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Abstract

Background: Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and
ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches.
The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques,
including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in
some cases, lack a quantitative treatment of network fluxes.

Results: We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of
species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms,
our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and
consumption during the simulation. We use these structures to quantify the causal interdependence and relative
importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct
reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time
series. We demonstrate our approach on an extended example based on a published ODE model of the same
network, that is, Rho GTP-binding proteins, and on other models from biology and ecology.

Conclusions: We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers
the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at
steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions.
Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior

of this network.
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Background
Chemical reaction networks are broadly used as a repre-
sentation scheme for modeling and simulating a variety
of systems from biochemical interactions at the molec-
ular level to higher-level mechanisms. In ecology, some
individual-based models enjoy compact representations
in the form of chemical reaction networks. Examples of
these include Lotka-Volterra predator-prey systems [1,2]?
and plant-pollinator systems [3].

Simulations on chemical reaction networks can be per-
formed by resorting to various techniques and tools that
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implement deterministic or stochastic approaches. Deter-
ministic or stochastic approaches thus provide the two
main ways of modeling systems governed by mass-action
kinetics, and offer different advantages. The more tra-
ditional deterministic method uses ordinary differential
equations to approximate the changes in population sizes.
While this approach benefits from a greater availability
of analysis techniques, it ignores the fundamental dis-
crete and stochastic nature of the reactions, and this can
be important, especially for smaller population sizes that
are frequently seen in biological systems. In this respect,
stochastic simulations provide advantages, for example, in
capturing the intrinsic noise in the biochemical systems
[4], or species extinctions in the ecosystem models [5].
With respect to the stochastic approach, chemical reac-
tion networks are commonly mapped to a language with
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a stochastic simulation capability. For example, various
implementations of stochastic Petri nets (see, e.g., [6]),
which are isomorphic to chemical reaction networks,
provide a straight-forward means for this. However, the
analysis techniques on stochastic simulations of reaction
networks are still underdeveloped in comparison to the
rich arsenal of differential equation analysis techniques
that have their roots in Newton’s physics. In particular,
flux analysis on chemical reaction networks with differen-
tial equation representations are well established. Within
the deterministic setting, there is a growing number of
studies on flux analysis that include issues related to sim-
plification of models [7], while a stochastic treatment of
flux is still lacking.

In this paper, we study a class of Markov chains that
typically emerge in the stochastic simulations of chemi-
cal reaction networks. In these dynamical networks, the
states are populations of agents of various species, and
the state transitions are updates to subpopulations of the
state. For example, in a model of classical chemical kinet-
ics, there are finitely many chemical species, and the states
are finite multisets of species. Transitions are described by
a finite set of reactions of the form

m1R1+---+m1Rl—p>n1P1+--~+ﬂrPr (1)

where the reactants are Rj,...,R;, the products are
Pi,...,P,, each m; is the number of instances of reactant
R; consumed by the reaction, and each #; is the number
of instances of product P; produced by the reaction. For a
particular choice of m; reactants of species Ry, my reac-
tants of type Ry, and so on, the probability that they react
according to (1) in an infinitesimal time interval dt is pdt.
The p is sometimes called the stochastic rate constant.

Mass-action kinetics is based on the assumption that
the likelihood of reaction (1) occurring during a small
time interval dt is pdt multiplied by k, the number of
ways of choosing the reactants [8,9]. The term pk is often
called the total reaction rate or, in the chemical physics
literature, the propensity.

We present a method for flux analysis in stochastic sim-
ulations with reaction networks, where flux is the flow of
resources between reactions of the network. Each simula-
tion is a trajectory of a Markov chain, which is a sequence
of computations of the underlying transition system. The
trajectory imposes a total order on the transitions of the
simulation trajectory that is emphasized by the unique
time stamps of the individual transition instances. In this
respect, a simulation on a model can be seen as reduction
of a complex structure, that is, the model, into a simpler
structure, that is, the simulation trajectory. However, dur-
ing this reduction some of the information on the model
is lost, and some is made implicit.

The idea here is to recover this implicit information:
when these transitions are inspected from the point of
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view of their dependencies on one another, it is possible to
relax the total order of the transitions into a partial order
structure. We can then use this partial order, which we
call simulation trace, as a representation of causal depen-
dencies in the simulation, and process the simulation trace
to observe the flux in the network with respect to the
flow of the resources during simulation from a reaction to
another.

Based on these ideas, our method constructs several
data structures from the log of the simulations with
models that are designed to disclose otherwise implicit
resource flow information. These structures hence reveal
a variety of statistics about resource creation and con-
sumption during the simulation. We use these struc-
tures to quantify the causal interdependence and relative
importance of the reaction instances. This allows us to
compare simulations at arbitrary time intervals, and use
this information, for example, to construct reduced mod-
els that have the same behavior with respect to the flow of
resources.

We validate our approach with an extended exam-
ple that is based on a published ordinary differential
equations model of the Rho GTP-binding proteins [10],
and its stochastic version with its time series analysis given
in [11]. Using a deterministic analysis, the model in [10]
provides an explanation of the experimentally observed
rapid cycling of the Rho GTP-binding proteins between
their GDP-bound off states and GTP-bound on states
while displaying high activity with respect to the relative
concentration of the active GTP-bound Rho proteins. Our
stochastic flux analysis confirms the observations of the
deterministic analysis of [10] and extends the analysis of
[11] with network fluxes. Moreover, it also provides obser-
vations that complement those provided by [10]. This is
because our stochastic flux analysis makes it possible to
quantify the flow of specific species between specific reac-
tions at arbitrary time intervals. As this capability delivers
a quantification of the specific resource distributions after
being produced by reactions, it exposes the contribu-
tion of specific resource flows to system dynamics. For
instance, the effect of reverse reactions that can produce
counteracting reaction fluxes in a context of multiple reac-
tions can be better observed. This makes it possible to
single out the cases with respect to different initial condi-
tions, in which the fluxes shift the simulation resources,
and thereby tune the behavior of the network.

In the following, we first introduce our notion of flux
on chemical reaction networks, and illustrate the defini-
tions on a simple example network. We then illustrate
these concepts on larger networks, which clearly show the
distinguishing features of our approach at work. Besides
the Rho GTP-binding proteins network, we apply our
approach on an oscillator model [12], the Oyster Reef
ecosystem model [13,14], and a phosphorelay model [15].
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The contribution of our method to the analysis of chem-
ical reaction networks and the example models below
that illustrate these concepts can thus be summarized as
follows: (i.) The notion of flux defined here applies to dis-
crete, stochastic models, and differs from the conventional
definition of flux, which is applied instead to continu-
ous, deterministic models, e.g., Rho GTP-binding proteins
model. This provides an advantage also in modeling bio-
logical systems with smaller population sizes, for which
discrete, stochastic models are often more realistic than
continuous, deterministic models, e.g., the Oyster Reef
model. (ii.) The stochastic flux applies not only to steady
state, but to arbitrary time intervals of the systems, which
are not required to be in a steady state, e.g., the oscillator
model and the phosphorelay model. (iii.) The stochastic
flux shows the amount of each type of resource flowing
from any specific reaction to any other reaction, thereby
providing an explicit account of causality that cannot be
revealed by counting reaction instances, e.g., the Oyster
Reef model. In contrast, the conventional version of flux
shows only the total amount of all resources generated by
each reaction, however it does not distinguish the divi-
sion of the resources among the reactions that use the
resources.

As we show below, the algorithms that implement our
stochastic flux analysis are linear in time and space, that
is, the time and space requirements of the algorithms are
linear functions of the simulation time. The algorithms
can thus be included in any discrete event simulator of
chemical reaction networks. For the implementation of
the models, we used the SPiM language and simulation
engine [11,16-18], which implements the stochastic 7 cal-
culus. For the flux analysis, we used our tool, written in
OCaml, that implements the definitions below.

Results and discussion

Our method for stochastic flux analysis of chemical reac-
tion networks can be applied to any discrete or continuous
time discrete event simulation that implements reaction
networks as Markov chains. In the following, we illustrate
our method on example networks of models from biology
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and ecology. For the formal definitions we refer to the
Methods section, where the algorithm is described in
detail. Below, we first introduce our method on a sim-
ple example simulation trajectory with a continuous time
Markov chain semantics. As in our case, Gillespie algo-
rithm [19] is commonly used to generate such trajectories
of chemical reaction kinetics that implement the law of
mass action.

