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Abstract

Network-based drug discovery aims at harnessing the power of networks to investigate the mechanism of action of
existing drugs, or new molecules, in order to identify innovative therapeutic treatments. In this review, we describe
some of the most recent advances in the field of network pharmacology, starting with approaches relying on
computational models of transcriptional networks, then moving to protein and signaling network models and
concluding with “drug networks”. These networks are derived from different sources of experimental data, or
literature-based analysis, and provide a complementary view of drug mode of action. Molecular and drug networks
are powerful integrated computational and experimental approaches that will likely speed up and improve the drug
discovery process, once fully integrated into the academic and industrial drug discovery pipeline.
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Background
A network is a natural abstraction of a set of objects
(nodes) and of the relationships (edges) occurring among
them. Nodes and edges in a network may represent het-
erogenous kinds of relationships, according to the phe-
nomenon being modelled.
Networks have been extensively used to represent regu-

latory and functional interactions among genes, proteins
and metabolites, by mapping experimentally verified, or
computationally predicted, interactions as edges between
the corresponding nodes [1]. Large-scale genomic, tran-
scriptomic and proteomic experimental data enable the
identification of thousands of interactions in a relatively
short time, even though their functional meaning is not
immediately evident [1,2].
The added value of representing interactions among

molecular species as a network stems from the existence
of well established theorems and algorithms to identify
network level properties, which are not apparent when
looking at single interactions [3,4].
Network-based drug discovery and systems pharmacol-

ogy aim at harnessing the power of networks to investigate
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the impact of small molecules on molecular networks in
order to elucidate their mechanism of action and to iden-
tify innovative therapeutic treatments [5]. These innova-
tive methodologies can be used to discover: (i) on-target
effects, i.e. the intended physical drug-substrate interac-
tions, thus helping in the drug discovery process during
lead optimisation (ii) off-target effects, i.e. unforeseen
direct physical drug-substrate interactions, and (iii) indi-
rect effects, due to signal propagation after the direct
interaction between a drug and its substrates, thus helping
in the identification of novel therapeutic opportunities for
drug repositioning.
Here, we will review some of the recent advances in the

field of network pharmacology, starting with approaches
relying on transcriptional networks, then moving to pro-
tein and signaling networks and concluding with “drug
networks”. We will show examples of applications of these
methodologies both in drug discovery and in drug reposi-
tioning.

Identifying drugmode of action: Transcriptional
networks
Transcriptional (or gene) networks can be broadly defined
as a set of nodes representing genes and possibly non-
coding RNAs, and a set of edges among genes interacting
at the regulatory or functional level (Figure 1). These con-
nections are not necessarily physical interactions, as in the
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Figure 1 Network models can be used in combination with experimental data to dissect drug mode of action and for drug repositioning.
(A) In transcriptional networks nodes are individual genes and edges represent pair-wise functional or regulatory interactions. These networks can
be “reverse-engineered” from gene expression profiles (GEPs) with different computational methods or derived from literature. Transcription
network models can be used to filter for GEPs following drug treatment in order to infer the primary targets causing the observed ranscriptional
changes. (B) Protein interaction networks can be used to model signaling pathways, where edges imply phosphsorylation/de-phosphorelation
events. Signaling network models can be inferred from phosphoproteomic data. These models can be used to simulate in-silico the drug effects on
signal transduction. (C) Drug similarity networks describe similarities between drugs, such as similar transcriptional responses or similar
adverse-reaction. Drug networks can be easily inferred from gene expression profiles following multiple drug treatments.

case of protein networks, but can also represent indirect
statistical dependencies between genes or ncRNAs [6].
Usually, edges are inferred (“reverse-engineered”) from
Gene Expression Profiles (GEPs) through computational
analysis. Gene expression data from microarrays are

typically used for this purpose, but it is likely that
Next Generation Sequencing techniques will soon replace
them. A gene network can also be compiled using
literature-based approaches, without directly using any
experimental data.
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The gene network paradigm can be used to repre-
sent any one gene in the context of a molecular net-
work that defines the cell behaviour in physiological and
pathological conditions [5]. Once a gene network model
for a specific cell type or tissue is available, it can be
used to “filter” the downstream response of a biological
system to a small molecule (or a disease) to identify or
confirm its direct molecular targets, as shown in Figure 1.
Indeed, changes in the direct targets’ activity propagate to
other genes through the network, and cause the observed
phenotypic response . Thus, gene networks allow to inves-
tigate molecular targets of existing drugs, for drug repo-
sitiong, as well as to optimise libraries of lead compounds
for drug development.
Here, we will review the recent progress made in using

gene networks as a tool to elucidate the Mode of Action
(MoA) of a compound, that is, the genes and pathways
directly modulated by it.

