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Abstract

Background: I|dentifying protein complexes from protein-protein interaction network is fundamental for
understanding the mechanism of cellular component and protein function. At present, many methods to identify
protein complexes are mainly based on the topological characteristics or the functional similarity features, neglecting
the fact that proteins must be in their active forms to interact with others and the formation of protein complex is
following a just-in-time mechanism.

Results: This paper firstly presents a protein complex formation model based on the just-in-time mechanism. By
investigating known protein complexes combined with gene expression data, we find that most protein complexes
can be formed in continuous time points, and the average overlapping rate of the known complexes during the
formation is large. A method is proposed to refine the protein complexes predicted by clustering algorithms based on
the protein complex formation model and the properties of known protein complexes. After refinement, the number
of known complexes that are matched by predicted complexes, Sensitivity, Specificity, and f-measure are significantly
improved, when compared with those of the original predicted complexes.

Conclusion: The refining method can discard the spurious proteins by protein activity and generate new complexes

by just-in-time assemble mechanism, which can enhance the ability to predict complex.
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Background

In a cell, rather than function individually or in isolation,
proteins interact physically with each other to form mul-
tisubunit protein complexes that act as sophisticated mul-
timolecular machines, such as the anaphase-promoting
complexes, RNA splicing and polyadenylation machinery,
protein export and transport complexes[1]. The function-
ality of the cell depends on protein physical interactions
and these multimolecular machines, thus great effort has
been made to identify and describe all protein-protein
interactions (PPIs) and protein complexes in a cell. The
maturity of high-throughput experimental techniques and
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computational prediction, such as two-hybrid assay, mass
spectrometry experiments, and the protein chip technol-
ogy, make it possible to construct large-scale protein-
protein interaction networks (PPINs) of many species.
Many protein complexes are well understood, particularly
in the model organism Saccharomyces cerevisiae (a strain
of yeast). For this relatively simple organism, the study of
protein complexes is now being performed genome wide
and the elucidation of most protein complexes of the yeast
is undergoing. Predicting protein complex from protein
interaction networks is one of the most challenges but a
fundament to analyze tissue and protein functionality [2-
4]. Graph theory has become a powerful research tool for
analyzing PPINs [5]. In graphs which are used to repre-
sent PPINs, proteins are represented by vertexes or nodes,
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and PPIs are represented by edges. Computation meth-
ods based on graph theory are also used to predict protein
complex [6].

So far, many clustering methods are developed for iden-
tifying proteins complexes in PPINs [2-5,7-13,13-17,17-
28]. Dense sub-graph based methods and hierarchy
algorithms are two representative categories. Based on the
assumption that the members in the same protein com-
plex and functional module strongly bind each other, a
cluster can be referred as a densely connected subgraph
within a PPIN. The density (d) of a subgraph with # ver-
tices and m edges is generally defined as d = 2m/(n(n —
1)) [9]. Maximal cliques are used in several algorithms
to identify protein complexes [9,14,22,24,29]. Spirin et al.
[9] employ d = 1 to identify the maximal cliques as pro-
tein complexes. An algorithm named Clique Percolation
Method (CPM) [29] is proposed by uniting the maximal
cliques with kX — 1 common nodes, and the well-known
protein network analysis tools CFinder [14] is developed
on it. The maximal cliques in CMC [22] are generated
from a weighted PPIN, and then combined or removed
based on connectivity and overlapping rate. Wang et al
[24] propose a new topological model by extending the
definition of k-clique community of algorithm CPM and
introducing distance restriction, and develop a novel algo-
rithm called CP-DR based on the new topological model
to identify protein complexes. Some other dense sub-
graph based complex detection algorithms follow a “seed
and extension” paradigm, such as MCODE [30], Density-
Periphery based graph clustering algorithm (DPClus) [16],
IPCA [4], and Core-Attachment method [21], using dif-
ferent mechanisms of seeds selection, cluster expansion
and stop conditions to detect protein complexes. Recently,
entropy-based graph clustering methods are also applied
on PPINs to detect dense sub-graphs as protein complexes
[27,28]. Hierarchical clustering algorithms are based on
similarity or distance to identify protein complexes, with
the idea that the majority of proteins within a same pro-
tein complex tend to have similar or identical functions
[31]. The similarity or distance between any two pro-
teins is defined as the possibility of the two proteins in
the same functional module. The most classic hierarchical
clustering method is GN algorithm [8]. MoNet algorithm
[19] is a typical coagulation, derived from the GN algo-
rithm. HCS algorithm [32] is used to analyze the protein
modular structure based on graph connectivity. HC-PIN
method [26] uses the weighted edge clustering coefficient
to perform fast hierarchical clustering.