The algorithm is based on marking individuals that are
transformed by the reactions, and using the markings to
track the causal dependencies between reaction instances
during the simulations. We process this causality infor-
mation to obtain a quantification of the flow of resources
between reactions, and thereby providing the network
fluxes at chosen time intervals. This is easily implemented
by assigning a unique identifier to each network species in
the initial state and to each reaction product of every reac-
tion instance. In our case, these identifiers are integers. A
reaction instance is a random event whose probability is
determined by the current state of the network. A reac-
tion can be applied at a state to obtain a reaction instance
if its reactants are available at that state and the reac-
tion is picked by the simulation algorithm from all the
applicable reactions. Whenever a reaction is applied at a
state the simulation algorithm updates the resulting state
with the reaction products and their unique identifiers
in a structure that we call simulation trajectory. Because
this information can be recorded in a bounded amount
of time during simulation in real time, the method does
not introduce any additional complexity to the simulation
algorithm.

Example 1. Consider the chemical reaction network
below, where each reaction is named with an integer.

1:A— P+ P,
3:P— C,

2:P— B,
4:B+C— D

The initial state is {A(1)}, where 1 is the unique identifier of
the species A. A possible 4-step simulation trajectory is the
sequence of quadruples on the left-hand-side of Figure 1,
where the first parameter of the quadruple is the name

(@, {AM)}, {P(2), P(3)}, 0.46);
3, {PB)}, {C(4)}, 0.73); |
(2, {P(2)}, {B(5)}, 1.13);
(4, {B(5),C(4)}, {D(6)}, 1.86) )

Sim. Trajectory

Figure 1 The transformation from a simulation trajectory generated by the network in Example 1 to its simulation trace, and the
transformation from the simulation trace to the simulation configuration. We first apply Definition 8 and then Definition 10.
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of the reaction, and the second and third parameters are
the sets of the reactants and the products of the reaction
instance. The forth parameter is the reaction instance time
in the simulation.

By using the unique identifiers of the species in a reac-
tion trajectory, which implicitly indicate the production-
consumption relationship between reaction instances of
the simulation, we construct a directed graph structure.
This graph structure, which we call the simulation trace,
makes the causality relationship explicit. In this graph,
each node is a species, parameterized with a triple that
contains its identifier, the name of the reaction that cre-
ated it, and the time it is created in the simulation. As an
example for a simulation trace, consider the structure in
Figure 1, which is obtained from the simulation trajectory
of Example 1.

By further processing this graph, we obtain an edge-
labeled directed multi-graph that reveals the indepen-
dence and causality information of the transitions with
respect to the flow of specific resources between reac-
tions. The information displayed by this graph is different
from the one given by the simulation trace, where the
evolution of the species with respect to the reactions are
shown. In this graph, which we call simulation configu-
ration, each node is a pair that contains the reaction that
is applied and its time in the simulation. Each edge is
labeled with the species that is produced by the reaction
at the tail of that edge and consumed by the reaction at its
head. As an example for this with respect to the simula-
tion trajectory of Example 1, consider the structure on the
right-hand-side of Figure 1.

Below, we work with simulation configurations, and
process them to obtain flux configurations as formally
defined in the Methods section. In the definitions in the
Methods section, in order to describe the edges of an
edge-labeled graph algebraically, we use (u, v, /) to denote
the edge from vertex u to vertex v whose label is /. Thus
in a simulation configuration, the edges are of the form
((,7),(f, '), s ), where reaction j occurs at time 7, and it
produces an instance of species s, which is consumed by
reaction j' at time t’. Since a reaction may produce sev-
eral instances of species, the simulation configuration is in
general a multi-graph.

Flux configurations are obtained by compressing sim-
ulation configurations in order to quantify the flow of
resources between the reactions within given time inter-
vals of the simulation. A flux configuration is a graph,
where the vertices are the reactions of the network. The
edges connect some of these vertices, and each edge has
two labels. The first label is a network species, and the
second label is a positive integer. A label with a species
s and number k from a reaction j to another reaction ;
means that there are k instances of the reaction j that
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deliver the species s to reaction j'. As described in Defini-
tion 12, we obtain a flux configuration first by merging the
vertices of the simulation configuration such that all the
vertices with a certain reaction within the given time inter-
val are mapped to a single vertice by filtering out their time
stamps. For each label that denotes a network species,
we then count in the simulation configuration the num-
ber of edges from each vertice (which corresponds to a
reaction of the network) to other vertices within the given
time interval. The number of such edges are then used to
decorate the edge for that species between the respective
reactions.

Example 2. Consider the chemical reaction network
given in Example 1. A simulation trace for the initial state
{A(1),A(2),A(3),A(4)} is depicted on the left-hand-side of
Figure 2. The figure demonstrates the simulation configu-
ration and the flux configuration obtained from this trace.
In the simulation trace, the vertices are decorated with
triples that are respectively the integer identifier of the ver-
tice, identifier of the reaction that created the vertice, and
the time of creation. The simulation trace is first mapped to
its simulation configuration, where each vertice is a reac-
tion instance and it is denoted with a pair: the first item
in the pair is the identifier of the reaction and the second
item is the time of creation. The simulation configuration
is then mapped to the flux configuration, where the vertices
are reactions, and the edges are the pairs of species names
and their counts.

A flux configuration provides the information on the
intensity of the flow of resources between reactions of the
chemical reaction network at given time intervals. This
is different from the number of times each reaction fires,
because a reaction can receive its resources from different
reactions. This also contrasts with the view of flux based
on flows between species as they are typically consid-
ered in the differential equations setting, which we discuss
below.

The time and space complexity of generating the above
data structures is linear in the number of simulation steps.
This follows from the facts that there is a fixed number
of reactions, and each reaction involves a fixed number of
species. Consequently, the simulation trace (Definition 8)
is a graph of bounded degree, and the number of edges is
linear in the number of nodes. Adding each node and its
incident edges requires only a bounded number of oper-
ations. The simulation configuration (Definition 10) can
be constructed in linear time since the projection oper-
ators that we use need only access each node and edge
of the simulation trace once. It is also evident that the
flux graphs can be generated in linear time and space. In
fact, the simulation trace can be generated in real time
since it adds only bounded time to each simulation step.
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Figure 2 The simulation trace of a simulation with the network in Example 1. The initial state is {A(1), A(2),A(3),A(4)}. In the simulation trace,
each vertex is additionally decorated with its species for illustration purposes. Here, we first apply Definition 10 to obtain the simulation
configuration and then Definition 12 to obtain the flux configuration for this trace.
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Because the steps of this algorithm does not modify the
generation of the individual events, it can be included
in any discrete events simulator of chemical reaction
networks.

A case study: Rho GTP-binding proteins

Rho GTP-binding proteins [10,11,20] serve as molecular
switches [21]. Their role can be perceived as regulating
the transmission of an incoming signal further to effec-
tors in a molecular module by cycling between inactive
and active states, depending on being GDP or GTP
bound, respectively. GDP/GTP cycling is regulated by
guanine nucleotide exchange factors (GEFs) that pro-
mote the GDP dissociation and GTP binding, whereas

GTPase-activating proteins (GAPs) have the opposite
effect and stimulate the hydrolysis of Rho-GTP into
Rho-GDP. In the active GTP-bound state, Rho proteins
interact with and activate downstream effectors.

In [10], Goryachev and Pokhilko give an ordinary dif-
ferential equations (ODE) model of the Rho GTP-binding
proteins. The structure of the chemical reaction network
of this ODE model is depicted on the left-hand-side of
Figure 3: the three forms of the Rho protein (GDP-bound
RD, GTP-bound RT, and nucleotide free R) in the middle
layer form complexes with GEF (E) in the bottom layer
and with GAP (A) in the top layer. All the reactions except
GTP hydrolysis (RT — RD, RTA — RDA, RTE — RDE) are
reversible.

A
| e
[fﬁl::’/'/ | |=
RDE,’—<;];7

RD+A .e-RDA=‘RDA — RD+ A — RTA— RDA

Figure 3 The structure of the Rho GTP-binding proteins network given in [10] and the dominant fluxes obtained by stochastic flux
analysis on this network. Left: The arrows denote the reactions of the network. R denotes the Rho GTP-binding protein, whereas RD and RT
denote its GDP and GTP bound forms. A and E denote GAP and GEF. Thus, RDE, for example, denotes the protein complex formed by RD and E. The
thick arrows denote the dominant fluxes obtained by the analysis in [10]. Right: The dominant fluxes obtained by stochastic flux analysis include
the fluxes marked with x and excludes the ones marked with # on the left. This analysis indicates also the fluxes due to the enzymes A and E.