Inference of gene network and drug MoA from
steady-state gene expression profiles
One of the first applications of a gene network reverse-
engineering approach to identify compound Mode of
Action relied on a technique named Network Inference by
Regression (NIR) [7].
The authors applied the NIR algorithm in bacteria to

reverse-engineer a gene network model consisting of nine
genes of the DNA repair SOS pathway; they then used this
network to identify direct targets of the chemotherapeutic
agent Mitomycin C.
NIR uses multiple linear regression to infer a gene

network model from RNA expression changes resulting
from a set of steady-state transcriptional perturbations.
Specifically, each gene in the SOS pathway was perturbed
(i.e. over-expressed) and the transcriptional response of
all the genes in the network measured. At the end of
the inference procedure, the resulting network was rep-
resented by a set of linear differential equations. Each
equation described the rate of accumulation of one gene
in the network as a linear combination of its regulators,
and possibly, of an external perturbation (e.g. a small
molecule).
To identify the direct targets of Mitomycin C, the

authors first measured RNA expression changes at steady-
state resulting from treatment with the compound (i.e.
at a single time point following drug administration).
The activity of the compound was modeled as a set
of unknown external perturbations acting on one, or
few genes, in the network. By filtering the differentially
expressed genes through the differential equation model
of the gene network, the authors were thus able to iden-
tify which genes in the network were direct targets of
Mitomycin C, and to distinguish them from indirect tar-
gets (Figure 1A).

This study represented an interesting proof-of-
principle, but it was limited in that the inferred gene
network was not genome-wide but included only a few
selected genes; in addition, the method required each
of the gene in the network to be perturbed, by either
silencing its expression, or by inducing it, thus making
the scaling up of the approach to the genome level very
difficult.
In a subsequent study, an extension of the NIR

approach, named Mode of action by Network Identifi-
cation (MNI), was described [8,9]. MNI does away with
the requirement of having to perturb each of the genes
in the network, thus making the approach scalable to the
genome level. In MNI, the network is modelled as a sys-
tem of linear differential equations, as in NIR, and the
inference of the network (i.e. the equation parameters)
is performed on a compendium of GEPs; the number of
GEPs needed for inference, differently from NIR, can be
much smaller than the number of genes in the network,
thus making the approach easily scalable. Once the net-
work is inferred, it is used to “filter” a single GEP obtained
by treating cells with a compound of interest, and to rank
genes according to their probability of being the direct
targets of the small molecule.
MNI was first applied to a compendium of genome-

wide GEPs measured in yeast (S. cerevisiae) to identify
the molecular targets of anti-fungal compounds [8]. Sub-
sequently, MNI was applied to genome-wide GEPs mea-
sured from seven different human cancer cell lines to
identify the androgen receptor gene as a genetic mediator
of recurrent and metastatic prostate cancer [10].
In the cancer research field, the gene network frame-

work has been applied successfully to identify dysregu-
lated pathways due to oncogenic lesions [11]; a similar
approach could be used to identify molecular targets of
a small molecule. An algorithm named Interaction Dys-
regulation Enrichment Analysis (IDEA) has been recently
proposed [11]. The method was applied to identify onco-
genic lesions in lymphomas. IDEA starts with an “a
priori” network model in B cells, assembled by merg-
ing different types of experimental and predicted inter-
actions (i.e. protein-protein, co-regulation, etc.), it then
uses two sets of GEPs, one comprising GEPs measured
in normal B-cell populations and another set measured
in B-cell populations from lymphoma patients. By com-
puting differences in co-regulation between genes across
the two datasets, using a Mutual Information measure,
IDEA was able to identify dysregulated pathways in dis-
ease. Although, this method was not applied to identify
targets of a small molecule, this in principle could be
done. In this case, however, more than one GEP following
drug treatment should be available, since Mutual Infor-
mation requires more than one GEP to be computed.
One could compare, for example, drug treated samples to
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untreated samples and predict pathways targeted by the
compound.