Besides the topological characteristics or the functional
similarity features of protein complexes, some researchers
try to reveal the mechanism of protein complex for-
mation. Focusing on the dynamic formation of protein
complexes, De Lichtenberg et al. [33] construct time-
dependent PPIN of Yeast by integrating PPIN and gene
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expression data. By analyzing the dynamics of protein
complexes during the yeast cell cycle, they discover that
most complexes are constituted by both periodically and
constitutively expressed proteins, which suggests a mech-
anism of just-in-time assembly. Based on gene expression
data, Komurov and White [34] also classify proteins of
eukaryotic into periodically expressed proteins and con-
stitutively expressed proteins. However, by analyzing the
topology of the two classes of proteins, they find that
most functional modules are consisted by proteins from
one class (periodically expressed proteins or constitutively
expressed proteins), seldom from both of the two classes.
The different conclusions drawn from De Lichtenberg
and Komurov might be caused by the difference of data
sources and the considered module types.

A protein is active when it is in its active form, and
it can interact with other active proteins and perform
function [35]. During the formation of a complex, at one
time point the co-active proteins will assemble together,
and at the next time point the new co-active proteins
will be added in, therefore the complex can be assembled
step by step following a just-in-time way. In this paper, a
protein complex formation model is presented based on
the just-in-time mechanism. Relied on the protein com-
plex formation model and combined with gene expression
data, an investigation is carried out on 408 known com-
plexes of yeast [36] and the protein complexes identified
by existing methods. Based on the protein complex for-
mation model and the properties of known complexes, we
propose an effective method to refine the complexes pre-
dicted by existing methods. Several clustering algorithms
are applied on yeast PPIN to predict protein complexes.
The speciality, sensitivity, f-measure and other evaluation
metrics are compared between the original predictions
and the refined predictions.

Methods

In this section, we first introduce our former study on
protein activity, which is deduced from gene expression
data. Later on, based on the active time points of proteins
and the protein complex formation model, we investigate
the formation of each known complex. These analyses are
also carried out on the complexes predicted by existing
methods. Based on the difference between known com-
plexes and predicted complexes, an effective method is
introduced to refine the complexes predicted by existing
methods.

Material

The PPI data of yeast is downloaded from DIP [37]
updated to Feb. 28, 2012. The Database of Interacting
Proteins (DIP) is a database that provides species spe-
cific subsets, which contains all the interactions of pro-
teins from a particular species. In our experiment, the
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self-interactions and repeated ones in the original PPIN
are discarded. The final PPIN used in our experiment
contains 5023 proteins and 22570 interactions.

We use GSE3431 [38] in GEO to extract active time
points of each protein, which is an expression profile of
yeast by array affymetrix gene expression data over three
successive metabolic cycles. The overall design of this
expression experiment is 12 time intervals per cycle, and
25 minutes per time interval. Thus each gene has gene
expression values (levels) at 12 time points in each cycle.
In our method, one cycle with average expression value
at every time point of three successive cycles is used to
reduce the noise and error.

Protein active information

A protein is active when it is in its active form, and it
can interact with other active proteins and perform func-
tions. The activity of a protein not only can be affected
by its surrounding environment, but also can be regu-
lated by controlling its amount and lifetime in the cell
[35]. In our previous study[39], we focus on the latter to
deduce protein activity. The control may be exercised at
several places in the flow of information from genes to
proteins. At simplest, the amount of a protein can be set
by the level of transcription, which in turn can be con-
trolled by, for example, the strength of the promoter or
the action of a transcription factor, which may be a repres-
sor or activator. The mRNA level may also be adjusted
after transcription by varying the rate of RNA degrada-
tion. At the protein level, quantities are controlled by
the lifetime of the molecule, which is determined by its
rate of degradation. The rate of turnover varies consider-
ably from proteins to proteins. There are several specific
mechanisms for targeting protein molecules to the cell
degradation machinery, including covalent attachment of
the small protein ubiquitin. Thus each protein has its
active periods, and we assume a protein is active at the
time points with its highest expression level. Because the
expression level of a protein will be decreased after the
protein has completed its function that leads a feedback
for controlling the expression quantity, while its rate of
turnover is constant. In our previous study, we propose
a 3-sigma principle [39] to differentiate the inactive and
active points of a protein during a cellular cycle by com-
bining gene expression data. The 3-sigma strategy is to
design an active threshold for each gene by considering
its own characteristic expression curve and the inevitable
noise in gene expression array. A harmonic threshold for a
protein p based on its algorithmic mean and variance can
be calculated.