RD+E _.Rue\

A+RT — RDA
RDE RT

RDE — RE?RE—-RTE—H-RTE — RT+E

||
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With their model Goryachev and Pokhilko provide an
explanation of the experimentally observed rapid cycling
of the Rho GTP-binding proteins between their GDP-
bound off states and GTP-bound on states while display-
ing high activity, measured by the relative concentration
of the GTP-bound Rho proteins (RT in Figure 3). In [10],
the fluxes are defined for individual reactions with respect
to species concentrations and reaction rates such that the
reaction flux Jj, that connects species [ and m is defined
with respect to the species concentrations and the reac-
tion rate constants. For example, flux /rp rpe connecting
RD and RDE is Jrp.roe = krp.roe.RD.E — krpe rp.RDE where
krp.roE and krpEe.grp are the corresponding reaction rates.

Goryachev and Pokhilko argue that at large Eg and Ag
concentrations, only a subset of the reaction fluxes of the
network is significant, while the remaining reaction fluxes
have negligible values. To test this hypothesis, they intro-
duce a reduced network and provide a comparison with
the original network with respect to the flux vectors that
substantiate the claim. Goryachev and Pokhilko argue that
in the efficient regime the operation of the GEF-GAP con-
trol module is given with the cycling loop formed by the
union of two linear reaction flux pathways. Given that =
denotes the reaction flux between the species, these two
pathways are given as the GEF arm RD = RDE = RE =
RTE = RT = RD and the GAP arm RT = RTA = RDA =
RD. These pathways are indicated by solid arrows on the
left-hand-side of Figure 3. The right-hand-side of Figure 3
puts in comparison the fluxes obtained by stochastic flux
analysis as discussed below.

In [11], Cardelli et al give a stochastic 7 calculus model
of the Rho GTP-binding proteins, which is based on the
ordinary differential equations model of [10]. The model
in [11], displays an excellent agreement with the ODE
model of [10] with respect to the RT activity on sim-
ulations with varying network structures and different
regimes of initial concentrations. In the following, we con-
sider this model for flux analysis. The conversion from the
continuous to the stochastic model is explained in [11],
where a stochastic model species encodes 1 uM of net-
work molecules. With respect to this conversion, in our
network we use the same rate values that are used in [10]
and [11], listed in Figure 4.
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The time series analysis indicates that this network is
insensitive to the initial R levels in terms of activity, given
by the RT/Ro ratio at steady state. The network has an
activity maximum with the initial concentrations R =
1.0 mM, E = 0.776 mM and A = 0.66 uM [10,11]. In
order to analyze the flux of the network at the high activity
regime, we ran simulations with Ry = 1000, Eg = 776 and
Ao = 1, where we took the closest positive integer num-
ber value for Ag so that factoring of the other simulation
parameters would not be required. This results in a near-
maximum activity of approx. 0.8 at the steady state with
fluctuations due to stochastic simulation. A representa-
tive simulation plot with these parameters is in Figure 5
(Left).

We analyzed the steady state behavior of the network
with respect to the simulations at this regime. For this
purpose, we computed the flux for the time interval
20 < t < 25, that is, F[2,2.5]. This provides a
sufficient number of events with respect to the conver-
gence time of the simulation. As with time-series anal-
ysis, flux analysis in stochastic simulations needs to be
repeated on multiple simulations in order to increase
the confidence levels. While some systems require a
greater number of simulations, others converge quickly
to their steady state as it is the case for the Rho GTP-
binding proteins network here. Nevertheless, due to the
observations being made on stochastic simulations, we
have repeated our analysis on a set of 25 simulations
to verify our results, where we repeated the observa-
tions discussed below. A representative flux configuration
with this network is depicted on the left-hand-side of
Figure 6.

In order to compare our flux analysis with the differen-
tial equation analysis of [10], we further process the flux
configurations to remove the effect of the reverse reac-
tions as this is the case in [10]. These reactions, which
we call cyclic reverse reactions, are those consisting of a
reaction and its reverse, where the products of one are
consumed by the other in cycles without having a net flux
product for the other reactions in their context. Because
the fluxes in [10] are computed by factoring the counter
effect of cyclic reverse reactions on reaction fluxes, below
we work with net-flux configurations, formally defined in

1: A+RESRA 7: ROBXP Rp 13: RDE 2% RE 19: RTA 2% A L RT

2: A+RD % RDA 8: RO RT 14: RESYE LR 20 RTA 2% rDA
1.0 500 0.033x D 76.8

3: A+ RT — RTA 9: RA— A+R 15: RE "—  RDE 21: RTE —S E+RT

4 E+R28RE 10: RD 2B R 16: Re 25T RTE 22 RTE 2% RDE
0.0054 500 0.02 0.02

5: E+RD"XB*RDE  17: RDA 22 A +RD 17: RT 28 R 23: RTE 2% RE

6: E+RT " 2P RTE  12: RDEX ¥ E+RD 18: RT 2% RD D= 50,T= 500

Figure 4 The GTPase chemical reaction network and their rates as in [10] and [11].
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Figure 5 Example simulation plots of the network in Figure 3. The initial numbers of the species are Ry = 1000 and Eg = 776. From left to right,
the Ag value is setas 1, 10 and 100. An increase in Ag in the simulations results in a decrease in the RT activity while reducing the recovery time.

Definition 14 in the Methods section. Net-flux configu-
rations counteract the effect of the cyclic reverse reac-
tions in the flux configurations by taking their difference
and mapping them into weighted dags. For the case of
reverse reactions that share multiple reactants and prod-
ucts, we consider the maximum flux that is shared by
these reactions. The net-flux configuration obtained from
a flux-configuration is depicted on the right-hand-side of
Figure 6.

In Definition 14, in order to monitor the net influence
of each reaction to others, we first obtain a dag X from
JF: whenever there are multiple edges from a reaction to
another in F, we include in X" the edge with the greatest
weight by discarding others. We then obtain the dag N
from X by taking the difference of the symmetric edges:
whenever there is an edge from a reaction j to j/ with
weight m and an edge from ;' to j with weight # such
that m is greater than n, we exclude these two edges, and
include instead an edge from reaction j to j/ with weight
m— .

A net-flux configuration provides a summary of the net
influence of reactions on each other by counteracting the
effect of reverse reactions in the flux configuration and
taking the maximum of fluxes, when there are multiple
fluxes between two reactions. Although this reduction
can reveal further aspects of a network, there are cases
where the information removed can denote an impor-
tant component of the network, as we discuss in the next
section.

As a second step for the comparison of our stochastic
flux analysis with the deterministic analysis in [10], we
reduce the net-flux configurations to dominant fluxes that
account for most of the dynamical behavior. For this pur-
pose, we determine a cut-off value that is given by the
average of the fluxes as defined below.

Definition 3 (average flux). Given a flux configuration
Flt,t'] with edges (j1,]1,51,11), - - ., (e Jy» Ses 1g), the aver-

age flux is (Zi:l nk> /L. For a net-flux configuration
Nt, '], the average net-flux is defined analogously.

RTE 1 t;

Table 1 with respect to the reactions listed in Figure 4.

Figure 6 A representative graphical representations of the structures F[2, 2.5] and N/[2, 2.5]. The graphs are obtained from Sim. 3
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Definition 4 (cut-off). Given a flux configuration
Flt,t'] and its average flux o, for an x € RY, the flux
after cut-off at x, denoted by F|t,t'] (x), is the restriction
of F[t,t'] to those edges {j,j , s, n) satisfying n > xo. For a
net-flux configuration N'[t, t'], we define the net-flux after
cut-off at x, that is N'[t, t'] (x), analogously.

We computed the net flux, N'[2, 2.5], for the simulations
with this network, and applied various cut-off values to
compute the net flux after cut off, that is, A[2,2.5] (x),
for these cut-off values (x). Table 1 demonstrates 10 rep-
resentative simulation results with respect to the average
flux and the size of the graph A/[2,2.5] (x) with respect to
various cut-off values for x. The size of the graph is here
given with the number of its edges. As the cut-off values
increase, the size of A'[2,2.5] (x) converges to 9 fluxes. In
Figure 6, we depict F[2,2.5] and N[2,2.5] of Sim. 3 in
Table 1. We have chosen Sim. 3 because the cut-off value
of this simulation, which results in convergence, is high-
est among these 10 simulations, and we observe the same
behavior as in the other simulations.