Inference of gene network and drugMoA from time-course
gene expression profiles
Themethods reviewed so far are all based on the availabil-
ity of several GEPs (in the order of 102 for genome-wide
applications) measured at a single time point (steady-
state) following several different perturbations. These
GEPs are then used to infer a gene network model, which
in turn is used to filter the drug-induced GEPmeasured at
a single time-point following drug administration.
It is also possible, however, to use a single perturba-

tion, i.e. treatment with the compound of interest, but at
multiple time-points (i.e. a time-series) following the drug
treatment. From this time-series data, it is then possible
to identify the direct molecular targets of the compound
and to distinguish them from indirect responses of down-
stream genes.
An algorithm named Time Series Network Analysis

(TSNI), based on this approach, has been proposed by
Bansal et al. [12] and applied to infer the targets of the
antibiotic Norfloxacin in E. coli. TSNI is similar to NIR
andMNI, since it uses a set of linear differential equations
to describe the gene network model. Differently from NIR
and MNI, however, time-series data are used to identify
the equation parameters and detect the direct targets of
the perturbation. In this study [12], the authors measured
gene expression profiles of nine genes in the SOS path-
way at six time-points following treatment of E. coli cells
with the antibiotic Norfloxacin. They then applied TSNI
to identify the direct mediator of Norfloxacin response
among the nine genes.
TSNI was also applied to mammalian cells at the

genome-wide level to identify the direct transcriptional
targets of the p63 transcription factor in primary murine
keratinocytes [13]. The authors measured time-course
gene expression profiles at fourteen time-points follow-
ing inducible activation of the transcription factor using
microarrays. TSNI was then applied to the collected GEPs
to identify the direct targets of the transcription factor.
More recently, TSNI was applied to identify the transcrip-
tional target of Id proteins following inducible deletion of
Id genes in murine Neuron Stem Cells [14].
Other methods using time-course gene expression

profiles have been developed to reconstruct gene regu-
latory networks [15,16] and to infer the direct transcrip-
tional targets of a Transcription Factor (TF) [17,18]. Some
of these methods make use of dynamic Bayesian net-
works and are based on hidden variables that can capture
effects not directly detectable in a gene expression profil-
ing experiment (i.e. genes that have not included in the
microarray, levels of regulatory proteins, effects of mRNA
and protein degradation) [15,16]. To model the effect of

the TF on each of the genes and to distinguish direct gene
targets from indirect targets of the TF, it is also possible
to use simplified model of gene regulation, based on lin-
ear differential equations and Gaussian Processes [17,18].
Although the authors of this work did not mention their
use to identify drug MoA, in principle these approaches
may be applied in a similar fashion to TSNI, if the time-
course GEPs are measured following treatment with a
compound of interest.

Literature-derived gene networks for identification of drug
MoA
Literature derived gene and protein networks, obtained
by manual curation based on published literature, are a
popular way to interpret differentially expressed genes
following drug treatment and to identify potential path-
ways and molecules targeted by the drug. Several tools
have been developed to assemble and analyse literature
derived biological networks [19]. Usually their interpreta-
tion is done by visual inspection, which although useful,
cannot be considered as an objective criterion. Differ-
ent methods have been proposed to solve this problem.
Carro et al. applied an algorithm, named Master Regu-
lator Analysis (MRA), which uses a glioblastoma-specific
gene network to analyse a "mesenchymal" gene expres-
sion signature (MGES), consisting of genes differentially
expressed in poor prognosis group of glioma patients in
[20]. The algorithm computes the statistical significance
of the overlap between the genes connected to each TF in
the gene network and the MGES genes, and ranks all the
TFs by their likelihood of being direct regulators of the
genes in the signature. This algorithm may be used with a
literature derived gene network and a list of differentially
expressed genes following drug treatment to identify the
likely mediators of the drug response.
Along the same lines, Kotelnikova et al presented

an algorithm named SubNetwork Enrichment Analysis
(SNEA), which uses a similar idea as the MRA algorithm
described above: genes differentially expressed in mus-
cle biopsies from Duchenne Muscular Dystrophy patients
were mapped to a literature-curated gene network to find
master regulators of the differentially expressed genes; a
similar approach could be used to elucidate drug mode
of action by using differentially expressed genes following
drug treatment [21].

