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Abstract

Background: High throughput screening technologies enable biologists to generate candidate genes at a rate that,
due to time and cost constraints, cannot be studied by experimental approaches in the laboratory. Thus, it has
become increasingly important to prioritize candidate genes for experiments. To accomplish this, researchers need
to apply selection requirements based on their knowledge, which necessitates qualitative integration of
heterogeneous data sources and filtration using multiple criteria. A similar approach can also be applied to putative
candidate gene relationships. While automation can assist in this routine and imperative procedure, flexibility of
data sources and criteria must not be sacrificed. A tool that can optimize the trade-off between automation and
flexibility to simultaneously filter and qualitatively integrate data is needed to prioritize candidate genes and
generate composite networks from heterogeneous data sources.

Results: We developed the java application, EnRICH (Extraction and Ranking using Integration and Criteria
Heuristics), in order to alleviate this need. Here we present a case study in which we used EnRICH to integrate and
filter multiple candidate gene lists in order to identify potential retinal disease genes. As a result of this procedure, a
candidate pool of several hundred genes was narrowed down to five candidate genes, of which four are confirmed
retinal disease genes and one is associated with a retinal disease state.

Conclusions: We developed a platform-independent tool that is able to qualitatively integrate multiple
heterogeneous datasets and use different selection criteria to filter each of them, provided the datasets are tables
that have distinct identifiers (required) and attributes (optional). With the flexibility to specify data sources and
filtering criteria, EnRICH automatically prioritizes candidate genes or gene relationships for biologists based on their
specific requirements. Here, we also demonstrate that this tool can be effectively and easily used to apply highly
specific user-defined criteria and can efficiently identify high quality candidate genes from relatively sparse datasets.

Keywords: Qualitative integration, High-throughput data, Heterogeneous data, Network, Network visualization,
Candidate prioritization
Background
Hundreds to thousands of candidate genes, or genes of
interest, can now be generated from a single experiment
utilizing high throughput screening technologies. However,
the number of candidate genes that can be experimentally
studied in-depth is often constrained by time and cost.
Therefore, prioritization of candidate genes is a critical step
in the experimental process. Approaches to identify ‘the
most promising’ candidates are becoming increasingly
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reproduction in any medium, provided the or
more sophisticated. For example, when microarray studies
were initially reported, ‘the most promising’ candidates
were often the most differentially expressed and could be
obtained by a simple ranking of candidates based on fold
change. As more data has become available, biologists have
begun to look for ways [1-4] to use multiple data sources
to increase the accuracy of candidate gene prioritization.
Some tools have already been developed to address this
need [5-11]. These tools prioritize candidates by their simi-
larity to genes already known to be important for a particu-
lar biological process (e.g., genes known to regulate cell
cycle in yeast). Multiple data sources including published
literature, gene sequence, functional annotation, etc. can be
considered when comparing the similarity of candidates to
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‘known genes’. These tools [5-11] have made important
progress towards the problem of candidate prioritization.
However, these tools use data queried from predetermined
sources, such as public databases, and include embedded
criteria. Thus, these software packages have limited utility.
Biologists, with expertise in a given area, generally

already have a list of criteria that could be applied to
identify high quality candidates. Likely, for a given set of
experiments and resulting datasets, the best candidates
may satisfy one set of criteria in one dataset and a sepa-
rate set of criteria in another dataset. Currently, there is
no tool that allows simultaneous consideration of
heterogeneous datasets to identify candidates that
satisfy multiple criteria. This problem does not only
relate to candidate genes, but also to putative relationships
between genes in networks.
Putative gene relationships can be inferred from many

