steady
state behaviour. Since ODEs are a continuous represen-
tation of a system that actually consists of discrete com-
ponents, it is also interesting to perform a stochastic
simulation (based on Gillespie’s approach [38]) of the
model. Each stochastic simulation represents one possible
trajectory of the model (rather than average behaviour
which is what the ODE analysis provides, in general).
Figure 4 shows a single stochastic simulation and Figure 5
shows the average of ten such simulations, illustrating the
smoothing effect of averaging over multiple simulations.
At steady state, there are 1000 molecules of A, approxi-
mately 577 of p (here we chose to use p instead of @), 495
of B, 286 of £, 28 of pB, 28 of fA and 14 of Bf. The ODE

analysis can be performed for larger number of molecules
by appropriately scaling the rate constants, and an analysis
for A with an initial quantity of 10’ molecules is given in the
Additional file 1.

By contrast to Figures 3, 4 and 5, Figure 6 shows ana-
lysis of the model with one parameter changed: d2 =0.07
instead of d2=0.05 in the proceeding figures. This bistabil-
ity in (M,R) simulations has also been found by Piedrafita
et al. [34].

It can also be the case that for a given set of parameters,
different stochastic simulations can have different out-
comes (even if the ODE analysis shows a steady state).
The model in Figures 7 and 8 uses different parameters to
those illustrated in Figures 3, 4, 5 and 6. Figure 7 shows
the ODE analysis with a steady state outcome and Figure 8
shows a stochastic simulation with the same parameters
and initial starting conditions that nevertheless ‘dies’ at
time 500 after which no more reactions occur.

The explanation for the fact that the parameter regime
in Figures 7 and 8 is more likely to produce a simulation
with a finite lifespan, whereas the parameter regime shown
in Figures 3, 4, 5, 6 and 7 more consistently survives be-
yond the 1000 time unit point, appears to be related
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Figure 3 ODE analysis for the Bio-PEPA (M,R) model. (Parameters:
k1=11=m1=001,k2=12=m2=100,k3=13=m3=1,d1=0,
d2 =005, d3=002426. Initial quantities: A_init=£f init=1000,
B init=p init=fA init=pB init=Bf init=0).
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Figure 4 Single stochastic simulation of the Bio-PEPA (M,R)
model. (Parameters and initial values as for Figure 3).
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Figure 6 ODE analysis of the Bio-PEPA (M,R) model. (Parameters

900 1000

and initial values as for Figure 3 except d2 =0.07).

to the steady state values of B, f and p that are obtained
in each simulation. In the former case, these values are
closer to zero than in the latter case, and hence it is more
likely for two of these species to reach zero at the same
time which brings all reactions to a halt.

We have also modelled the STU model presented in
Piedrafita et al. [33] in Bio-PEPA. Our Bio-PEPA model
agrees with the ODE analysis presented in that paper
and also allows us to do stochastic simulation. The results
of the simulation (not shown) demonstrate that when
STU is modelled stochastically, it is a possibility that all
reactions cease close to the initial time when molecule
counts are low but that if the species can be established in
sufficient numbers then the reactions are likely to con-
tinue indefinitely.

Discussion
Rosen’s (M,R) system has been encoded in the Bio-PEPA
process algebra and this representation has been simulated
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Figure 5 Average of ten stochastic simulations of the Bio-PEPA

(M,R) model. (Parameters and initial values as for Figure 3).

in the Bio-PEPA Java Eclipse tool. In some runs, the system
achieves a steady state and in others it exhibits initial activ-
ity and then becomes quiescent, similar to results from
other simulations [33]. Due to the use of a stochastic sam-
pling algorithm, identical input parameters can occa-
sionally produce either “life” or “death”. (M,R) is therefore
shown to be a fragile system under certain parameters and
starting conditions, vulnerable to small perturbations, but
nevertheless one that can on occasions achieve a meta-
bolic equilibrium. Study of the behaviour of the model
under an exhaustive range of input parameters, has, how-
ever, not been performed. It is possible that the system is
more fragile in certain input ranges than others, but that
remains unknown.