In terms of net-flux, these simulations deliver the more
dominant flux pathway in the network at steady state
as depicted in the left-most graph in Figure 7, where
the dashed arrows denote the fluxes due to enzymes A
(11 +— 3) and E (21 — 5). As depicted in Figure 3, this
observation is in agreement with the results of [10] with
the exception that the reaction flux path RT = RD is not
included in our analysis in contrast to the results in [10].

It is important to note that the reaction fluxes in [10] are
defined between network species as depicted in Figure 3.
As we discuss below, our notion of flux conserves the
information of reaction fluxes between species. However,
in our stochastic setting, we talk about flux if there is
a flow of resources between two reactions. Because of
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this, the presence of a flux in the pathway from RT to RD
could be explained only with the presence of the reaction
RTE — RT+E (21) to the reaction RT — RD (18). Although
this flux can be read, for example, in Sim. 3 in Figure 6
with a weight of x7 in the flux configuration F[2,2.5]

(21 7 18), it is much smaller in weight in comparison
to average flux in F[2,2.5] and NV[2,2.5].

Another important aspect of this analysis is that the
reaction RTE — RT + E (21) and its reverse reaction
RT 4+ E — RTE (6) deliver a strong cyclic flux in F[2,2.5],
as depicted in Figure 8, which cancels itself in N'[2,2.5].
However, this flux has an impact on the network, which
we discuss in the next section.

When we carry the analysis above to the simulations
where Ay is increased to 10 and 100, we get the simula-
tion plots depicted in the middle and right-hand-side of
Figure 5. We observe the same flux pathway patterns for
these simulations with respect to the net-flux configura-
tions, as depicted in the middle and right-hand graphs in
Figure 7. However, for the case of flux configurations, as
depicted in Figure 8, these regimes introduce other cycles:
the Agp = 100 regime has a strong cyclic flux given with
RDA — RD+A (11) and its reverse reaction RD+A — RDA
(2), which cancel each other in the net-flux configuration.
The Ag = 10 regime has besides this flux also the cyclic
flux given with RTE — RT 4 E (21) and its reverse reaction
RT + E — RTE (6), similar to the Ag = 1 regime. These
fluxes are not considered in the ODE analysis as depicted
in Figure 3.

As reported in [10], E and A play distinct and separa-
ble roles in cycling control: the activity (RT/Rp) is mainly
delivered by Eq and the turnover rate is a function of Ag.
The increase in Ag does not only decrease the RT activ-
ity, but also increases the turnover rate, which can be seen
by comparing the ratio of the fluxes and the length of

Table 1 Simulation results with respect to the average flux of A'[2, 2.5] and the number of fluxes given with number of

edges in A/[2,2.5] (x) with respect to various cut-off values

Sim. Avg. Cut-off value x — | N2,2.5] (x) |

0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045
1 45 17 15 15 13 10 9 9 9 9
2 49 18 16 1M 10 10 9 9 9 9
3 40 18 17 15 13 13 12 11 9 9
4 52 18 16 16 12 12 10 10 9 9
5 40 17 17 15 12 9 9 9 9 9
6 52 20 14 Il 9 9 9 9 9 9
7 47 17 15 12 1M 9 9 9 9 9
8 40 21 16 15 13 11 10 9 9 9
9 45 21 18 15 12 9 9 9 9 9
10 59 17 Il 1 10 10 9 9 9 9

The initial number of species are Ro= 1000, Eg= 776, Ag=1.
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the numbers are given in Figure 4.
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Figure 7 The graphs displaying the dominant fluxes with respect to the net-flux configurations obtained from the simulations with
Ro = 1000, Ep = 776 and varying initial Ao numbers. The dashed arrows denote the fluxes due to enzymes A (11 — 3)and E 21 +—
increase in Ag increases the turnover rate, observed by comparing the ratio of the flux and the time interval length. The reactions that correspond to

x109

5). An

the time intervals. This symmetric situation in fluxes with
respect to A quantities, which we discuss below, can be an
explanation for these observations.

It is important to observe that the graphs depicted in
Figure 7 are generated from the simulations with the net-
work. Along these lines, Goryachev and Pokhilko argue
that a subset of the fluxes of the original network is signif-
icant in the actual biological system, while the remaining
fluxes have negligible values, and substantiate this predic-
tion by comparing the reduced network with the original
model. In this respect, the graphs given in Figure 7 depict
a reduced network and agree with the predictions of [10]
with the exception of RT = RD as discussed above. This
reduced network is obtained by including only those reac-
tions that are included in these graphs. The reduced net-
work suggested by our flux analysis is in agreement with
the reduced network given in [10]. Moreover, the graphs
in Figure 7 and the reduced network is generated auto-
matically by stochastic flux analysis, and their delivery
does not require a further analysis of the network or the
modeled biological system. Because our notion of flux is
based on flow of resources between reactions, it provides
a quantitative means to observe the causality within

the system dynamics. Moreover, the stochastic nature of
the approach makes it plausible also for the simulations
where the quantity of certain species can be arbitrarily
small.

The role of cyclic reverse reactions in network behavior

The net flux configurations demonstrate the dominant
tendencies of the Rho GTP-binding proteins network that
are in agreement with the results in [10] with respect to
the ODE analysis of the same network. However, when we
compare the time series plots of the simulations of this
network with those of the reduced network that we obtain
from the net-flux analysis (consisting of the reactions 3, 5,
11, 13, 16, 20 and 21), we do not get a satisfactory agree-
ment between them. This can be observed by comparing
the time series plots of the simulations in Figure 5 with
the beginning of the simulations in Figure 9, where the
reduced network diverges from the steady state values of
the complete network, with which it has been initiated. In
fact, [10] provides a comparison of the reduced and com-
plete networks in terms of histograms that display their

activity, where this shift in behavior can be observed as
well.

numbers. Left: Ag = 1, F[2,2.5] (0.1); Mid: Ag =
numbers are given in Figure 4.

10, F1.7,1

e 20 RDA 160 RDA,2608
A ———————
RDA 115 RD 155 RDA 123 2 F 11 RDA,144 20
A157 RD,2610
RD125 o RTA,115 lRD 72 33 IRTA 128 A,2672 lRD 749 RTA'”‘sI
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¢ RT115] RT,1989 77 RT,126 )
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Figure 8 The graphs displaying the flux configurations obtained from the simulations with Ry = 1000, Ey = 776 and varying initial Ao
8] (0.1); Right: Ag =

100, F[0.3,0.4] (0.1). The reactions that correspond to the
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Figure 9 Example simulation plots of the reduced network obtained from the model in Figure 3 by means of the net-flux analysis, depicted
in Figure 7. Here, the initial numbers of the species are set to steady state values of the simulations in Figure 5. From left to right, there are 1, 10 and
100 A in the network. The reactions are RE — RTE, RTE — RT + E, RT + A — RTA, RTA — RDA, RDA — RD + A, RD + E — RDE and RDE — RE.

When we consider the simulations with respect to flux
configurations instead of net-flux configurations, it is pos-
sible to get a different description of the network’s behav-
ior as it is exemplified in Figure 6. This is because there
can be strong fluxes in a flux configuration, which do not
appear in a net-flux configuration since they cancel each
other. However, these fluxes can play an important role
for tuning the behavior of the network during simulation.
This is because these fluxes have a greater weight in com-
parison to the others, and they thus shift the simulation
resources, thereby causing a shift in the time series of the
simulation.

Consider the flux configuration F[2,2.5] (0.1) for the
Sim. 3 in Table 1, which is depicted on the left-hand-side
of Figure 8. We employ a cut-off value of 0.1 with respect
to the analysis in Table 2 on the same 10 simulations as
in Table 1. In contrast to the net flux configuration on the
left-hand-side of Figure 7, the flux configuration exposes

a cyclic flux, given with 21 > 6,21 =5 6and 6 105 21.
In order to understand the role of this cyclic flux, we ran
simulations with a network, which extends the reduced
network (consisting of the reactions 3, 5, 11, 13, 16, 20 and

21) with the reaction 6 (RT+E — RTE). This is because the
reaction 6 is included in the flux configuration analysis,
although it is excluded by the net-flux analysis.