Identifying drugmode of action: protein and
signaling networks
Several drugs, such as chemotherapeutic agents, exert
their action by affecting the activity of proteins part of
the signal transduction machinery. Therefore, the study
of signaling networks has potential to enhance our under-
standing of drug’s mode of action. Methods for analyzing
protein signaling networks are significantly less mature



Iorio et al. BMC Systems Biology 2013, 7:139 Page 5 of 9
http://www.biomedcentral.com/1752-0509/7/139

than those for gene regulatory networks, both experi-
mentally and computationally [22]. Nevertheless, some
promising approaches have been proposed in the litera-
ture and progress is being made at a fast pace. In what fol-
lows, we will review some recent applications making use
of protein networks to study in silico how drugs operate
by perturbing signal transduction pathways (Figure 1B).
The main common feature among the different meth-

ods in the literature is the conversion of a protein network
into a computational model able to replicate in silico
the signaling network function, including its response
to perturbations such as drug treatments. These mod-
els, in turn, allow mechanistic studies of drug response,
with the aim of understanding how interactions between
drugs and their targets affect other proteins and cellular
components, and thereby cellular phenotype [22].
There are multiple approaches to construct a mathe-

matical model of a signaling pathway with different level
of details [23]; more detailed models require more data
and knoweldge, thus limiting their scope.We will consider
two variants: models that describe signal transduction
on the basis of its underlaying biochemistry, which pro-
vide detailed mechanistic insight, and others that follow a
coarser approach based on describing signaling networks
as logic circuits, which provide less detail but cover larger
networks.

Biochemical models
Themost common approach tomodel signal transduction
consists of formalising the corresponding biochemical
processes and derive from them a dynamic mathemati-
cal model (typically as set of differential equations). This
feature makes them a natural frame to study drug mode
of action, as they can accommodate detailed molecular
mechanisms. Furthermore, they can include non-linear
effects, allowing to study complex behaviours such as the
synergistic combinations of drugs [24,25].
Biochemical models contain a large number of param-

eters (such as binding constants or total amount of
proteins) that are often unknown. These parameters
can be found from literature or by training the models
on dedicated experimental dataset. Since phosphopro-
teomic data are relatively difficult to collect, when com-
pared to gene expression data, biochemical models rarely
cover more than a couple of pathways and a dozen of
proteins [23].
Once a model is set up and the parameters determined,

one can analyze it with various techniques. For example,
sensitivity analysis provides information on the effect of
changes in parameters (such as binding affinities) on the
state of model variables (such as the phosphorylation of
key protein). This technique can be used to find points
of intervention to be targeted with drugs [26] (Figure 1B).
Schoeberl et al built a model fo the Receptor Tyrosine

Kinase Family ErbBB and their effect on the key onco-
genic pathways MAPK and AKT [27]. Sensitivity anal-
ysis revealed a previously unappreciated phenomenon:
changes in the amount of ErbB3 receptor affected the
phosphorylation of AKT much more than changes in
ErbB1 and ErbB2 (which had been the focus of drug
development). Subsquently, the authors developed MM-
121, a human antibody that binds specifically to ErbB3,
blocking HRG1-b binding to ErbB3, and inhibits HRG1-b-
and BTC-induced AKT signaling. Follow-up experiments
showed effect on mouse tumor xenografts, and clinical
trials are currently taking place.
Another use of models is to systematically perform in

silico experiments by perturbating the network model
with drugs (or combinations of them) to identify adrug
combination that may produce a desired outcome (such
as to block pro-growth pathways in cancer). Iadeviaia and
colleagues developed and calibrated a model of Insulin-
like growth factor 1 (IGF1) signaling [28].
Using the model, they predicted, and experimentally

validated, that the combined inhibition of the MAPK and
PI3K/AKT pathways optimally inhibited the signaling net-
works and decreased cell viability in a breast cancer cell
line.
Biochemical models can also be used to elucidate the

molecular mechanisms of action. Hendriks et al. [29]
studied a p38 inhibitor postulated to block preferen-
tially the phosphorylation of p38 on one substrate (MK2)
versus another (ATF2). Combining detailed biochemi-
cal measurements of phospho-MK2 and phospho-ATF2
with a biochemical model, they found a stoichiometric
effect in which excess of MK2 could lead to a complex
MK2-inhibitor-p38 that would sequester p38, blocking
the effect of p38 on ATF2 producing thus the opposite
effect to the expected one.