heterogeneous sources (e.g., physical interactions, genetic
interactions, expression correlation and interactions
predicted by computational models). While each of these
relationships from a given dataset should be interpreted
differently (and subject to very different criteria), the ability
to easily hypothesize gene relationships based on their
meeting appropriate criteria in multiple datasets is an
attractive prospect. This task not only calls for an auto-
mated filtering and integration tool, but also demands
great flexibility of data sources and the ability to set filte-
ring criteria. Finally, for proper interpretation, visualization
of the resulting network must facilitate inspection by 1)
retaining the original data sources of each putative rela-
tionship and 2) providing a mechanism to easily manage
the size of the displayed network. While some tools have
been developed to generate composite networks from
multiple data sources (e.g., the Cytoscape [12] plugin
CABIN [13], GraphWeb [14] and GeneMania [15]), they
do not fully address the problems stated above. For
example, CABIN supports only one filter for a single source
network and thus multiple criteria cannot be applied.
GraphWeb [14] does not support filtering by user-defined
criteria and interactive network visualization. GeneMania
[15] helps to predict the function of a set of input genes by
utilizing functional association data to generate a functional
relevant network, but does not address integration of user-
determined data and filtration with user-defined criteria.
We identified the need for a tool that is able to: 1) filter

individual datasets using appropriate criteria and then
integrate them to prioritize candidates that meet the
criteria in multiple datasets; 2) allow users to define the
most appropriate datasets and filtering criteria; and
3) provide an interactive visualization to facilitate the gene-
ration of an integrated network with a manageable size and
connectedness. To address the open demand of filtering
and qualitative integration of heterogeneous datasets, we
have developed a stand-alone, portable and flexible java
application with its own user-interactive visualization.
EnRICH (Extraction and Ranking using Integration and
Criteria Heuristics) will assist biologists in prioritization
of genes and gene relationships from heterogeneous-
source data.

Implementation
EnRICH was implemented in Java (SE 6 JDK). EnRICH
visualization was written in Processing (http://processing.
org/), an open-source programming language to create
images, animation and interactions. The separation of
non-visual and visual modules of EnRICH lays a flexible
foundation for future development and provides the user
easy access to both the text and visual output results.

Design
The objectives of EnRICH are firstly to provide a tool for
integration of multiple or heterogeneous data sets to
prioritize candidate molecules that fulfill user-defined cri-
teria, and secondly to make the integration process flexible
and simple for biologists who have little programming skill.
Our aim-oriented design principles are 1) user-defined data
sources and criteria, 2) simplicity which allows straight-
forward application of user-defined criteria to filter user-
defined datasets, and 3) platform independence.
The overall architecture of EnRICH is reflected in its

workflow-like graphical user interface (GUI) (Figure 1).
The first component (numbered as step 1 in the GUI)
accepts a single file or a directory of files as input data and
lists all files that can be selected for analysis. The second
component (numbered as step 2 in the GUI) allows the
user to display the selected file as a table and edit the table.
The third component (numbered as step 3 in the GUI)
enables the user to specify filtering criteria for each attri-
bute of the selected file. The fourth component (numbered
as step 4 in the GUI) displays all uploaded files for the user
to customize an integration pool. It also provides the user
running options on whether to apply filters that are already
specified in step 3. The fifth component is a dialog window,
which appears when the integration run is finished, and
gives the user the option to save or visualize the result. For
network data, EnRICH has an additional visualization
component where the user can do an interactive visual
analysis of the integrated network.

Input data
The current version of EnRICH accepts two types of data:
list and network. A list is a set of elements that could be
genes, proteins, etc., which have their own unique identifi-
cation code or name. List data can come from a large va-
riety of sources. For example, a list of genes can be
differentially expressed genes (DEGs) from the analysis of a
microarray experiment, genes identified by genome-wide
association mapping, or genes retrieved from a database

http://processing.org/
http://processing.org/


Figure 1 EnRICH graphical user interface. There are four major components in the user interface, which are numbered as 1, 2, 3 and 4.
Component 1: upload input data; Component 2: browse or edit the selected file; Component 3: specify filtering criteria of the selected file;
Component 4: select files to define integration pool.
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query. Each list member may have one or more attributes.
For example, each gene in a list of DEGs has its own
significance value, functional annotation, etc. For EnRICH,
list data is represented as a named matrix that is com-
posed of one column of elements and zero to multiple
attribute columns. Attributes can either be value attributes
that will be taken as mathematical values or label
attributes treated as tags.
A network is a set of nodes that are interconnected by