Example simulation plots of the reduced network with
reaction 6 are depicted in Figure 10. This network and
the complete network have identical flux configuration
structures when sufficiently high cut-off values that are in
accordance with Table 2 are used. That is, the flux config-
urations of the original network and this network provide
flux behaviors with identical structures with the cut-off
values that provide a convergence in the number of fluxes
in Table 2. As it can be seen by comparing the example
simulation plots of this network in Figure 10 with those
in Figure 5 and Figure 9, this network is closer to the
complete network also in time-series behavior.

We made the same observations also for the cases,
where Ag = 10 and Ay = 100. However, as it can be seen

in Figure 8, the simulations at the Ag = 100 regime expose
in addition only the cyclic flux, given with 11 0, 2,
11+ 2and 2 £ 11, whereas the Ag = 10 regime

RT
expose this cycle as well as the one given with 21 — 6,

Table 2 Simulation results with respect to the average flux of (2, 2.5] and the number of fluxes given with number of

edges in F[2, 2.5] (x) with respect to various cut-off values

Sim. Avg. Cut-off value x — | F[2,2.5] (x) |

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1 213 22 21 21 17 14 12 12 12 12
2 212 23 19 16 13 13 12 12 12 12
3 195 24 24 20 19 19 14 13 12 12
4 222 22 20 18 14 14 12 12 12 12
5 202 23 21 17 12 12 12 12 12 12
6 254 21 17 15 12 12 12 12 12 12
7 224 23 20 18 15 15 14 12 12 12
8 208 23 19 16 13 12 12 12 12 12
9 199 27 22 19 17 12 12 12 12 12
10 261 18 17 16 13 12 12 12 12 12

The initial number of species are Ro= 1000, Eg= 776, Ag=1.
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Figure 10 Example simulation plots of the reduced networks obtained from the model in Figure 3 by means of the flux analysis, depicted
in Figure 7. The initial numbers of the species are set to steady state values of the simulations in Figure 5. From left to right, there are 1, 10 and 100
A'in the network. In addition to the reactions of the network in Figure 9, the network for the 1A case includes the reaction RT + E — RTE, the
network for the T00A case includes the reaction RD 4+ A — RDA, and the 10A case includes both reactions.

04

21 55 6and 6 N5 21. Although these fluxes are not

captured in the reaction flux analysis of [10], the observa-
tions made on time-series plots such as those depicted in
Figure 5, Figure 9 and Figure 10 suggest that these cycles
play an important role in fine tuning the behavior of the
network.

By approximating the sample fluxes as normal distribu-
tions, we measured the sample mean and variance of the
stochastic fluxes on sets of 25 simulations for the three
cases of initial A levels, given in the Additional file 1. For
any given error factor, we computed the probability that
the sample mean and variance differ from the true mean
and variance by at most the error factor. With this analy-
sis with a sample size of 25, we get estimates of the true
mean and variance, accuracy of which can be improved by
increasing the sample size. An implication of this analy-
sis is that the variance seems to increase as Ao gets larger,
which may indicate a kind of instability in the system.

Comparing the notions of flux
We are using the term flux to refer to the flow of resources,
that is, the flow of network species, between reactions.
However, in deterministic ODE models of chemical reac-
tion networks, it refers to the rates of the reactions them-
selves. This latter version of flux is often called “reaction
flux,” and we follow this convention to distinguish it from
our concept. In the following, we show how reaction flux
can be defined within our framework.

Consider a reaction network with species s1,s2,...,S;,
and reactions numbered 1,.. ., m. We write the reactions
in the canonical form

ll,jsl 4.4 ln,jsn — 11,81 4+ 4 Tn,jSns (2)

meaning reaction j consumes /;; instances of species s; and
produces r;; instances of species s;, for i = 1,...,n and
j=1,...,m. The effect of all the reactions is summarized
by the n x m stoichiometric matrix A. Letting a;; denote
the element in row i and column j of 4,

aij = rij — lij,

the effect of reaction j on species i.

To compute the net effect of a sequence of reactions on
the state of the network, let the state at time ¢ be given by
the column vector x = (x1,...,x,)’, where ’ denotes the
transpose of a matrix or vector, and x; is the population
size of species i at time ¢, for i = 1,. .., n. Suppose that in
the time interval [ £, £ + Atf], there are u; instances of reac-
tion j in this sequence, for j = 1,...,m, and each step in
the sequence is feasible, i.e., all the x; are large enough to
avoid any population size becoming negative. Then, let-
ting u = (u1,...,uy), the state at time ¢ + At will be

x+ Au. (3)

A is not a complete description of the network because
it does not specify the reaction probabilities. As described
in the definitions, each reaction j has an associated rate
constant p;. To obtain the total rate of reaction j, p; is
multiplied by the number of possible ways of selecting
the reactants. If the state is x, the total stochastic rate of
reaction j is

5 =T1(;) <o @

=1 N

Mass-action kinetics assumes that for small time inter-
vals At, the average number of occurrences of reaction j is
approximately v;At. Therefore by (3), the average state at
time ¢ + At is approximately

x + AvAt. (5)

The classical approach to modeling reaction networks
is to approximate them by their average behavior. Essen-
tially, the stochastic rates (4) are treated as deterministic
rates called reaction fluxes, and the transition equations
summarized by (3) are approximated by ODE’. In gen-
eral, states in ODE models are concentrations of agents
rather than numbers of agents, and the equations must be
altered by coefficients that depend on the volume in which
the reactions take place. For simplicity, we assume a unit
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volume. Then, taking At — 0 in (5), the dynamics of the
network can be approximated by the system of ODE’s
dx
dt
To define reaction flux within our framework, consider
a simulation trajectory, and let #;[t, '] be the number of
vertices of the form (j, ) in its simulation configuration
such that ¢ < v < ¢. That is, nj[t,#'] is the number of
times reaction j is applied in the time interval [t, '], and

Av.

nilt, t']

v —t
is the rate at which reaction j has occurred over the inter-
val [t, ¢']. Although (6) is a random variable, in the deter-
ministic ODE approximation of the network, ast' —¢ — 0,
it approaches v;, the reaction flux of j at time ¢.

The term “reaction flux,” as used by Goryachev and
Pokhilko, is actually a variation on the definition given by
(4). For any reaction j, let j/ be the reverse reaction. That
is, if j is given by the reaction (2), then;’ is

(6)

FLs1 o sy = st 4o+ Dyjsy

In some cases, the rate of j/ is 0, and it is usually omitted
from the list of reactions. Goryachev and Pokhilko take
the reaction flux of j to be v; — v;. For the cases, where v
and v} have relatively close values, this expression results
in a negligible flux, which explains the omission of the
cyclic fluxes in [10].

Other examples

In this section, we apply our flux analysis to networks
of models from biology and ecology as illustrative case
studies.

An oscillator

Below we consider a network that models an oscillator
[12]. In the simulations with this network, the amounts
of different species increase and decrease at periodic time
intervals. Because of this we compare the fluxes of a sim-
ulation at these different time intervals. The reactions of
this network are given in Figure 11 together with a time
series plot of this simulation for the interval 0.014 to 0.03.
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Here, the initial quantities are Ag = 900, Bp = 500 and
Co = 100, and the species A, B and C increase and decrease
periodically during the simulation. In our flux analysis, we
consider the individual time intervals, where each of A, B
and C increase and decrease. For the increase, we consider
the following time intervals:

increases (As,B:,C) — (Ay, By, Cy) [t,¢]
A (53,789,656) — (1224,165,110) [0.0224,0.0274]
B: (640,53,807) — (183,1180,137) [0.0160,0.0208]
C:  (983,466,51) — (204,136,1160) [0.0187,0.0242]

The flux configurations for these time intervals are
depicted in Figure 12. In all three flux configurations, the
reactions that produce the increasing species receive a
stronger flux in comparison to others that feed these reac-
tions with resources. As depicted in Figure 13, a cut-off
value of 0.35 removes the smaller fluxes, while preserving
the similarities in the structures of the graphs Figure 12. A
cut-off value of 1.2 results in a similar situation where, for
example, for the case of species A, only the fluxes result-
ing from the resource flow from reaction 3 to reaction 2
remain.

When we consider the time intervals where each species
decreases, we obtain, for example, the following time
intervals:
decreases (Az,B:,C) — (Ay, By, Cp) [£,¢]

A (1185,136,179) — (53,789,656) [0.0176,0.0224]
B:  (183,1180,137) — (836,58,606) [0.0208,0.0258]
C: (204,136,1160) — (835,635, 30) [0.0242,0.0288]

The flux configurations for these time intervals,
depicted in Figure 14, deliver similar observations to those
made with respect to flux configuration in Figure 12. In all
three flux configurations for the considered non-steady-
state time intervals, the reactions that cause a decrease in
species receive a stronger flux in comparison to others.