Logic-based models
Logic-based approaches have become a popular alterna-
tive to model signal transduction, since they are based
on a simple formalism that can capture cause-effect
relationships such as the effects of drug treatments
[30-32].
Logic-based models can be used to describe the

qualitative behavior of signaling networks even when a
limited amount of experimental data is available. The
simplest logic-based model is a Boolean model of a
signaling pathway, where the phophorylation state of
a species can be represented as an ON state (logical
value of 1) to indicate the activation of the protein
(kinase/phosphatase/transcription factor); analogously,
an inactive protein can be represented by the OFF state
(logical value of 0). The Booleanmodel of a signaling path-
way can thus be thought of as a network where nodes rep-
resent proteins, which can either be on or off, and edges
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(or ‘hyperedges’, representing multiple edges between the
same pair of nodes) represent logical operations between
proteins (such as logic ANDs and ORs).
Because of their scalability, logic models can be trained

against high-throuhgput experimental data, and thus gen-
erate large-scale cell-specific models. Differences between
healthy versus diseased cell models point at potential tar-
gets for therapies: blocking an interaction that is only
functional in a disease cell should have a disease-specific
effect withouth affecting healthy cells. In a recent study
[33], the authors trained a general protein signaling net-
work to phosphoproteomic data generated in primary
hepatocytes and four cell lines representing different
stages of the development of hepatocellular carcinoma.
A comparison of the resulting models revealed key dif-
ferences between normal and transformed hepatocytes in
three different pathways.
Furthermore, logic models can be used to understand

drug’s mode of action, and in particular provide large-
scale insights accross many different pathways, which
cannot bemodelled with biochemical models. In the study
discussed above, the authors observed an effect of TPCA-
1 (an IKK-inhibitor) on JAK/STAT signaling that could
not be reconciled with their model based on prior knowl-
edge of the involved pathways. Follow-up experiments
including another IKK inhibitor (BMS345541) showed
that the effect was specific to TPCA-1, and thus based
on an off-target effect rather than an unknown crostalk
between Ikb/NFkb and JAK2/STAT pathways [33]. In a
related study [34], a similar procedure was used to gen-
erate models specific to certain drugs. By comparing
the changes in the functional wiring with and without
drugs, the authors found beside obvious effects (e.g.,
EGFR inhibitors blocks the EGFR pathway) not-reported
alterations of signal transduction due to drug promiscu-
ity (e.g. EGFR inhibitor Gefitinib inhibits IL1a-mediated
activation of JNK activation).
Logic models can be used to systematically explore the

properties of large networks to identify therapeutical tar-
gets. Saadatpour et al. performed a perturbation analysis
of a model of signalling in T-cells, that lead to the iden-
tification of 19 potential targets for large granular lym-
phocyte leukemia, a diseased that exhibits an abnormal
increase in the amount of T-cells [35].
In another application of logic modeling, Sahin et al.

built a literature-derived logic model of ERBB receptor-
regulated G1/S transition [36]. They used their model to
investigate a chemotherapeutic resistant cell line (specif-
ically, breast cancer cell with de novo tratuzumab resis-
tance) and to find targets whose knockdown would
increase drug senstivity. Furthermore, with their model
the authors proposed (and experimentally validated in-
vitro) c-MYC as a novel therapeutic target in both resis-
tant and sensitive to trastuzumab breast cancer cell lines.

Identifying drugmode of action: drug networks
The immediate interpretability of networks and the
solid algorithmic background of graph-theory have been
recently exploited in computational drug discovery, where
“drug-networks” describing different kind of relationships
among drugs, diseases, and molecular targets have been
successfully developed. In what follows we review some of
the most promising results achieved so far.