Y. EVi(p)
u(p)="—— (1)

n
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S (EVi (p) — u(p)?
o> (p) = = (2)

n
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T 1402(p)

Active_Th (p) = S (p) XF (p)+S2 (p) x (1 — F (p)) (4)

In Equations (1) and (2), # is the number of time points
in a cell cycle, and EV;(p) is the expression value of p at
time point i. In Equation (4), S1(p) = u(p) and S2(p) =
u(p) + 30 (p). The detail about the active threshold prin-
ciple (3-sigma principle) is presented in [39].

For each gene product p, u(p) is the algorithmic mean
of its expression values and o (p) is the standard variance
of its expression values. F(p) reflects the fluctuation of
its expression curve. The higher Standard Variance, and
the smaller the F(p). As shown in Equation (4), the active
threshold of p is determined by both algorithmic mean
and 3-sigma. If the fluctuation of expression values is low,
corresponding to small o (p), S1(p) plays a more important
influence on the active threshold. Reversely, Sa(p) plays
a more important role to determine the active threshold.
Protein p is considered as active at some time points only
when the expression values of these time points are above
its active threshold Active_TH (p). Active(p) is an active
time point set of protein p, which contains the time points
when protein p is active, defined as Equation 5.

F(p) 3)

Active(p) = {ili € [0...12],EV;(p) = Active_.TH(p),p € V'}
(5)

In our experiments, although 96% of the proteins in
the yeast PPIN from DIP can be covered by gene prod-
ucts in this gene expressing profile, the active time points
of a small portion of proteins cannot be deduced from
this gene expression data. The active information of 1142
proteins cannot be inferred from their expression curves
in this gene expression profile, and 177 proteins have
no expression values in this gene expression data. These
proteins might be active in other gene expression exper-
iments, since the interval between two time points in
GSE3431 is considerably long and some proteins are active
only under special environments. If the active time points
of protein p cannot be inferred from this gene expression
profile, a special active time point “0” is used. That is to
say Active(p)={0} in this case.

Protein complex formation mechanism and protein activity
According to the just-in-time mechanism, a complex C
can be formed in a continuous time point set. A com-
plex formation model based on the just-in-time mecha-
nism can be illustrated as follows. Suppose AP;(C) (i =
0,...,n) is the set of proteins which are active at time
point i and belong to the complex C, where # is the num-
ber of time points in a cell cycle. C can be formed in
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a continuous time point set [S,S + K], if the boolean
function FC(C, S, K) is true. If the follow conditions are
satisfied, FC(C, S, K) is true, otherwise it is false.

S+

(1) |(U APi(C)) N APs;11(C)| > 0,forj=0,...,K—1
=S
S+K

2 | U AP«(O)| =C|
i=S

If we can find a interval [S, S 4+ K] for complex C that
can make FC(C, S, K) be true, we say that the complex can
be formed in the continuous active time point set. If there
exists no interval for complex C that can make FC(C, S, K)
be true, we say that the complex cannot be formed in
a continuous active time point set. Combined with the
active time point set of each protein and this model, a
statistic is carried on the 408 known protein complexes of
Yeast [36] and the complexes predicted by representative
algorithms to calculate the percentage of complexes which
can be formed in a continuous active time point set. The
comparison is listed in Table 1. About 63.4% known com-
plexes can be formed in a continuous time point set, while
only a small portion of predicted complexes can be formed
in a continuous time point set.