Oyster reef ecosystem

The oyster reef model network [13,14] describes the
flow of matter between components in terms of first
order reactions, that is, there is only one species on the
left-hand-side of the reactions, and also on the right-
hand-side of the reactions. The reactions are listed

1:A+B5B+B
2:C+A A+ A
3:B+CHC+C

1
—

1
—

Figure 11 The reactions of a simple oscillator [12] and a time series plot of a simulation initiated with Ay = 900, By = 500 and Cy = 100.
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Figure 12 Flux configurations of the simulation with the oscillator network depicted in Figure 11 for different time intervals, where the
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in Figure 15. We ran 20 simulations, where we initi-
ated the simulations with the following steady state
values: Filter_Feeders = 2000, Dep_Detritus, = 1000,
Microbiotag = 3, Meiofaunag = 24, Dep_Feeder, = 16,
Predator = 69. In the simulations, there is a multiplicity
of the reactions with smaller propensities. We observed
that for the time interval of 0 to 290, all the 20 simulations
result in flux configurations with identical structures
with the cut-off value 0.2. The reaction flux graph of this
network, as described in previous subsection, is depicted
on the left-hand-side of Figure 15. A representative flux
configuration of these 20 simulations is depicted on the
right-hand-side of Figure 15.

It is important to note that the flux configuration in
Figure 15 quantifies the flow of specific species between
specific reactions and how these species are consumed
and produced by cycling in the network between different
reactions. This analysis provides the causality informa-
tion between reactions in terms of their dependencies,
which cannot be revealed by simple reaction counting.
In this respect, the causality information does not only
quantify the dominant reactions, but also makes the flow
of the system resources more explicit by distinguishing
their distribution between different reactions, while tak-
ing stochasticity into the picture. For example, the flux
configuration in Figure 15 clearly shows the flow of DD
from producing reactions 7, 10, 13 to consuming reactions
2, 3, 4 and 5, whereas the reaction flux diagram shows
only the total activities of the reactions. As discussed in
the previous subsection the stochastic flux analysis can be
used to construct the reaction flux graph, however con-
structing flux configurations from reaction graphs is more

challenging, in particular for the time intervals that are
not in steady state and for the networks that do not consist
of only first order reactions.

Based on the flux configuration in Figure 15, we
designed a reduced network, which excludes the reactions
6 and 8. From 20 simulations that we performed with
this network, two simulations provided flux configura-
tions with identical structures with the cut-off value 0.2
at the time interval 0 to 290 when compared with the
flux configurations of the complete network. The dis-
agreement with the eighteen other simulations is because
at cut-off value 0.2, sixteen of these simulations prune
the flux 10 = 3, and two of them prune also the flux
1=11

Phosphorelay

Phosphorelays are signaling networks that are found
in various biological systems. We analyze the network
given in [15], which models the biochemical phosphore-
lay mechanism, shuttling the phosphate group from the
first to the last layer. The reactions of the network are as
follows.

2:Lp+ 125 L1+ L2p
4:13p+ 145 L3+ L4p

1:L1+BS Lip+B
3:2p+L3 5 L2+ L3p
5:L4p = L4

Reaction 1 describes the phosphorylation of L1 by B.
Reactions 2, 3 and 4 describe the transmission of the
phosphate to the other levels. Reaction 4 describes the
dephosphorylation of L4.

A,E??Z 1
\ AM
C.1430

(3)6,384

Fl0.0176, 0.0224]

B,135021 3
A.A A 4

(5,5,894
Fl0.0208, 0.0258

Figure 13 Flux configurations obtained from those in Figure 12 by applying a cut-off value of 0.35.
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Figure 14 Flux configurations of the simulation with the oscillator network depicted in Figure 11 for different time intervals, where the

species A, B and C decrease.

We ran simulations with 100 L1, L2, L3 and L4 at the
initial state. We analyzed the steady state fluxes of this net-
work with different input signals, given with the quantity
of B in the network. The time series plots of the simula-
tions for 100 and 200 B are depicted in Figure 16. The flux
configurations for the time interval 20 to 40 are depicted
in Figure 17. These flux configurations, from left to right
numbered from 1 to 5, are obtained from simulations with
25, 50, 75, 100 and 200 B. We observe in all five flux con-
figurations that the fluxes are equally distributed at the
steady state through out the simulation. We observe that
up to 100 B, the turnover rate is directly proportional

with the quantity of the B in the network. However, the
turnover rate with 200 B approximates the turnover rate
of the flux configuration with 100 B.

We analyzed the fluxes from the time point 0 to 5,
where the network is not in steady state yet, for the 100
B case. The time series plot of a simulation and the flux
configurations for the time intervals [0, 1] and [4,5] are
depicted in Figure 18. At the beginning of the simula-
tion, the network is biased towards lower-levels, which
feed the higher levels. This is because the phosphoryla-
tion of the higher-levels requires the phosphorylation of
the lower-levels.
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Figure 15 The reactions of the Oyster Reef network, the reaction flux graph and a representative flux configuration [0, 290] (0.2) of 20
simulations with this network. In the reaction flux network on the left, each node represents a species as indicated by the labels. For example,

FF is Filter Feeder, Mf is Meiofauna, etc. Each arrow represents a reaction, and its label is the reaction number. The thickness of each arrow is
proportional to the reaction count. In the flux configuration graph on the right, each node is a reaction, and each arrow denotes the flux as the flow
of the resource in the label. The thickness of each arrow is proportional to the flux strength.
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Figure 16 Time series plots of simulations with the phosphorelay network with 100 L1, L2, L3 and L4 at the initial state. The simulation on
the left is initiated with 100 B, whereas the one on the right is initiated with 200 B.
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Related work

Flux analysis is well established for the continuous simula-
tions of chemical reaction networks. In this respect, there
are many studies dedicated to flux analysis that exploit
the differential equation representation of these systems
to provide different insights on a variety of aspects from
system behavior to model reduction, see, e.g., [7,22-26].
As in [24], these studies also include considerations of
deterministic representations of flux analysis for explain-
ing the behavior of stochastic systems. Extensive earlier
studies include a series of papers, where Schuster and col-
leagues give a theory of flux in biochemical networks that
is based on linear equation systems, e.g., [27]. In this set-
ting, a flux mode is defined as a steady-state distribution
in which the proportions of fluxes are fixed. The fluxes
are then computed by using linear algebraic operations
to detect all elementary flux modes, which are defined
as minimal sets of enzymes that can operate at steady
state with all reverse reactions proceeding in the direction
prescribed thermodynamics.

Being inspired by studies on non-interleaving semantics
of concurrent systems, the current study aims at providing
a purely stochastic interpretation of flux in chemical reac-
tion networks. Partial orders reflecting interdependencies
and causal relationships in computations have been exten-
sively studied within non-interleaving models of concur-
rency [28] such as event structures [29]. For sequences of
computations in such systems [30] presents an algorithm
for extracting partial orders that exhibit event structure
semantics. Based on these ideas, preliminary results of the
current paper have been presented in [31]. There, we have
applied the algorithm of [30] to SPiM models of closed
systems for flux analysis, where in each reaction a single
species can be traced.

The relationship between stochastic models and causal-
ity has been studied by various authors. In [32], Danos
et al draw connections between computational models
of biological systems, event structures and their causality
interpretation, while considering conflict as a mechanism
of inhibition in signalling pathways. In [33], Curti et al

507 977 1369 L1779 1737
1 1 1 1 1
L1p,511 L1p,976 L1p,1370 L1p,1777 L1p,1734
L1,507 L1,977 L1,1369 L1,1779 L1,173
2 2 2 2 2
L2p,509 L2p,971 L2p,1374 L2p,1772 L2p,1737
L2,511 L2976 L2,1370) L2,177 12,1734
3 3 3 3 3
L3p,571 L3p,968 L3p,1365 L3p,1778 L3p,1737
L3,509 L3971 L3,1374 L3,1772 L3,173
4 4 4 4 4
L4p,502 L4p,969 L4p,1346 Ldp,1779 L4p,1733
L4511 14,968 L4,1365) L4,1778 L4,173
5 5 5 5 5
F 1 fQ F: 3 ./_"4 ./_"5
Figure 17 The flux configurations of the simulations with the phosphorelay network. From left to right, the simulations are performed with
25,50, 75,100 and 200 B at the initial state.
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apply the ideas presented in [34] to the 7 calculus mod-
els of biological systems where the causality information
on the modeled system is retrieved by labeling the syn-
tax tree of the process expressions. Probabilistic model
checking is another approach, which shares goals with this
work. Model checking has been applied to realistic bio-
logical examples, e.g., [35], however the state of the art
in exhaustive CTMC analysis does not scale well to large
systems. Along these lines, in [36], Ballarini et al intro-
duce preliminary ideas on an approach for flux analysis
by sampling the probabilistic weights of transitions in
CTMCs, which however does not scale to larger models
due to exponential size of these structures.