Gene-Expression based networks for drug-classification
and -repositioning
Differently from the networks described in the previous
sections, a number of approaches has been developed on
the idea of inferring drug-drug and/or drug-disease sim-
ilarity networks from gene expression data. In drug net-
works, each node represents a drug (or disease) and each
edge a significant similarity or “anti-similarity” between
nodes. In order to build these networks, a number of
issues must be solved. Most of them are linked to the inte-
gration of data coming from different experimental set-
tings, which are often difficult to merge together without
introducing biases, due to batch effects and individual-
experiment specificities [37].
As shown in Figure 1C, the common hypothesis under-

lying these gene expression based methods is that every
biological state can be described through a proper gene
signature, which can be defined as a set of genes com-
bined with a specific pattern of expression. By making use
of “partial” or “genome-wide” metrics, similarity in gene
expression signatures (or anti-similarity, when the sign
of expression changes are reverted), summarising drug
transcriptional responses and/or disease phenotypes, can
be used to build drug-drug (DD) or drug-disease (Dd)
networks. These networks, in turn, can be queried to iden-
tify the potential therapeutic effects and off-targets of a
new molecule, by analysing the drugs connected to it in
the network (“guilt-by-association” analysis), or to iden-
tify new applications for already approved drugs (i.e. “drug
repositioning”). A comprehensive review on these two
classes of methods has been recently published [38].
The usefulness of a Drug-drug network (Figure 1C) is

based on the hypothesys that if gene signatures summaris-
ing the effect of drugs are significantly similar to each
other, and hence the drugs are connected in the drug-
drug network, then those drugs will likely share a common
MoA [39].
Drug-disease networks rely on the following assump-

tion: if the gene signature summarizing the effect of a drug
is significantly anti-similar with the gene signature charac-
terizing a disease state, then it is reasonable to hypothesise
that the drug could “revert” the disease signature, hence
the disease phenotype [40]
Based on these assumptions a significant number of new

clinical applications for already existing drugs have been
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identified by querying drug-disease networks [41-44] or
drug-drug networks [45,46].
To establish edges between drugs or between a drug and

a disease in most of the approaches proposed so far, the
authors used as reference dataset the Connectivity Map
(cMap) [47]: the first large installment of gene expression
profiles following drug treatment on five human cancer
cell lines with more than 1,000 different bioactive small
molecules. In this work, the authors also proposed a non
parametric method based on the Kolmogorov-Smirnoff
statistic [48] to find connections between a predefined
gene signature and the gene expression profiles in the
cMap [49].
Moving along these lines, Hu and Agarwal [50] inferred

a drug-disease networks in which two nodes (that can
represent both drugs and diseases) were connected if
the corresponding signatures were significantly similar or
significantly anti-similar. In order to compose disease sig-
natures to be integrated with the cMap drug signatures,
the authors mined the Gene Expression Omnibus (GEO)
repository [51]. By analyzing the anti-similarities between
drugs and disease in the network, they were able to pre-
dict new clinical applications for existing drugs, such as
the potential efficacy of some antimalaria drugs in treat-
ing Chron’s disease, and that of other established drugs for
Huntington disease.
While derived from similar principles, Iorio et al first

generated a drug-drug network from the cMap dataset
using a novel “drug distance metric” able to score the
similarity between genome-wide GEPs following drug
treatment [45]. The network was then analysed with
graph-theoretic tools to identify “communities” of drugs
consisting of groups of densely interconnected nodes (i.e.
drugs). The authors found that these communities were
indeed enriched for drugs sharing a common MoA and
therapeutic application. The network was then used to
classify both known and novel HSP90 inhibitors and
CKD2 inhibitors by integrating them in the network and
analysing the MoAs enriched in the surrounding commu-
nities. In addition, by analysing the neighborhood of a
“seed compound” with a desired MoA they were able to
predict and experimentally validate that Fasudil, a known
ROCK inhibitor approved in Japan against blood vessel
obstruction, may enhance cellular autophagy.
Taken together these results show the ability of drug net-

works in identifying novel applications for existing drugs,
as well as to charachterise novel molecules by looking
at the known properties of their connected neighboring
compounds.

Drug-Networks based on side-effects similarity
In addition to methods based on GEPs, other kinds of
drug similarity metrics have been developed to infer drug
networks.