For complex C, when FC(C, S,K) is true, the overlap-
ping rate of time point S+i is the fraction of the number of
common members in APg ;(C) and the protein set assem-
bled in time points [S, S + i — 1] to the minimum size
of two sets, defined as Equation (6). The overlapping of
complex C during the formation interval [ S, S + K] is the
average of the overlapping rates of time points from S + 1
to S+ K, defined as Equation (7). The average overlapping
of the known complexes is calculated, so do the com-
plexes predicted by representative algorithms, as shown in
Table 1. We can observe that the average overlapping of

Table 1 The comparison of average co-active rate and the
percentage of complexes formed in a continuous time
point set of the known complexes and complexes
predicted by algorithms

Complexes Average Formed
(CoActiveRate) complexes(%)
Known Complexes 0.595 63.4%
Predicted Complexes(CMC) 0.210 23.0%
Predicted Complexes(DPClus) 0.329 36.5%
Predicted Complexes(IPCA) 0.269 29.3%
Predicted Complexes(CPM) 0.335 37.0%
Predicted Complexes(MCL) 0.252 28.8%
Predicted Complexes(Core) 0.265 29.7%

The average co-active rates of the known complexes and the complexes

predicted by six algorithms are compared in Table 1. The percentages of

complexes which are formed in a continuous time point set in the known
complexes and predicted complexes are list in Table 1.
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the known complexes is above 0.5, and that of the com-
plexes predicted by each algorithm is significantly lower.
Therefore the property that protein complexes are formed
step by step is neglected and the predicted complexes con-
tain spurious proteins. Based on these shortcomings, we
can refine the predicted complexes.

Sti-1
( U APy(C) NAPs1(C)

OLs4i(C) = ———— i=1,.,K
Min(|(' U APy(C))|,APs+(C))
h=S§
(6)
K
> OLs1i(C)
OL(C) = = (7)

K

Refining method

To improve the accuracy of complex prediction, we pro-
pose a method to refine the protein complexes predicted
by existing methods based on protein activity and the
protein complex formation model with the just-in-time
mechanism.

The framework of the method

The active proteins of a predicted complex at each time
point can form several sub-clusters based on PPIN topol-
ogy. The overlapping between two clusters, labeled as
OV(Cix,C;y), is defined as the fraction of the number of
common members in the two clusters to the minimum
size of two clusters, shown as Equation (8), where C; « is
a sub-cluster k at time point i, and Cj; is a sub-cluster /
at time point j. Based on the overlapping of sub-clusters
at adjacent time points, a protein complex can be formed
step by step. Only the complexes, whose size is greater
than 2, will be refined, because the complex with size=2
has only two possible forms after refinement, two single-
tons or the same complex with no change. The refining
method has two steps, including splitting and assembling.
The overall framework of the refining method is shown in
Figure 1. Firstly, a clustering method is applied on a PPIN
to predict complexes. Then, the splitting and assembling
processes are consecutively carried out on each predicted
complex.

|Ci,k N C',1|

Min(|Cix|,|Cs

OV(Cix, Cip) = )

(8)

Splitting of protein complex

The active time set of a complex, defined in Equation (9),
is constituted by the active time points of each protein in
the complex. During the splitting, an original predicted
complex can be split according to 7+ 1 time points, where
n is the number of time points in a gene expression profile
and an additional special time point ‘0’ is used to contain
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Figure 1 The outline of the refinement. The refining method has two steps, including splitting and assembling. In the framework of the
refinement, a clustering method is firstly applied on a PPIN to predict protein complexes, and the splitting and assembling processes are
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the proteins whose Active(p)={0}. For each active time
point, the proteins which are not active at the time point
are excluded, thus the complex can be split into several
connected components (sub-clusters) at the time point. In
each component, all proteins are active at the time point.

Active_C(C;) = {t|t € Active(v),v € C;} 9)

The detail of the splitting algorithm is shown in Algo-
rithm 1. The inputs of this algorithm are an original
complex which contains proteins and interactions derived
from PPIN, and the active time point set of the complex.
For each active time point, the proteins which are not
active at this time point will be removed from the original
complex, and several sub-clusters are generated based on
PPIN topology.

Algorithm 1 Splitting
1: Input: An identified complex C;, the active time point
set Active_C(C;) of Cj;
2: Output: Sub-clusters;

3:
4: for each t € Active_C(C;) do
5:
6: // find the connective sub-clusters of C; at time
point ¢
for each protein p € C; do
if t ¢ Active(p) then
: remove p from C;
10: end if
11: end for
12: add all connected sub-clusters into C; one by one;
13: /1j=0...msm; is the number of connected sub-

clusters at ¢

14: end for
15: return sub_clusters {Ct,j |t =0...nj=0,..., mt}
After splitting, a complex will become many sub-
clusters on its whole active time point set. Most sub-
clusters are smaller than the original complex. Some
sub-clusters may be singletons, some sub-clusters may be
identical ones, and some ones are high-overlapping with
each other.