edges representing particular relationships between nodes.
Like list data, network data can originate from heteroge-
neous sources including yeast two-hybrid experiments,
computational or statistical inferences, literature summa-
ries or database queries. Although there are several stan-
dard languages or formats for network representation, we
assume that biologists may not be familiar with those stan-
dards. Thus, EnRICH applies a popular node-pair/edge list
format as the input format for network data, where an edge
is denoted by the pair of nodes it connects. In the matrix
format, network edges are represented by two columns of
node names. Like list data, network edges may have values
and label attributes. Accordingly, a network is a named
matrix consisting of two columns of nodes and zero to
multiple attribute columns. EnRICH allows blank fields in
the attribute column when data are missing.

Running mode
EnRICH runs in two modes: undefined (without filters)
and defined (using specific criteria to filter attributes). The
undefined mode simply ignores the attributes of networks
or lists. Each list or network is considered as a source, and
all sources will be merged together. The defined mode
simultaneously considers integration of networks or lists
as well as user-defined criteria (which filters out elements
that do not meet the criteria) over each network or list.
For both types of running modes, candidates (edges of a
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network or elements of a list) are ranked by their reoccur-
rence across all sources after integration. The filtering
process is completely user-defined. Because the filter is to-
tally attribute-based, the user sets filters most appropriate
for their biological question, which may include a combin-
ation of filters for each attribute, and even multiple filters
for multiple attributes. For example, two of the compari-
son operators (<, <=, >, >=, ==) applied at the same time
can be used to set a cutoff range for value attributes or
several tags can be used (with an OR operator between
them) when the user wants to select multiple label values
(e.g. two annotations) for one attribute. When there are
multiple attributes, multiple filters (with an AND operator
between them) can be applied simultaneously.

Text output
EnRICH saves output results as a tab-delimited text file.
In the output text file, the user can see what files were
integrated, which filters were applied to each file, and
the result. For list data, the result is a table, which con-
sists of three columns: the label of an element, its re-
occurrence across all lists, and names of source-lists. For
network data, the result includes four tables: node statis-
tics, edge statistics, nodes, and edges. The node degree
reveals topological importance of the node, so the table
of node statistics contains two columns, one column is
the node degree (the number of connections a single
node has) and the other is the number of nodes that are
greater than or equal to (>=) this node degree. For the
table of edge statistics, one column is edge reoccurrence
(the number of times a single edge is recovered across
all datasets) and the other is the number of edges that
have an edge reoccurrence that are greater than or equal
to (>=) this edge reoccurrence. The table of nodes and the
table of edges are quite similar. Each has a column of
nodes/edges, their reoccurrence, and source-networks.
The only difference between the node and edge tables is
that a node is represented by the node label and an edge is
denoted as two node labels. The table of edges is a
tab-delimited data table composed of several columns
such as node label name, edge reoccurrence and source.
Therefore, if desired, the user can directly copy or import
them into another network visualization tool such as
Cytoscape [12,16].

Visualization
EnRICH enables an interactive visual analysis of the
integrated network without depending on a third-party
visualization software. EnRICH network visualization
consists of two components for user interaction: the
integrated network and the plot of network statistics
(Figure 2). In the integrated network, an undirected edge
is drawn as a blue line while a directed edge is drawn as
a pink line with a pink arrow to indicate the direction of
the interaction (e.g. transcriptional regulation). A blue line
with a pink arrow is used to denote merged undirected
and directed edges. All edges and nodes can be reposi-
tioned, without changing connections, by clicking and
then dragging the item on the screen. In addition, the user
can click to show or dissipate node labels and edge
sources at the node- and edge-specific level, instead of the
whole network level. The plot component has two plots:
1) the number of nodes vs. node degree plot and 2) the
number of edges vs. edge-reoccurrence plot. The number
of nodes and the number of edges are two aspects of the
network size, while the node degree reveals topological
importance of node. Edge reoccurrence is the number of
times the edge is recovered in different data sources,
which implies the reliability of an edge. In conjunction,
the two plots are used to balance the visualization of
network size and quality. All data points in the two plots
are clickable to re-draw the integrated network at the
selected level of node degree or edge reoccurrence. This
interactive plot gives the user an easily visible comparison
of node degree, edge reoccurrence and network size, and
allows the user to simultaneously visualize the network at
corresponding levels. EnRICH also allows the exportation
of the network as an image file in TIFF format, which is
widely supported.