Campillos et al [52] mined the Unified Medical
Language System (UMLS) [53] ontology for medical
symptoms and extracted informations about known side-
effects of a large number of marketed drugs. They then
assembled a network in which two drugs were connected
by an edge if known to cause similar adverse reactions.
In this way, they were able to discover unexpected con-
nections among drugs with dissimilar chemical structure
and different therapeutic indication. A number of these
similarities were experimentally verified and confirmed
previously unreported drug-target relations. Specifically,
the authors predicted, and experimentally validated with
in-vitro and cell assays, that the nervous system drugs
pergolide, paroxetine, and fluoxetine share a common tar-
get with rabeprazole, a proton pump inhibitor, approved
for relieving duodenal ulcer symptoms and for treating
ulcerative gastroesophageal reflux disease.

Conclusions
Molecular and drug networks are powerful approaches to
speed up and improve both the drug discovery process
and drug repositioning. We expect that their full inte-
gration into the academic and industrial drug discovery
pipeline will likely have a major impact.
We have reviewed three different broad approaches

used to identify drug MoA by harnessing the power of
networks, at three different level of abstraction: transcrip-
tional networks, protein networks and drug networks.
The role of transcriptional networks in determining

mode of action of small molecules is undoubtebly grow-
ing, thanks to availability of more detailed gene network
models and to the ever increasing amount and quality of
GEPs. Indeed, thanks to the new sequencing technolo-
gies, it is now possible to achieve extrememultiplexing, i.e.
mix different RNA samples in the same assay, thus enor-
mously reducing the costs of obtaining GEPs in specific
cell types and tissues. For example, a new high-throughput
sequencing strategy was recently described [54], allowing
measurement of gene expression profiles of hundreds of
genes in thousands of samples to identify small molecules
for therapy of hormone-refractory prostate cancer.
Signaling networks are the elective choice to model

and identify drug Mode of Action, since most of the
known effects of small molecules are mediated by kinases
and phosphates. Despite the recent progress in fast and
effective computational approaches, some of which were
here reviewed, the major drawbacks is the experimental
effort required to perform comprehensive phosphopro-
teomic time-course experiments. Increasing precision and
decreasing costs of performing genome-wide phospho-
proteomic measurements will likely lead to an increased
use of signaling network models in the drug discovery.
Drug network are a unique tool to explore similari-

ties and differences between drugs, and between drugs
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and diseases. The topology of “drug-drug” and “drug-
disease” networks allows the inference of new applica-
tions for already approved drugs, and the elucidation of
the MoA of small-molecules. Unlike transcriptional and
signaling networks, these methods provide little or no
mechanistic insights, since they rely on broad similari-
ties in phenotypic effects of drugs, and not on detailed
molecular interactions. Nevertheless, because of this,
they do not require ad-hoc and expensive experiments,
but can rely on the huge amount of publicly available
transcriptional, chemoinformatics and literature-derived
data, from which similarities and corresponding drug
networks can be inferred. These data already exist and
have not been fully exploited yet, and arguably it will
be able to reveal a massive number of new meaningful
connections.
Interestingly, at the time of writing, massive transcrip-

tomics experiments are ongoing where thousands of cell
lines are being treated with thousands of small molecules
to detect gene expression changes following treatment
with each compound (refer to the NIH LINCS initiative
http://www.lincsproject.org). Such a trove of data can be
analysed by network-based approaches to yield unprece-
dented insights connecting small molecules, pathways and
diseases.
We have considered three different types of networks,

each derived from different sources of experimental data
or literature-based analysis. Each network type provides
a different and potentially complementary view of the
drug MoA with potential applications both in drug dis-
covery/lead optimisation and for drug repositioning. It
can be therefore expected that combining transcriptional,
protein and drug networks will lead to an enhanced
understanding of drug’s mode of action.
In order to achieve this long-term objective, however,

some outstanding challenges should be solved. For exam-
ple, it is not obvious how to predict from cell-based data,
such as GEPs following treatment, the effect of a compund
in a tissue or in the whole-organism. Moreover, the gen-
eral applicability of these approaches in the face of cellular
and/or patient heterogeneity has yet to be proven. Link-
ingmodels of signalling to transcriptional networks would
allow to integrate proteomics and gene-expression data,
but how to best achieve this is still an open question [55].
Moreover, it is still not clear what a good drug should look
like in context of networks, since no established criteria
are available yet.
Ultimately, quantitative models of small molecule func-

tion promise to link molecular events at cellular level
to phenotypical outcomes and to cellular and body-level
effects.
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