Assembling of protein complex

Based on the just-in-time mechanism, the assembling of a
protein complex is to assemble the sub-clusters with cer-
tain overlapping at adjacent time points. The core idea of
assembling is to combine the sub-clusters from adjacent
time points that satisfy OV (C;k, Ciy1;) > T, where T is a
threshold to discriminate high overlapping from low over-
lapping. Active time point ‘0’ is used to denote a special
active time point for proteins whose active time points
cannot be inferred from the current gene expression pro-
file. These proteins have the potential to be active at some
time points when special conditions are prepared. Thus,
the sub-clusters at ‘0’ time point can combine with sub-
clusters at arbitrary time points with overlapping great
than T.

The description of assembling algorithm is shown in
Algorithm 2. Firstly, let the sub-clusters at time point ‘0’
combine with sub-clusters at other time points. If there
exists C;x at time point i and Cp; at time point ‘0’ satis-
fying OV (Cy, Cix) = T, let C;x be the union of Cp; and
itself. After all sub-clusters at each time point have been
checked, delete the sub-clusters in the set at time point ‘0’
which have been combined. Secondly, the sub-clusters at
time point i and the adjacent time point i+1 are checked.
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For each C; at time point , if there exists C; 1 ; that satis-
fies OV (Ciy1,, Cix) = T, let Ciy1, be the union of C; ¢ and
itself. After all the sub-clusters in the set at time point i
set have been checked, the sub-clusters at time point i are
deleted if they have been combined. Finally, the left sub-
clusters at each time point are considered as new protein
complexes. These new protein complexes are assembled
according to the time order, connectivity and the overlap-
ping of active proteins. After the assembling process, an
original protein complex might become several new pro-
tein complexes, or be discarded. New protein complexes
tend to be smaller than the original ones. After all original
predicted protein complexes are undertaken the splitting
and assembling steps, the identical ones in the final results
are deleted.

Algorithm 2 Assembling

1: Input: sub-clusters C;;(i =0...n,j =0,...
identified complex C;, OV _Threshold;
Output: Refined complexes;

,m) of an

fori=1tondo

AN AN N

/I Coj G = 0,...
satisfy OV _threshold

,m) can combine into C; if

7: for each Cy;(j =0,...,m) do

8: if exists Cjx that make OV (Cy; Cix) =
OV _Threshold then

9: Cix = Cix UGy

10: end if

11: end for

12: end for

13:

14: clear the combined sub-clusters in “0” time point
15:

16: fori=1ton —1do

17: h=i+1

18: for C;j (j=0,...,m) do

19:

20: /I combine C;; and if Cj; if satisfy
OV _threshold

21: if exists Cp; that make OV(C;;,Cpp) >
OV _Threshold then

22: Cpi = Cp UGy

23: end if

24 end for

25: clear the combined sub-clusters in “i” time point

26: end for

27:

28: Output {Ci,j|Ci,j #0,i=0,.. .,Vl,j =0,...,m}

The refinement process of an original complex is illus-
trated in Figure 2. As shown in Figure 2(a), an original
complex is composed by five proteins, A, B, C, D, and E.
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Figure 2(b) shows sub-clusters at each time point set after
the splitting. For example, at time point “t;”, protein A,
C and E are active and connective with each other, thus
they can form a sub-cluster. Protein A, B and E are active
at time point “t;” and form a sub-cluster. At time point
“t3”, only protein B is active. At time point “¢4” , protein B
and D are active, but not connective with each other, thus
each of them becomes singletons. By combining the high-
overlapping sub-clusters in adjacent time points, a new
protein complex is generated, which contains A, B, C, and
E, as shown in Figure 2(c).