This paper represents the latest in a handful of at-
tempts to produce realizations of (M,R) in computers
(Table 1). It differs from previous versions in that it uses
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Figure 7 ODE analysis of the Bio-PEPA (M,R) model. (Parameters:
kl=11=ml=1k2=12=m2=100, k3=m3=10,13=20,d1 =0,
d2 =60, d3 = 19.2666666. Initial quantities: A_init=f init=1000,
B init=p init=fA init=pB init=Bf init=0).
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Figure 8 Single stochastic simulation of the Bio-PEPA (M,R)
model. (Parameters and initial values as for Figure 7).

as its starting point the diagrammatic representation of
(M,R) (Figure 1), rather than any of the mathematical
formulations. Our simulation represents a hypothetical
universe where biological networks are structured pre-
cisely as described by (M,R). What therefore are its impli-
cations for Rosen’s thesis that (M,R) network structures
are non-computable? Given the demonstrated activity in
Figures 3, 4, 5, 6, 7 and 8, one might jump to the
conclusion that Rosen’s theory has been falsified, but
for several subtle reasons it is not possible to state this
without reservations.

Previous attempts to re-express (M,R) in mathematical
terms that might be more conducive to construction of
a Turing computable model have often met with the re-
sponse that they misrepresent in some way the structure
of (M,R). For instance, Goertzel’s transformation of
(M,R) in category theory into a representation in division
algebra [39] was dismissed by Louie for the reason that it
altered the entailment structure [21]. Similarly, the re-
expression of (M,R) in terms of A\-calculus by Mossio and
colleagues [40] omitted a crucial component [8]. The lat-
ter is of particular significance since anything that can be
represented in terms of A-calculus can be encoded in the
computer language LISP, and is therefore by implication
Turing-computable. This insistence that no alternative
mathematical expression of (M,R) has correctly captured
the entailment structures has also been extended to prac-
tical attempts to simulate (M,R) on computers. For in-
stance, Louie takes this stance [22] relative to the work
of Prideaux [23,41], insisting it is merely a simulation of
(M,R) and not a successful computation of the model.
This issue of simulation versus modelling has also been a
subject of much discussion in the field of autopoietic
systems. A case has been made that autopoietic sys-
tems are subsets of (M,R) [35]. Within the autopoietic field
the issue of Turing computability has been much debated
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[25-31,42]. Those persuaded of the computability of autop-
oietic systems have therefore deduced that (M,R) must also
be Turing-computable [43]. Nevertheless, it has also been
maintained that autopoietic systems as constructed so
far in software are not congruent with (M,R) entail-
ment structures [8,35]. The relevance of this debate to
the computability or otherwise of (M,R) depends entirely
on the validity of the parallel drawn between (M,R) and
autopoietic systems, for which there is still only a single
derivation [35].

The model presented here is also open to the same po-
tential criticism: that we have distorted the entailment
structure of (M,R) or have not completely achieved the
requirement for all entailments to be internal to the sys-
tem. Insofar as our Bio-PEPA realization of (M,R) resem-
bles Prideaux’s SPICE realization [23], it is vulnerable to
Louie’s same criticism of the latter [22], if that criticism
is accepted. Nevertheless, we believe that all the neces-
sary productive, or perhaps one might say the synthetic,
entailments represented by arrows in Figures 1 and 2 are
captured in our Bio-PEPA representation. Rosen did not
specify within the context of (M,R) where the raw material
for A was to be obtained or how to prevent its dissipation
or that of any of the other components. The questions
of how to define ancillary system properties, such as the
boundaries of the reaction compartment, arise only when
one insists on forcing (M,R) into a biologically plausible
context.

A related issue concerns the way that the entailment
structure of (M,R) is translated into software processes.
Bio-PEPA is used to simulate (M,R) in both stochastic
and deterministic ways. In the stochastic implementa-
tion, the entailment structure is “sampled”, meaning that
one randomly chosen entailment will update the whole
system state based on the rules of that entailment and
the existing system conditions. In the deterministic ver-
sion, there is no such “sampling”, but we set an arbitrary
starting condition which determines the subsequent devel-
opment of the system. The deterministic version is obvi-
ously the one closest to Rosen’s notion of entailment, but
given that its behaviour is indistinguishable from the aver-
age of hundreds of runs of the stochastic version, we do
not believe that this issue is important.

The second potential criticism is that the unfolding of
the system through time in both stochastic and determin-
istic versions of the simulation, is represented by a se-
quence of states. Rosen was quite explicit that relational
systems such as (M,R) do not have states, since states are
by Rosen’s definition a feature of systems where the entail-
ment comes from outside the system, i.e. systems existing
in a changing environment [7]. All computational simula-
tions of (M,R) to date are temporal and pass through a se-
quence of states. At this point, systems biologists may
insist that all models must of necessity have states since
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organisms (like computers) exist in time. However, many
of our standard representations of biological networks are
state-free, without it being much commented on. For
example the diagrams of metabolic cycles found in bio-
chemistry textbooks have no explicit time component.
State-free does not therefore necessarily imply atem-
porality, merely a condition of representation. We consider
this issue to be unresolved.