An approach, which is closely related to our method is
Kazanci and Tollner’s particle tracking method for ana-
lyzing ecosystem models [37]. The particle tracking algo-
rithm extends the Gillespie algorithm with a mechanism
that labels each species with a unique id, and randomly
picks one at each simulation step. In this method dynamic
systems, which can be expressed as stock-flow diagrams,
can be analyzed. The reactions are thus restricted to single
species on the left and on the right-hand-side.

Conclusions

We have presented a method for flux analysis in stochas-
tic simulations of chemical reaction networks. Our notion
of flux provides a precise means for monitoring the
flow between reactions, which is different from the flow
between species as it is the case in the deterministic set-
ting. Because of this, our approach provides an accurate
account of causality within the system dynamics. Because
it is applied on stochastic simulations, it can be employed
in simulations where species numbers can be arbitrarily
small. Moreover, the analysis is not restricted to steady
state, but it can be performed on arbitrary time intervals
of the simulations as in the case of the oscillator network

above, and these intervals can involve arbitrarily big or
small number of events. While greater number of events
provide more convergent observations, smaller number of
events highlight the stochastic nature of the simulations.

The algorithms for generating the data structures of our
method apply not just to Gillespie algorithm, but to any
discrete event simulator. And not only are they linear in
space and time, but the simulation trace can be gener-
ated in real time. That is, because the information on
resource consumption-production can be recorded in a
bounded amount of time during simulation in real time,
the method does not introduce any additional complex-
ity to the simulation algorithm. This also suggests our
approach as an alternative to model checking of networks
with larger CTMCs due to its linear complexity, contrast-
ing with the state-space explosion problem that stochastic
model checking faces.

Our steady state analysis of the Rho GTP-binding pro-
teins agree with some of the observations of the anal-
ysis in [10]. However, our analysis also introduces new
observations: while being in agreement with the notion
of flux used in the ODE analysis in [10], the net-flux
structures, which counteract the influence of reversible
reactions, do not succeed in providing a satisfactory
means for identifying the network fluxes that give rise
to the time series behavior. In contrast, flux configura-
tions, which also take into account the flow of different
species between reactions, permit the observation of all
the fluxes, including the cyclic and enzymatic ones, which
influence the dynamic behavior of the network. In addi-
tion, our analysis displays the effect of different initial
conditions that highlight the dominant effect of certain
fluxes at different regimes. These different initial condi-
tions give rise to cycles of reverse reactions that shift the
simulation resources, thereby adjusting the time-series
behavior.
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The data structures obtained by the flux analysis algo-
rithm permit the observation of different aspects of the
simulations. While the labels of the fluxes as species make
it possible to apply label filters for filtering out the fluxes
of certain species, the cut-off values make it possible to
threshold the fluxes of a chosen relative strength. This
also provides the means for obtaining reduced networks
from a given network by excluding the reactions that are
not included in the flux configurations with a chosen cut-
off value. Because increasing the cut-off values results in
pruning greater number of fluxes with their reactions, the
choice of a cut-off value provides a quantitative means
for comparing networks and simulations. The cut-off val-
ues employed in comparing the fluxes above can also be
seen as a confidence measure, since establishing a simi-
larity between compared simulations for a smaller cut-off
value can be perceived more reliable. We have employed a
cut-off function that is based on the average fluxes of the
system. However, different notions of cut-off can be more
appropriate for different systems, which remains a topic of
future investigation.

Topics of future research include investigations on the
influence of different aspects of reaction networks such
as the relative contribution of structure and non-linearity
to the dynamical behavior of the system. Although strong
non-linearity does not always imply variability in behav-
ior for the stochastic systems, in some cases, and often
due to small molecule numbers, stochastic systems can
have quite different behaviors from the deterministic ones
[38]. In this respect, stochastic analysis can provide novel
observations due to the fluxes in comparison with the
deterministic approach. Investigations with a more statis-
tical nature can also provide an insight to this discussion
as the data analyzed by our algorithms is generated by
Monte-Carlo simulations. In this respect, a confidence
measure on the results of the analysis as in other Monte-
Carlo simulations can provide estimates to reach a desired
level of confidence.

Methods

The algorithm for stochastic flux analysis is applied to a
class of dynamical systems that we call interaction sys-
tems. The state of an interaction system is a finite set
of agents, where each agent has certain attributes that
determine the interactions that it is capable of and their
likelihood. Well-known examples are discrete stochastic
models of chemical kinetics, where each agent has exactly
one attribute—the molecular species that it belongs to.
More general systems may have agents with additional
attributes, such as the presence or absence of methylated
sites, attached phosphoryl groups, and other conforma-
tional traits. These systems use only finitely many agent
attributes, and each attribute has a finite range of val-
ues. Therefore the attributes can be encoded by a single
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attribute with a finite range, and we will restrict our
attention to this class of models without loss of general-
ity. Formally, an interaction system is a dynamical system
whose states and transitions are defined as follows. Let B
be a fixed finite set (the set of attribute values). A state is a
pair (A, S), where

e A isa finite set of agents. Without loss of generality,
we can assume A C {1,...,n} for somen € N.

e S: A — Bwhere, foranya € A, S(a) denotes the
value of a’s attribute.

We often use A to denote a state. Isomorphism on states
is defined in the usual way: two states (4, S) and (4',5’)
are isomorphic if there is a 1-1 function f mapping A
onto A" such that for every a € A, S(a) = S'(f(a)).
State transitions are defined by a finite set of reactions,
numbered 1, .. ., m. Each reaction is a pair (A, A,) where
A; = (A4, 8)) and A, = (A,,S,) are states, as above. In a
network of chemical kinetics, A; and A, are the reactants
and products respectively of a reaction.

A transition is the application of a reaction to a state,
i.e., the occurrence of a reaction. To apply the reaction
(A;, Ay) to state A = (A,S), a subpopulation of A iso-
morphic to A; is removed from A, and a subpopulation
of new agents isomorphic to A, is added. We do not per-
mit the re-use of agents that have been removed; that is,
the new agents must be in N — A. Further, in a sequence
of states Ay, A1, Az ... where each A;;1 is the result of
applying some reaction to A;, the new agents must be in
N— U]l‘:o Aj. This is easily implemented by assigning the
agents in the initial state Ay integers 1,...,n for some
n € N, and then using an operator new whose successive
invocations return the values n + 1,n + 2, . ...

Formally, the reaction (A;,.A,) can be applied to the
state (4, S), resulting in (A4’, §') if:

e There is an embedding u from A4; into A. That is,
w:Aj ﬁ A, and for every a € Ay, S;(a) = S(u(a)).

(If u does not exist, then the reaction may not be
applied.)

There is an embedding u’ from A, into A’.

The agents in u'(A,) are new in the above sense.
A= (A — p(AD) U i/ (Ay).

Foralla e ANA’, S(a) = S (a).

A transition is a random event whose probability is
determined by the current state of the system. Thus
interaction systems are Markov chains. Depending on
their implementation, they operate in continuous or dis-
crete time. Models of chemical kinetics implemented by
the Gillespie algorithm [39] are continuous time Markov
chains. Each reaction has a rate parameter. The time
of occurrence of the next reaction and the choice of
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reaction are random variables determined by the popu-
lation sizes of the various species and the reaction rates.
In contrast, for example, StochSim [40,41] models run
in discrete time. At each step, the reactants are chosen
randomly, and then a lookup table is used to compute the
probabilities of the possible reactions. These probabili-
ties are used to select the next reaction (if any) that will
occur.

Example 5. Consider the enzyme-aided reaction

A+B—->A+C

which consumes a molecule of type B and creates a
molecule of type C, with the aid of enzyme A. In our
formalism,

o A =1{1,2},5(1) = A, and S;(2) = B.
o A =1{3,4},5(3) = A, and S;(4) = C.