Evaluation metrics

In earlier studies [16,26,30], the overlapping score OS(Pc,
Kc), shown in Equation (10) is used to assess how effec-
tively a predicted complex Pc matches a known complex
K.

|Vee N Vie|*
[ Vel x | Viel

where |V)| is the number of proteins in the predicted
complex and | V.| is the number of proteins in the known
complex. If a predicted complex Pc that has no common
proteins with a known complex Kc, then OS(Pc, Kc)=0.
Usually, a predicted complex and a known complex are
considered as a match if their overlapping OS is no less
than 0.2 [16,26,30]. If we say a predicted complex Pc per-
fectly matches a known complex K, it means all proteins
appears in Pc are equal with that in K¢, and OS(Pc, Kc)=1.
PC is the number of the predicted complexes. MKC is
the number of known complexes that are matched by
predicted complexes and MPC is the number of pre-
dicted complexes that match the known complexes, when
a threshold value of OS is adopted. MKC illustrates the
ability to predict complex.

Sensitivity (Sn) is the fraction of the known complexes
that are matched by the predicted complexes (OS > 0.2)
among all the known complexes [30], shown in Equation
(11). Specificity (Sp) is the fraction of the predicted com-
plexes that match the known complexes (OS > 0.2) to the
total number of the predicted complexes [30], defined in
Equation (12).

OS(Pc, Kc) = (10)

S P 11)
n= ———-

TP + FN
o _ TP 12)
P = Tp ¥ Fp

where TP (True Positive) is the number of the predicted
complexes that match the known complexes (OS(Pc, Kc)>
0.2), FP (False Positive) is the number of the predicted
complexes that don’t match the known complexes, and FN
(False Negative) is the number of the known complexes
that are not matched by any predicted complexes.
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Figure 2 An example of refinement. Figure 2 shows the refinement on an original predicted complex, composed by five proteins, A, B, C, D, and E.
Figure 2(b) are sub-clusters at each time point set after the splitting. By combing the high-overlapping sub-clusters in adjacent time points, a new

f-measure combines Su and Sp [30], defined in
Equation (13).
2x8Sp xS
f — measure = e (13)
Sp + Sn

Results and discussion

In order to evaluate the efficiency of the refining method,
we apply it to refine the protein complexes predicted by six
representative clustering algorithms. DPClus and IPCA
are density-based local search algorithms [16,26]. Clique
Percolation Method (CPM) is a powerful algorithm to find
protein complexes[29] and MCL is a fast and highly scal-
able clustering algorithm for networks based on stochastic
flow [40,41]. CMC [22] and Core-Attachment [21] are the
latest ones for detecting community structures. We use
the parameters recommended by their authors in these
algorithms.

In the experiments, the size of predicted complexes
which need to be refined should be not smaller than 3.
According to the analysis of known complexes, the aver-
age co-active rate of the known complexes is above 0.5,
thus in our refined method the OV’s threshold T is set
as 0.6. The impact of the varying of T on the accuracy
of protein complexes prediction is analyzed in subsection
“Analysis of parameter 7"

Comparison with known complexes

For convenience sake, the complexes predicted by each
clustering method are mentioned as original complexes,
the complexes refined by our method are referred as
refined complexes, denoted as algorithm_O and algo-
rithm R in tables and figures, respectively. The original
complexes and refined complexes of each algorithm are
compared with the known protein complexes obtained
from the literature published in Nucleic Acids Research
[36] separately. There are 408 manually annotated com-
plexes which are considered as the gold standard data and
of which each consists of two or more proteins.

To evaluate the performance of the refining method
on the original complexes with different sizes, we select
six algorithms, three of which are good at identifying
relatively small complexes and the others are good at
predicting relatively large complexes. Table 2 lists the
numbers and average sizes of the original complexes and
refined ones of each algorithm. The number of predicted
complexes of each method is increased after refinement,
and the average size of refined complexes is smaller than
that of the original ones, because the refining method
filters some non co-actived proteins out of the origi-
nal complexes, and reassembles the co-active proteins
into new complexes based on the just-in-time mecha-
nism. The average sizes of original complexes of MCL,
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Table 2 The average size of the complexes predicted by
algorithms before and after refinement

Algorithm PC Average Size
CMC.O 1369 345
CMCR 1532 248
DPClus_-O 383 3.98
DPClus_R 578 276
IPCA_O 1650 3.72
IPCAR 1843 267
CPM_O 197 13.30
CPMR 346 1748
MCL_O 621 6.71
MCL-R 877 3.62
Core O 675 6.10
Core_R 1025 349

The complexes of each clustering method before and after refinement are
denoted as algorithm_O and algorithm_R. Table 1 lists the numbers and average
sizes of the original complexes and refined ones of each algorithm.