Result and discussion
Application of EnRICH
Retinal disease genes are genes that, when knocked out or
mutated, cause retinal degeneration (https://sph.uth.tmc.
edu/retnet/disease.htm). The identification of retinal disease
genes is a major goal of retinal degenerative disease
research and as part of this effort, there have been a signifi-
cant number of experiments that describe transcriptional
changes during normal retinal development [17-23]. Here,
we present a case study in which we use EnRICH to
integrate multiple gene lists to identify potential retinal
disease genes.
Nrl [24-27] is a retinal disease gene that is associated

with the retinal degenerative disease enhanced s-cone
syndrome [28]. When Nrl is mutated, the resulting
phenotype is an abundance of s-cone photoreceptors at
the expense of rod photoreceptor differentiation [25,29],
leading to the eventual death of all photoreceptors.
During normal development, Nrl influences the cone
versus the rod cell fate decision by activating rod-specific
genes, including the genes Rho and Nr2e3 [30]. Rho [31-33]
is a rod-specific gene, the mutation of which leads to rod
photoreceptor cell death and retinal degeneration. Nr2e3
[34,35] is also essential during retinal development, as it
promotes the expression of rod-specific genes (including
Rho) and represses the expression of cone-specific
genes in rods. The mutation of Nr2e3 also causes
enhanced s-cone syndrome [36]. Based on the known
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Figure 2 EnRICH visualization window. Left: integrated network from synthesizing data. Circles represent nodes, while circle size represents
node degree (the number of connections one node has). Lines represent edges of a network and line stroke represents the amount of edge
reoccurrence (the number of times one edge is recovered across data sources). Undirected edges are represented by blue lines, while directed
edges are pink lines with pink arrows. The merged edge of undirected and directed data is denoted by blue line with a pink arrow. Right: top
panel is the statistical plot of node degree vs. the number of nodes. Bottom panel is the statistical plot of edge reoccurrence vs. the number of
edges. In the software, all data points in the two plots are clickable to update visualization of the integrated network.
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regulatory relationships between these three disease
genes and their importance for normal photoreceptor
development, we rationalize that the behavior of these
genes would make good criteria to identify additional
retinal disease genes.
Figure 3 Case study workflow. A. Rationale illustrates our current knowle
analyzed. B. Workflow displays the steps that we must go through in order
executed by EnRICH to obtain candidate genes. Workflow is the implemen
Using these assumptions, we defined the following cri-
teria to identify retinal disease genes: 1) candidates must
be highly co-expressed with Nrl, Nr2e3 and Rho during
rod photoreceptor development of wild-type mice; and
2) candidates must be disregulated when Nrl is knocked
dge of Nrl, Nr2e3 and Rho and their behaviors in the dataset we
to apply our criteria to identify candidate genes. These steps are
tation of the investigation process based on the rationale (A).
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out (as Nr2e3 and Rho are). With these criteria in
mind, we decided to use a microarray dataset [17]
(GSE4051), which profiles gene expression in isolated
rod photoreceptors at multiple developmental stages
(E16, P2, P6, xP10, 4-weeks) in both Nrl-knockout
and wild-type mice. In these microarrays, we con-
firmed that Nr2e3 and Rho are highly co-expressed
with Nrl in wildtype and are no longer co-expressed
in the Nrl mutant.
According to the corresponding workflow (Figure 3), we