If this reaction is modeled in continuous time with a rate
parameter p, then for any state A, the total reaction rate
is pmimy, where my and my are the population sizes of
species A and B respectively in A.

This example also illustrates the main difference between
interaction systems and Petri nets. In the former, all agents
are distinguishable because each one is identified by a
unique integer, and the state of the system is given by the
values of S(a) for each a € A. In a Petri net, the agents
(tokens) are distinguished only by their species attributes,
and the state of the net is given by the markings of the place
nodes, i.e., the number of agents in each species. The ability
to distinguish all agents enables a precise accounting of the
resource usage.

Since interaction systems subsume stochastic Petri nets
and numerous other related continuous time Markov
chains, and also discrete time Markov chains such as
StochSim, our flux analysis applies to all these cases. The
first step in the analysis is to build a list of the events that
occurred during a simulation, their effect on the state of
the system, and when they occurred.

Definition 6. Assume an interaction system starts
in some initial state and undergoes T transitions at
timest] < Tp < --- < t1. Fort = 0,..., T we put A;
for the state after transition t, t = 0 indicating the ini-
tial state. The T-step simulation trajectory generated by
this sequence of transitions is the sequence of quadruples
G Lty Ry te), t =1,..., T, where

e j: €{1,...,m} is the index of the reaction applied at
transition t. Let the reaction be (A;, A;), u be the
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embedding from A; to A;_1, and (1 be the

embedding from A, to A, as described above.
o L= u(Ay) and Ry = /' (Ay).

1; Is the time at which transition t occurs.

As discrete event simulators generate files listing the
events of the simulation with their time stamps, the defi-
nition of simulation trajectory above can be incorporated
in such discrete event simulators. This is because during
a simulation updating the reaction products with unique
identifiers requires constant time. The algorithms for gen-
erating the data structures discussed here can thus be
applied to any discrete event simulator, and not only are
they linear in space and time, but these structures can be
generated in real time.

Notation 7. For ease of presentation, in the examples
of the results section and in the examples below, we write
the reactions as in Example 5, and states as sets of species
where each species in the set is parameterized with a
unique k € NT that denotes an agent. For example, to
denote an agent with the identifier 1 of species A that is
present at time 0, we write A(1, 0, 0) or, when it is more con-
venient, A(1). Here, the first 0 in A(1,0,0) is the identifier
of the reaction that created the agent 1, and the second 0 is
the time of creation.

The next data structure that we construct reveals
the causality relationships between events in the sim-
ulation trajectory. This is done by highlighting in a
graph structure the implicit production-consumption
relationship between reaction instances of the simulation
trajectory.

Definition 8 (simulation trace). Given an initial state
Ao and a T-step simulation trajectory T, their simulation
trace (Ao, T) is a directed acyclic graph (dag) where each
vertex has a label (i,j,t), where i € NT is an agent iden-
tifier, 0 < j < m is the index of the reaction that created
i (0 if the agent is present in the initial state), and v €
[0, 00) is the time of its creation. K is defined by induction
onT:

e ForT =0, K(Ap,?) consists of vertices labeled
(i,0,0) where i ranges over all agents in Ag.

e Assume T isa T-step simulation trajectory, and
KC(Ag, T) has been constructed. Let T’ be the
concatenation of T and (jr+1,L1+1, RT+41, T141). TO
construct K(Ao, T"), for each agent i € Rr1, add
the new vertex (i, jr+1, Tr+1) to K(Ag, T). We then
add |LT41 X Rr41]| directed edges from each vertex
in K (Ao, T) with a label of the form (k, j¢, T¢),

k € LT41, to the new vertices.
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Example 9. Cousider the simulation trajectory given
in Example 1. We obtain the following simulation trace,
depicted in Figure 1.

{ (1) 01 0);
(1,0,0),
(2,1,0.46), (5,2,1.13)),

( (2,1,0.46)),
( )
( )
((3,1,0.46), (4,3,0.73)),
{ )
{ )

(3,1,0.46)),

(5,2,1.13), (6,4,1.86)),
(4,3,0.73), (6,4,1.86)) }

A simulation trace contains a complete description
of the simulation trajectory that generated it, but it
also reveals other information about the system, e.g., an
explicit record of all the production/consumption rela-
tionships in a simulation. In this regard, a simulation trace
contains raw data that can be further processed to ana-
lyze the simulations. For example, by further processing
a simulation trace we can obtain a data structure, that is,
an edge-labeled directed multigraph, which contains the
independence and causality information of the transitions
with respect to the flow of specific resources between
them.

An edge-labeled multigraph is a structure (V,E,L)
where V is a set of vertices, E is a multiset of directed
edgeson V,and L : E — D is alabeling function for some
set D. D is the set of edge labels, and we write (x, ¥, ¢) to
indicate that the label of edge (x, y) is ¢, i.e., L{x, y) = c¢.In
our case, the edge labels are species of the system.

Definition 10 (simulation configuration). Given a trace
IC, its simulation configuration C is the edge-labeled
directed multigraph obtained by applying the projec-
tion p(i,j,t) = (,t) to the vertices of K and
g(G1,j1, 1), (i2, )2, 72)) = ((1, 715 (2, 72), S(01)) to the
edges of IC, where the label of edge ((j1, 1), (jo, T2), S(i1)) is
S(i).

Thus each vertex of a simulation configuration shows
the reaction that is applied at a particular time, and each
edge is labeled with the species that is produced by the
reaction at the tail of the edge and consumed by the
reaction at its head.

Example 11. From the simulation trace, given in Exam-
ple 9 we obtain the following simulation configuration,
depicted in Figure 1.

{((0,0), (1,0.46),

( A),

((1,0.46), (2,1.13), P),

((1,0.46), (3,0.73), P), )
((2,1.13), (4,1.86), B),

(

(3,0.73), (4,1.86), C)}
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The simulation configuration provides the causal-
ity information on the network with respect to the
production-consumption relationships between the reac-
tion instances of the simulation, including only those
species that are consumed by a reaction. This causality
information is revealed by recording L; and R; in the
simulation trace and passing it on to the simulation con-
figuration. By compressing the simulation configuration,
we obtain a structure that we call flux configuration. A
flux configuration displays the information on the quan-
tity of species that flow between reactions at chosen time
intervals.

Definition 12 (flux configuration). Let C be a simula-
tion configuration and t,t' € RT with t < t. The flux
configuration of C between t and t', denoted by Flt, '], is
the edge-labeled directed graph where:

i. Its vertices are those reaction indices j such that (j, T)
is a vertex of C for some t €[t,t'].

ii. Its edges are those (j,j', s, n) such that there are n
edges in C of the form ((j, t), (', t’),s) wheret < 1
andt’ < . (That is, the label of edge {j,}') is (s, n).)

The item (i.) states that we merge the vertices in C such
that all the vertices with reaction j that occur between t
and t' are mapped to a single vertice by filtering out their
time stamps, that is, t. The item (ii.) states that we count
the number of edges from each reaction j to each reac-
tion j with label s between time t and t'. If there are n
such edges in C, we then have an edge (j,j s, n) in the flux
configuration.

Example 13. As in Example 2, consider the simulation
configuration depicted in the middle-part of Figure 2. This
simulation configuration is obtained from the chemical
reaction network in Example 1 and with the initial state
{A(1),A(2),A(3),A(4)}. The resulting flux configuration,
depicted in Figure 2, has the vertices 0, 1, 2, 3 and 4, and
its edges are (0, 1, A, 4), (1, 2, P, 5), (1, 3, P, 3),
(2, 4, B, 3)and (3, 4, C, 3).

Definition 14 (net-flux configuration). Given a flux
configuration F(t,t'], let X be the set of labeled edges
{j, ], m) where

m = max{n|3s(j,j,s n)is an edge of F[t, '] }.
Then, the net-flux configuration N'[t,t'] is the edge-

labeled directed graph with the same vertices as F|t,t']
and with edges (j,j, k) such that

[G:f k) € XA An(,jn) € X] v
[3m, ni,j,m)y € X A jin) € X Am>nAk=m—n]
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Endnotes

2 The article [1] is a letter where Lotka states that he
had already published a set of equations, citing a book
published in 1925. Volterra had published the equations
earlier in an Italian journal, but the article [2] in Nature is
the one usually cited.
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