Core-Attachment, and CPM are relatively large, and after
refinement the average sizes are larger than 3. However,
the average size of refined complexes of CPM is bigger
than that of the original ones. The reason is that an orig-
inal super-complex with 1821 proteins predicted by CPM
becomes many large-size sub-clusters after splitting, while
these large sub-clusters are so hard to satisfy the over-
lapping threshold (7'=0.6) that they cannot be combined
with each other. The average sizes of the original com-
plexes predicted by CMC, IPCA and DPClus are relatively

O+ Core_O
—®— Core_R
A~ CPM_O
—A—CPM_R
Y- MCL_O
—&x—MCL_R

Figure 3 The MKC of CPM, MCL and CoreAttachment under
different OS threshold values. The complexes of each clustering
method before and after refinement are denoted as algorithm_O and
algorithm_R. The MKC before and after refinement of CPM, MCL and
CoreAttachment algorithms are compared with respect to different
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Figure 4 The MKC of CMC, IPCA and DPClus before and under
different OS threshold values. The complexes of each clustering
method before and after refinement are denoted as algorithm_O and
algorithm_R. The MKC before and after refinement of CMC, IPCA and
DPClus algorithms are compared with respect to different OS
threshold values.

OS threshold values.

small, and after refinement the average sizes of the refined
complexes are smaller than 3.

For the algorithms which predict complexes with larger
average sizes, from Figure 3, it can be found that the MKC
of three algorithms after refinement are improved signifi-
cantly under different OS threshold values, compared with
those of the original complexes. It demonstrates that the
refining method can discard the spurious proteins by pro-
tein activity and generate new complexes by just-in-time

50
457 I Original
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35

192

8

£ 304

g ]

5 254
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Figure 5 The numbers of perfect matching (0S=1) of six
algorithms before and after refinement. Figure 5 shows the
numbers of perfect matching from the original predicted complexes
and the refined complexes of CPM, MCL, CoreAttachment, CMC, IPCA
and DPClus algorithms.
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assemble mechanism, which can enhance the ability to
predict complex.

In Figure 4, MKC before and after refinement of the
algorithms with relatively small average sizes of predicted
complexes are compared with respect to different OS
threshold values. When the value of the OS threshold is
changed from 0.7 to 1, MKC after refined is improved.
Because these three methods prefer to find small com-
plexes, and the average sizes of the refined complexes
are smaller than 3, which makes the overlapping score
between the refined complexes and the known complexes
mainly fall in [0.7, 1], in which MKC will increase after
refinement. Therefore, for the algorithms that predict rel-
atively small complexes, the refining method can make the
prediction more precise.

Since the spurious proteins of original complexes at each
time point are discarded by the refining method, a more
precise prediction is supposed to be available for each
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algorithm. In Figure 5, we can observe that the numbers
of perfect matches are increased after refinement, and the
average gain of perfect matches of six algorithms is 12. The
number of perfect matches of CMC_R is 42, which is 16
more than that of CMC_O. 24 more perfect matches are
gained by IPCA_R, while the number of perfect matches
of IPCA_O is 24. MCL_R has 15 more perfect matches,
compared with 6 perfect matches gained by MCL_O.
DPClus_O has 23 perfect matches, while DPClus_R has
27 perfect matches. CoreAttachment_R gains 7 more per-
fect matches compared with that of CoreAttachment_O.
The CPM_R has 17 perfect matches, and CPM_O has 12
perfect mathes.