We now turn to issues related to computability, and
whether (M,R) is noncomputable. The first issue is that
of definition of computability [4]. The theory of computa-
tion in general, and specifically the definition of comput-
ability, applies to partial functions, i.e. those that need
only be defined on a proper subset of their input set. The
computability of a function does not require termination
for an input value on which that function is not defined,
so it is not necessary for a Turing machine computing that
function to terminate for every input. This issue of partial
versus total functions (meaning those defined over all
inputs) is raised in the appendix of Mossio et al. [40]
Cardenas et al. [8] in their rebuttal of that paper, state
that Rosen’s definition of computability requires termin-
ation after a finite number of steps, presumably regard-
less of the input. However, as suggested by Mossio et al.
[40] in their appendix, Rosen’s notion of computability is
non-standard since if the function is not defined for an
input, the standard definition of computability does not
require termination. If Rosen’s definition of computability
does not match current mathematical understanding of
computation, then it severely weakens his argument about
the non-computability of life.

The second item we discuss is impredicativity. One of
the foundations of relational biology’s claim that (M,R) is
not computable is the existence of an impredicative set
within its entailment structure when developed in category
theory [6,7]. However, impredicativity in and of itself is in-
sufficient to ensure non-computability. For example, recent
work in theoretical computer science has produced tech-
niques for rendering impredicative sets (non-well-founded
sets, or sets defined co-inductively) as predicative ones
[40,44]. This opens the possibility of transforming (AM,R) in
such a way as to eliminate its impredicative sets and show
its Turing-computability. Some initial work has been done
on applying hypersets, a method for representing impredi-
cative and predicative sets under a single graphical nota-
tion, to (M,R) [44]. However, this is not fully worked out
with respect to (M,R) as yet.

Mossio et al. [40] expressed the basic (M,R) system in
A-calculus, using recursion to capture the impredicativ-
ity. They then used a fixed point operator to identify
functions for f; B and @. They emphasise that “...Rosen’s
definitional infinite regress is perfectly handled by recur-
sion, in particular as formalized in the A-calculus” ([40]
page 494). Since the expression of a function in the
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A-calculus and computability of the function by a Turing
machine are equivalent, this means that Mossio et al.
[40] purport to have shown that a general form of the
(M,R) system can be expressed as a computable function.
However, this has been questioned by Cérdenas et al. [8]
on the grounds that Mossio et al. [40] do not accurately
represent (M,R), specifically that they fail to capture
the difference between B as product and b as catalyst
(see Figures 1 and 2). This refers to the original for-
mulation of (M,R) by Rosen as a depiction of a whole
living system, where B represents the totality of the
products of metabolism from nutrient sources represented
by A. Only a subset of those products would have a cata-
lytic function, and they are represented as b. Since the
present adaptation of (M,R) represents a single metabolic
pathway, B and b are the same entity. It should be noted
that this is one respect in which our simulation differs
from that of Prideaux [23], who treated B and b as separ-
ate entities and incorporated a conversion parameter be-
tween them.

This brings us to the search for such predicted real
(M,R) systems. Some of the work on simulation of (M,R)
has involved attempts to define a plausible biological
network that satisfies the constraints applied by the
model [8,20,33]. However, it is also possible to ap-
proach this from the opposite direction. Given that a
large amount of data is now available from the systems
biology world on the structure of real biological net-
works, it may be possible to search known networks for
topological structures similar to (M,R). The simplicity of
(M,R) interpreted in its micro-form, with four entities
and three reactions, suggests that it would be extremely
common. Defining (M,R) as a network motif and search-
ing for it in databases of networks would appear to
be straightforward [24]. However, there is one major
obstacle to this, namely that (M,R) mixes two kinds of
reactions, synthetic and regulatory, that are frequently
represented separately. Lerman et al. [45] call these
M-models and E-models respectively. For instance, clas-
sical metabolic diagrams (M-models) frequently feature
reaction intermediates and omit information on the cata-
lysts of those reactions. Likewise, genetic regulatory net-
work diagrams (E-models) tend to represent which genes
activate or interact with others without necessarily speci-
tying any of the products of those reactions. The search
for real examples of (M,R) would be best focussed on
models combining both metabolic and expression data.
Lerman et al. have produced such a model, which they
call an M-E model, for Thermotoga maritima, available
in systems biology markup language (SBML) [45]. The
resources to answer this question are therefore begin-
ning to become available, and this would seem to be the
obvious next step in the integration of relational and sys-
tems biology.
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Conclusions

(M,R) is presented here in a version using the process
algebra Bio-PEPA. This is the latest in a series of at-
tempts to realise (M,R) in software form. Under some
input parameter configurations, the system can achieve
a stable active state, whereas with others it dies. As in
real living systems, stochastic factors influence the out-
come. This “life-like” property suggests to us that com-
putational relational biology is possible, provided it is
recognised that its computational component will consist
of open-ended processes.