prepared, and subsequently integrated, three types of gene
lists which are: Type 1) Genes that are co-expressed with
Nrl, Nr2e3 and Rho in developing wild type rod photore-
ceptors; Type 2) Genes that are co-expressed with Nrl,
Nr2e3 and Rho in developing photoreceptors isolated from
Nrl-mutant retinas; and Type 3) Differentially expressed
genes (DEGs) at each age when comparing gene expression
in wild-type rod photoreceptors to Nrl-knockout rods. Each
list contained attributes that were used to apply criteria
filters (i.e. pairwise correlations for type 1 and 2, age at
which expression was up or down regulated for type 3). To
carry out the workflow, we first specified filtering criteria
for each list. This is a key element of EnRICH, where users
can simultaneously query multiple datasets to generate an
‘integrated result’. For this experiment, eight list datasets
were integrated. The filtering criterion for six of the lists
was an absolute value of the correlation coefficient greater
than 0.9, while the filtering criterion for the two differen-
tially expressed gene lists was the developmental time
points P6 and P10 (for criteria on each single list, see
Additional file 1: Table S1). Candidates that satisfied these
filtering criteria in eight lists were identified as the highest
priority candidates. All the lists were prepared from
by standard analyses of the dataset GSE 4051 (calcula-
tion of co-expression coefficients within a genotype and
differentially expressed genes between genotypes).
The execution of our workflow generated five candi-

date genes (see Additional file 2: Table S2) from an ini-
tial pool of 272 unique differentially expressed genes
(see Additional file 3). Based on a literature/database
search, four of our five candidate genes (pde6b, gnb1,
guca1a and cgna1) are confirmed retinal disease genes
[37-46], and the fifth gene (kcne2) has been shown to be
up regulated during a neuroinflamatory response in the
retinas of diabetic rats [47], making it a reasonable
candidate for a disease gene as well. Thus, in our
example analysis to identify disease genes, 80% of
our candidates are known disease genes, while the
remaining candidate has a demonstrated tie to the
diseased retina, and is therefore a high quality candidate.
Using a Fisher test we also concluded that retinal disease
genes are significantly overrepresented in the genes priori-
tized by EnRICH, compared with genes not prioritized by
EnRICH (see Additional file 3).
Our case study demonstrates that a well-conceived data
integration and criteria-based filtration, as implemented in
EnRICH, can effectively identify a limited number of high
quality candidate genes for careful hypothesis-based inves-
tigation. Conversely, if the number of candidates returned
is too small, slight adjustments in the filtration criteria may
be easily made to generate a larger, while still reasonably-
sized, candidate pool.

Conclusions
EnRICH is a free java application which can qualitatively in-
tegrate results from large, heterogeneous data sources while
simultaneously applying filters to each of them. It allows
the user to define data sources, and to integrate them as
well as specify multiple sorting criteria specific to each data
source. It provides interactive network visualization tool for
the user to identify an integrated network with a desirable
balance between network size and quality. With EnRICH,
biologists have an automated yet flexible integration tool
to carry out their data analysis and effectively prioritize
candidate genes for further investigation.

Availability and requirements
Project name: EnRICH (see Additional file 4: for the

jar file of EnRICH program).
Project home page: http://xiazhang.public.iastate.edu/

or the software category on the lab homepage http://
serb.public.iastate.edu.
Operating system(s): platform-independent.
Programming language: Java.
Other requirements: Java 1.4.2 or higher.
License: GNU General Public License.
Any restrictions to use by non-academics: NO.

Additional files

Additional file 1: Gene lists and their filtration criteria prior to
integration. This file includes a supplementary table that displays names
and descriptions of gene lists for integration in case study and some
further explanation on the sources of gene lists.

Additional file 2: Gene candidates resulting from the EnRICH
filtration and prioritization analyses. This file is the supplementary table
of the five gene candidates from the prioritization by using EnRICH in the
case study.

Additional file 3: Description of data processing. This file includes
detail description of data pre-processing for case study, and analysis of
the significance of case study result.

Additional file 4: EnRICH program. This file is the archive file of EnRICH
which aggregates Java class files and associated metadata and resources.
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