Analysis of sensitivity, specificity and f-measure

In Figure 6(a), the Sn of refined complexes of each
algorithm is higher than that of the original ones. The
improvements of Sun of most algorithms are above 15%,
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0.7 4
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Figure 6 The comparison of f-measure, Sn, Sp of six algorithms before and after refinement. (a) is the comparison of Sensitivity(Sn) of the
complex predictions of six algorithms before and after refinement; (b) is the comparison of Specificity(Sp) of the complex predictions of six
algorithms before and after refinement; (c) is the comparison of f-measure of the complex predictions of six algorithms before and after refinement.
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except for IPCA, which is about 9%. The potential abil-
ity to identify more known complexes is available in
each algorithm. The room for the improvement of Su is
determined by the number and the average size of the
original complexes predicted by an algorithm. If an algo-
rithm prefers to predict a large number of complexes with
small average size, the room for the improvement of Sun
is very limited, since a very small number of new differ-
ent complexes will be generated from the small original
complexes. The number of complexes predicted by IPCA
is the largest, and the average size is relatively small, thus
the space to discard spurious proteins and identify more
known complexes by the refining method is limited. If
an algorithm tends to identify complexes with relative
larger average size, there is great room for improvement,
because more new different complexes will be reassem-
bled by the refinement, such as Core-Attachment. As
shown in Figure 6(b), the Sp of each algorithm after refine-
ment is also boosted, and they are about 12% in CMC,
8% in CPM, 5% in DPClus, 6% in IPCA, 6% MCL, and
10% in Core-Attachment, respectively. It means although
the number of refined complexes of most algorithms are
increased, the percentages of MPC are also increased. The
f-measure which is based on the increased Sn and Sp
is also improved largely after refinement, and the aver-
age improvement is about 12%. The f-measure of each
algorithms after refinement is enhanced by about 15%
in CMC, 16% in CPM, 10% in DPClus, 8% in IPCA,
10% MCL, and 14% in Core-Attachment, respectively,
as shown in Figure 6(c). These improvements validate
the efficiency of the refining method, which can improve
the ability of each algorithm to predict more MKC
and MPC.

Analysis of parameter T

In the refining method, the value of OV’s threshold T is
set as 0.6, while the average co-active rate in the known
protein complexes is larger than 0.5. In this subsection,
we will discuss the impact of different values of 7 on the
prediction results. Actually, T can vary in the range of
[0,1]. In Figure 7, the f-measure of each algorithms varies
with different values of 7. When T'=0, the refined predic-
tion results are the original ones. It is very easy to find
out that, the f-measure of six algorithms are enhanced
when T > 0. We can observe that for all the six algo-
rithms, when T is in the range of [0.1, 0.5], the changes
of f-measure is insignificant. Because certain overlapping
exists in the sub-clusters and is relatively easy to satisfy
the combination condition when T is relatively small, the
difference between the original ones and the refined ones
is mainly the deletion of some proteins. The PC are not
significantly increased, so are the MPC and MKC, which
in turns have an influence on the Su, Sp and f-measure.
When T is in the range of (0.5, 1.0], the combination
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Figure 7 The varying of f-measure of six algorithms under
different T threshold. Figure 7 shows how the different values of T
threshold adopting in the refinement effect f-measure of six
algorithms.

condition is more critical. It makes hard to combine sub-
clusters, which makes the prediction more precisely. Thus
PC is significantly increased, so are the MPC and MKC.
For most algorithms, the f-measures are also significantly
increased in this region, except for IPCA. As shown in
Figure 7, the f-measure of IPCA after refinement is very
flat in the range of [0.1, 1]. This is because the average
size of the original complexes predicted by IPCA is rel-
atively small, and the number of the original complexes
is very large. On one had, it has tried its best to identify
known complexes; On the other hand, the large num-
ber of original complexes with small average size limits
the spaces to increase MPC, MKC, Sn, Sp and f-measure.
Thus, for most algorithms, the value of OV’s threshold T
is recommended in the range of [0.5, 1.0].

Conclusion

Based on the just-in-time mechanism, the protein com-
plex formation model is presented. Furthermore, we ana-
lyze the known protein complexes based on the complex
formation model and combined with gene expression
data, and find out that most complexes can be formed
in a continuous time point set and the average overlap-
ping rate of the known complexes during the formation
is larger than 0.5. For the complexes which are predicted
by clustering methods, only a small portion of them can
be formed in a continuous time point set, and the aver-
age overlapping rates during the formation are significant
lower than that of the known complexes. This paper pro-
poses a method to refine the predicted complexes based
on the protein activity and the complex formation model.
The refining method contains two steps, splitting and
assembling. To evaluate the refining method, we apply it
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to six algorithms which prefer to predict complexes with
different sizes. Through the comparison of the MKC, f-
measure, Su, and Sp of original complexes and the refined
ones, the results show that the MKC, f-measure, Sn,
and Sp of each algorithm are significantly improved after
refinement. Furthermore, it is easy to find out that the
performance of algorithms which predict complexes with
relative large average size has been greatly improved by
our refinement method.
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