Methods

Bio-PEPA is a quantitative process algebra, specifically
designed for modelling the interaction of proteins and
other molecules [36]. It was developed from the stochastic
process algebra PEPA which was introduced for modelling
the behaviour and performance of artificial systems such
as computer networks [37]. A molecular species S is
expressed in Bio-PEPA as follows:

S = (al,kl) opl S + ... + (an,kn) opn S
Where al,...,an are reaction names, k1,...,kn are stoi-
chiometric coefficients and the operators opl,...,opn are

each one of the following:

e >>indicates the role of S is as a product,

e << indicates the role of S is as a reactant,

(+) indicates the role of S is as an activator, or catalyst,
e (—)indicates the role of S is as an inhibitor.

Species are then combined to form a model

S1[x1] <*> <*> S1[xp]

where there are p species, S1 through to Sp and their
associated molecule counts or concentrations, x1 through
to xp.

To make this more concrete, consider the reactions
in the (M,R) model. It consists of three enzymatic reac-
tions of the form §_£ 3 p where S is the substrate,
E is the enzyme and P is the product. Considering one
of them B—2— f (here we chose to use p instead
of @) this can be expressed as the three bimolecular
reactions

e B+p—pBatrate[;
e pB—p+Batrate l,
e pB—p+fatratel3

which show how the substrate binds to the enzyme after
which the substrate and enzyme unbind or alternatively
the product is created and the enzyme is freed. These
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three species can be expressed in Bio-PEPA using the
following text.

B = (r 1l1,1) << B + (r_12,1) >> B
p= (r 11,1) << p + (r 12,1) >> p
B + (r:l3,l) >> p
f = (r 13,1) > f
pB = (r_11,1) >> pB + (r_12,1) << pB
+ (r 13,1) << pB

Considering reaction r 13, this shows that both p and
f are products of the reaction and pB is the only reactant.
In each case the stoichiometric coefficient is one, meaning
that only one molecule of each species is involved in the
reaction. The rate at which this reaction takes places is
specified by

kineticLawOf r 11: 11 * p * B
using mass action. Furthermore the rates of the other
reactions can be defined by

kineticLawOf r 12: 12 * pB

kineticLawOf r 13: 13 * pB
again using mass action, where 11, 12 and 13 are rate
constants. Just considering these four species, the overall
model in its initial state could then have the form

B[B init]

<*> pl[p init] <*> £[0]

<*> pB[O]

where there are B init molecules of B and p init
molecules of p, and no molecules of either £ or pB.

A similar approach is used to express f' SELEEN p in
Bio-PEPA, and the rate constants used are ml, m2 and
m3. The reaction 4 —/ y B requires a slight modifica-
tion since the amount of A remains constant as it is pro-
vided by the environment. The rate constants for this
reaction are k1, k2 and k3. Additionally, each of B, £ and p
have a degradation term which is also mass action based, so
the rate equation consists of a rate constant multiplied
by the current quantity of the species. The rate constants
are d1, d2 and d3 respectively. The full Bio-PEPA model is
contained in the Additional file 1 and the Bio-PEPA Eclipse
Plug-in can be downloaded from http://biopepa.org.

The style of definition that Bio-PEPA uses is reagent-
centric which means that the reaction capabilities of each
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species are defined, as opposed to the reaction-centric no-
tation A — B. It is easy to switch between these two nota-
tions and Additional file 1: Figure S2 provides output from
the Bio-PEPA Eclipse Plug-in tool illustrating the reaction-
centric description of the Bio-PEPA model. One of the ad-
vantages of Bio-PEPA is that a model can be defined once
and then different types of analysis can be performed.

Additional file

Additional file 1: Figure S1. ODE analysis of Bio-PEPA (MR) model. (Initial
values of A and f: 10”. Parameters from Figure 3 appropriately scaled).
Figure S2. Screenshot from the Bio-PEPA Eclipse Plug-in showing the
reaction-centric view of the Bio-PEPA (M,R) model.
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